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Abstract. The input energy to a base-isolated (BI) building during an earthquake is considered and
formulated in the frequency domain. The frequency-domain approach for input energy computation has
some notable advantages over the conventional time-domain approach. Sensitivities of the input energy to
the BI building are derived with respect to uncertain parameters in the base-isolation system. It is
demonstrated that the input energy can be of a compact form via the frequency integration of the product
between the input component (Fourier amplitude spectrum of acceleration) and the structural model
component (so-called energy transfer function). With the help of this compact form, it is shown that the
formulation of earthquake input energy in the frequency domain is essential for deriving the sensitivities
of the input energy to the BI building with respect to uncertain parameters. The sensitivity expressions
provide us with information on the most unfavorable combination of the uncertain parameters which leads
to the maximum energy input. 

Key words: earthquake input energy; base-isolation; frequency-domain analysis; response sensitivity;
parameter uncertainty.

1. Introduction 

It is commonly recognized (for example, Naeim and Kelly 1999) that base-isolation (BI) systems

are very useful in reducing the earthquake response of buildings except for absolute base

displacement (for example, Barbat et al. 1995, Meirovitch and Stemple 1997, Morales 2003) and

are being installed in many buildings and facilities after the Hyogo-ken Nanbu earthquake (1995). It

is also true that the mechanical properties of the BI system are fairly uncertain and uncertainty

analysis is often implemented in the actual structural design of base-isolated (BI) buildings. For

example, the dependence of the mechanical properties of the BI system on temperature, amplitude

of deformation, velocity of deformation, axial stress of isolators, etc. and the degree of variability of

these factors have to be taken into account appropriately. 

In this paper, uncertainty in BI buildings and its effect on earthquake energy input are

investigated. That uncertainty is assumed to result from the variability in the modeling of

mechanical properties of the BI system. For this purpose, a shear building model supported by a BI
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system is treated. The analysis of BI buildings is well established and some computer programs can

be used for the analysis of BI buildings. It is also true that, while the analysis of BI effects has been

focused mainly on the investigation in terms of deformation and acceleration, much attention has

never been directed to the investigation in terms of the earthquake input energy to the BI building.

However, the energy concept may be appropriate especially in the analysis of BI buildings which

consist of multiple components with completely different properties. In practice, the energy concept

is often used in the preliminary design of BI buildings (AIJ 1989, 2001). This method is referred to

as ‘an envelope analysis method’. 

From this point of view, the earthquake input energies to a superstructure and to an overall system

of the BI building are chosen as the response quantities in the evaluation of the effect of the

uncertain parameters. The frequency-domain approach is used to evaluate the earthquake input

energies in an analytical way. It is shown that the earthquake input energies to a superstructure and

to an overall system can be obtained in a compact form by taking advantage of the frequency-

domain approach. The transfer function necessary in the evaluation of the input energy in the

frequency domain is obtained in closed form by utilizing an explicit expression of the inverse of the

tri-diagonal coefficient matrix in the equations of motion. It is also shown that the sensitivity of the

earthquake input energy with respect to uncertain parameters can also be obtained in closed form by

taking advantage of the frequency-domain approach. The sensitivity of the transfer function needed

in the evaluation of the sensitivity of the earthquake input energy is derived in closed form by using

the equations of motion in the frequency domain. It will be confirmed through comparison with

results by the finite difference method that the proposed method has a reasonable accuracy, and its

reliability and efficiency are remarkable. 

2. Earthquake input energy in frequency domain 

Consider an N-story shear building model, as shown in Fig. 1, supported by a BI system. Let mi ,

ki, ci denote the mass of the (i + 1)-th floor, the stiffness of the i-th story and the corresponding

damping coefficient, respectively. It is assumed here that the BI system can be modeled by a linear

elastic spring and a linear viscous damper justified for BI systems based on linear rubber bearing

(LRB) that include systems composed solely of LRB and systems constituted by LRB and

hydraulic dampers. The horizontal stiffness and the damping coefficient of the BI system are

denoted by k0 and c0, respectively. This model is subjected to a horizontal acceleration 

at the ground surface. Let ui denote the horizontal displacement of the (i + 1)-th floor relative to

the ground. 

The equations of motion for this BI building may be expressed as 

M  + C  + Ku = −M1 (1) 

where . M, K, C and 1 are the following mass, stiffness and damping

matrices and influence coefficient vector, respectively. 

(2a)

u
··
g t( ) a t( )=

u
··

u
·

u
··
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u u0  u1  …  uN{ }T
=

M diag m0  m1  …  mN( )=
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(2b)

(2c)

(2d)

Consider the earthquake input energy (Housner 1959, Housner and Jennings 1977, Akiyama 1985,

Uang and Bertero 1990, Trifunac et al. 2001, Takewaki 2004a, b) to the present model.

Premultiplication of  on Eq. (1) and integration of the resulting equation from 0 to t0 lead to 

(3)
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Fig. 1 N-story shear building model supported by a base-isolation system 
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Integration by parts of EI
A
 and its rearrangement by use of 

.
ug(0) = 

.
u(t0) = 0 provide 

(4)

The expression in the braces in the last equation indicates the sum of inertial forces acting on the

base-isolated floor mass and building floor masses. Eq. (4) implies that the work by the ground on

the total system of the BI building is equal to EI
A; see Fig. 2(a). 

It is known (Lyon 1975, Ohi et al. 1985, Kuwamura et al. 1994, Ordaz et al. 2003, Takewaki

2004a, b) that, in linear elastic structures, the earthquake input energy can also be expressed in the

frequency domain. It should be noted that, while the previous formulation is restricted to the total

system (Takewaki 2004b), the present formulation includes a new formulation of the evaluation of

input energy to a subsystem, i.e., the input energy to a superstructure. 

Let  denote the Fourier transforms of , and  denote the transfer functions of

 to . 

(5)

These quantities can be derived from the Fourier transformed equations of Eq. (1).
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Fig. 2 Free-body diagram for computation of EI
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The Fourier inverse transformation of Eq. (4) after the extension of lower and upper limits from

(0, t0) to  and use of Eq. (5) lead to 

(6)

where the symbol i denotes the imaginary unit and Im[·] indicates the imaginary part of a complex

number. It is known that the earthquake input energy to a linear elastic structure does not depend on

the phase characteristics of input motions (Lyon 1975, Ohi et al. 1985, Kuwamura et al. 1994,

Ordaz et al. 2003, Takewaki 2004a, b). Eq. (6) clearly supports this fact. 

Consider next the work by the base-isolated floor on the superstructure alone; see Fig. 2(b). This

quantity indicates the input energy to the superstructure alone and is expressed by 

(7)

The internal story shear force in the first story is in equilibrium with the inertial forces 

 and does the work on . The Fourier inverse transformation of the terms in

Eq. (7) after the extension of the lower limit from 0 to  and use of the transfer functions defined

in Eq. (5) provide 
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Let us simplify the expressions of Eqs. (6) and (8) by use of the functions FA(ω) and FS(ω) to be

called energy transfer functions. 

(9a)

(9b)

where 

(10a)

(10b)

The symbol ( )* in Eq. (10) denotes complex conjugate. It is interesting to note that, while the input

energy cannot be decomposed into the term for the structural parameters and that for the input

parameters in the conventional time-domain approach (Eqs. (4), (7)), it is possible in the proposed

frequency-domain approach (Eqs. (9a, b)). 

3. Uncertain-parameter sensitivities of earthquake input energy to overall system

and structure 

Let the symbol ( )' denote the differentiation with respect to one of the uncertain parameters k0

and c0. The sensitivity of the earthquake input energy to the structure with respect to one of the

uncertain parameters may be expressed by 

(11) 

where 

(12)

Similarly, the sensitivity of the earthquake input energy to the overall BI building with respect to

one of the uncertain parameters may be expressed by 
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The tri-diagonal coefficient matrix of the Fourier transformed equation of Eq. (1) may be expressed

as 

(16) 

Then the transfer function HU can be derived in closed form (Yanai 1980, Takewaki et al. 1996,

Takewaki 1999) as 

HU = −A
−1

M1 (17) 

It is important to keep in mind that only the first component  in HU is needed in the

following analysis. Therefore the first row of the symmetric matrix A
−1

is required which is the

same as the transpose of the first column. The closed-form expression of the first column of A
−1

 is

given in Appendix I and  can be obtained in closed form.

Note that the differentiation of the equations of motion AHU = −M1 in the frequency domain with

respect to an uncertain parameter provides AHU' + A' HU = 0. Then the sensitivities of the transfer

function with respect to the uncertain parameters may be derived in closed form as 

(18a)

(18b)
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(19b)

It should be noted that, because of the expression of Eqs. (19a, b), only the first component
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−

1 
are needed in Eqs. (18a, b).  has been

obtained in closed form in Eq. (17).

Let us define an uncertain parameter vector . Then the earthquake input

energy around a nominal parameter vector may be expressed approximately by
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Eqs. (20), (21) can be used as an effective prediction tool of the most unfavorable combination of

the uncertain parameters k0 and c0. If the sensitivity  (or ) is positive, the

corresponding increment ∆α i should be chosen as a positive value. On the contrary, if the sensitivity

A ω
2
M– iωC K+ +=

HU
0
ω( )

HU
0
ω( )

∂

∂k0

--------HU A
1– ∂A

∂k0

--------⎝ ⎠
⎛ ⎞

HU–=

∂

∂c0

--------HU A
1– ∂A

∂c0

--------⎝ ⎠
⎛ ⎞

HU–=

∂A

∂k0

-------- diag 1  0  …  0( )=

∂A

∂c0

-------- iω diag 1  0  …  0( )×=

HU
0
ω( ) HU

0
ω( )

α α1  α2{ }T
k0  c0{ }T

= =

EI

S
α α∆+( ) EI

S
α( )

∂EI

S
α( )

∂αi

------------------ αi∆
i 1=

2

∑+≅

E I

A
α α∆+( ) EI

A
α( )

∂EI

A
α( )

∂αi

------------------ αi∆
i 1=

2

∑+≅

∂EI

S
α( )/∂αi ∂EI

A
α( )/∂αi



354 Izuru Takewaki

 (or ) is negative, the corresponding increment ∆α i should be chosen as a

negative value. It should be noted that this treatment is valid only if the range of variation of the

uncertain parameters k0 and c0 is relatively narrow and the degree of nonlinearity of 

with respect to α is small. In case that the degree of nonlinearity is not small, higher-order

approximation should be introduced. The higher-order coefficients may be derived by differentiating

the equation AHU' + A'HU = 0. For example, the second-order coefficients may be derived as 

HU
'' = −2A

−1
A' HU

'
 (22)

.
HU

' = −A
−1(

.
AHU

' + A'
.

HU) (23) 

where prime and super-dot denote differentiation with respect to distinct uncertain parameters, i.e.,

k0 or c0. It is interesting to note that A' and 
.
A include non-zero components only in (1, 1) and the

first column of A
−

1
 alone is needed in Eqs. (22) and (23). The closed-form expression of the first

column of A−

1 is shown in Appendix I. 

4. Numerical examples

4.1 Earthquake input energy 

Numerical examples for 5-story, 10-story and 15-story shear building models with BI systems are

presented. Originally BI systems were applied to rather low-rise buildings. However, BI systems are

being installed in mid-rise or high-rise buildings especially in Japan. The floor masses are mi = 3.20

× 10
5 

(kg)(i = 1, ..., N) and m0 = 9.60 × 105 (kg). The story stiffnesses of the buildings are

determined so that the 5-story, 10-story and 15-story shear building models with fixed-base have the

fundamental natural periods of 0.5(s), 1.0, 1.5, respectively, and their lowest eigenmodes of the

models with fixed-base are straight. As a result, the lowest eigenmode (superstructural part) of the

BI system is not straight. This treatment is based on the inverse problem approach (Nakamura and

Yamane 1986, Takewaki 2000). It is also assumed that the damping matrix of the superstructure

with fixed base is proportional to the stiffness matrix of the superstructure and the damping ratio in

the lowest mode of the superstructure with fixed base is 0.05. The stiffness k0 and damping

coefficient c0 of the BI system have been determined so that the natural periods of the base-isolated

rigid building models (  (i = 1, ..., N)) are 3.0(s), 4.0, 5.0, respectively, for the 5-story, 10-

story and 15-story shear building models and the damping ratio of the base-isolated rigid building

models is 0.15. 

Figs. 3(a)-(c) show the plots of the energy transfer functions FA(ω), FS (ω) for the 5-story, 10-story

and 15-story shear building models. The unit of the ordinate is N · s
3
/m. It can be observed that

FA(ω) has the peak around the natural circular frequency of the BI building and FS (ω) is negligible

compared to FA(ω). It is also seen in Fig. 3 that FS (ω) have multiple peaks. 

Table 1 shows the comparison of input energies to overall system EI
A under El Centro NS

(Imperial Valley 1940) by the conventional method in time domain and by the proposed method in

frequency domain. The time increment of the ground motion acceleration data and of the time-

domain numerical analysis is 0.02(s). The Fourier amplitude of El Centro NS (Imperial Valley

1940) is plotted in Fig. 4. In the conventional time-domain method, the average acceleration method

∂EI

S
α( )/∂αi ∂EI

A
α( )/∂αi

EI

S
α( ) EI

A
α( ),

ki ∞→
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Fig. 3(a) Energy transfer functions FA(ω), FS (ω) for 5-story model (unit: N · s3/m) 

Fig. 3(b) Energy transfer functions FA(ω), FS (ω) for 10-story model 

Fig. 3(c) Energy transfer functions FA(ω), FS (ω) for 15-story model 
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has been used as the numerical integration scheme of the equation of motion and the trapezoidal

rule has been used for integration of Eq. (4). On the other hand, in the proposed frequency-domain

method, the trapezoidal rule has been used for numerical integration of Eq. (6). Furthermore, the

trailing zeros have been added to the original ground motion to enhance the accuracy of analysis in

the frequency domain. As a result, time duration as eight times the original time duration has been

adopted. It can be concluded that the proposed frequency-domain approach corresponds to the time-

domain approach within the accuracy of 1% in the computation of the overall input energy EI
A
. 

It is interesting to note that the overall input energy to the 10-story and 15-story models is smaller

than that to the 5-story model. 

4.2 Sensitivity of earthquake input energy with respect to uncertain parameters 

The stiffness and damping coefficient of the base-isolation system evaluated in the previous

section are referred to as the nominal values. The sensitivities of the earthquake input energies with

respect to uncertain parameters are considered at this point. 

The solid lines in Fig. 5(a) illustrate the sensitivities  for the 5-story

model obtained from the closed-form expression, Eqs. (12), (14). The dotted lines in Fig. 5(a)

indicate the sensitivities  for the 5-story model. It can be seen that, while

both positive and negative values can appear in the stiffness sensitivities 

∂FA ω( )/∂k0 ∂FS ω( )/∂k0,

∂FA ω( )/∂c0, ∂FS ω( )/∂c0

∂FA ω( )/∂k0 and ∂FS ω( )/∂k0

Table 1 Comparison of input energies to overall system EI
A under El Centro NS 1940 by the conventional

method in time domain (T) and by the proposed method in frequency domain (F) 

Model 5-story 10-story 15-story 

 (J) 
T 0.990 × 106 0.671 × 106 0.678 × 106

F 0.982 × 106 0.667 × 106 0.682 × 106
EI

A

Fig. 4 Fourier amplitude of acceleration of El Centro NS (Imperial Valley 1940) 
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around the fundamental natural frequency of the BI building, large absolute values of negative

numbers can appear in the damping sensitivities  around such frequency

range. This is because, while the frequency, i.e., the fundamental natural frequency of the BI

building, giving the peak value of the energy transfer function shifts according to the variation of

the stiffness of the BI system, that does not change in the case of the variation of the damping

coefficient of the BI system. If the frequency corresponding to the peak value shifts to the positive

direction, the sensitivity in the range of frequency lower than the fundamental natural frequency of

the BI building becomes negative and that in the range of frequency higher than the fundamental

natural frequency of the BI building becomes positive. The corresponding figures for 10-story and

15-story models are shown in Figs. 5(b) and (c). 

∂FA ω( )/∂c0 and ∂FS ω( )/∂c0

Fig. 5(a) Sensitivities of energy transfer functions FA(ω), FS (ω) for 5-story model with respect to k0, c0 by
proposed analytical method (unit for ,  is s3 and that for ,  is s2) ∂FA/∂k0 ∂FS/∂k0 ∂FA/∂c0 ∂FS/∂c0

Fig. 5(b) Sensitivities of energy transfer functions FA(ω), FS (ω) for 10-story model with respect to k0, c0 by
proposed analytical method 
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Table 2 shows the input energy sensitivities under El Centro NS 1940 with respect to uncertain

parameters by the proposed method in frequency domain (Eqs. (11) and (13)). It is noted that, while

the present evaluation method includes the closed-form expression in the integrand and is reliable

from this point of view, it requires a numerical integration in the frequency domain which does not

reduce the reliability. In this sense, it may be appropriate to call the present method a nearly exact

method. To check the accuracy of the proposed method, the finite difference method (1% difference

scheme) has been adopted. For the nearly exact value of  as 0.885 × 10−1 by Eq. (13), the

value by the finite difference method through the proposed frequency-domain approach is

0.873 × 10−1 
(1.4% error) and that through the conventional time-domain approach is 0.837 × 10−1

(5.4% error). Furthermore, for the nearly exact value of  as −0.785 × 10−1 by Eq. (13), the

value by the finite difference method through the proposed frequency-domain approach is −0.746

× 10−1 (5.0% error) and that through the conventional time-domain approach is −0.871 × 10−1 (11.0%

error). These results imply that the proposed frequency-domain approach is more reliable than the

conventional time-domain approach in the computation of input energy sensitivities. 

It should be noted that, while the response  and its response sensitivity  in the

integrand of the differentiated expression 
 
of Eqs. (4) and (7) with respect to an uncertain

∂E I

A
/∂k0

∂E I

A
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u
·

u
··, u

· ′ u
·· ′,

E I

S′ E I
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Fig. 5(c) Sensitivities of energy transfer functions FA(ω), FS(ω) for 15-story model with respect to k0, c0 by
proposed analytical method 

Table 2 Input energies and their sensitivities with respect to stiffness and damping parameters in base-isolated
system 

Model 5-story 10-story 15-story 

 (J) 0.982 × 106 0.667 × 106 0.682 × 106

 (J) 0.210 × 104 0.132 × 105 0.256 × 105

 (m2) 0.885 × 10−1 0.415 × 10−1 −0.233 × 10−1

 (m2/s) −0.785 × 10−1 0.198 × 100 0.171 × 100

 (m2) 0.263 × 10−3 0.104 × 10−2 0.185 × 10−2

 (m2/s) 0.654 × 10−3 0.678 × 10−2 0.115 × 10−1

EI

A

EI

S

∂EI

A
/∂k0

∂EI
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/∂c0

∂EI
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/∂k0

∂EI

S
/∂c0



Uncertain-parameter sensitivity of earthquake input energy to base-isolated structure 359

parameter have to be evaluated by some numerical integration schemes, the proposed method

through Eqs. (11)-(19) includes the closed-form expression in the integrand of Eqs. (11) and (13).

This characteristic leads to a stable and reliable result in the input energy sensitivity computation. 

Fig. 6 presents the comparison of sensitivities of the energy transfer functions FA(ω), FS(ω) for 5-

story model with respect to k0, c0 by the proposed analytical method and by the finite difference

method (1% difference scheme). It can be observed that the result by the proposed method

corresponds fairly well to the result by the finite difference method and it may be said that the

proposed method is reliable. 

Fig. 7 shows the variation of the input energy EI
A with respect to variation of uncertain parameters

k0 and c0 (80% - 120% of nominal values). It can be seen that, while a linear approximation may be

possible for damping variation, a higher-order approximation may be necessary for stiffness

variation. With the help of Eq. (20), it can be understood that the most unfavorable combination of

uncertain parameters corresponds to the largest value of k0 and the smallest value of c0. The

structural designer can obtain useful information from this analysis for the degree of robustness of

the designed BI building. 

Fig. 6 Comparison of sensitivities of energy transfer functions FA(ω), FS (ω) for 5-story model with respect to
k0, c0: proposed analytical method and finite difference method 
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5. Conclusions 

The following conclusions may be drawn. 

(1) The earthquake input energy is an appropriate performance measure in the uncertainty analysis

of base-isolated buildings which consist of multiple components with completely different

properties. It can provide a global performance measure for base-isolated buildings compared

to deformation indices. 

(2) The earthquake input energies to a superstructure and to an overall base-isolated building can

be obtained in a compact form by taking advantage of a frequency-domain approach. The

transfer function necessary in the evaluation of the input energy in the frequency domain can

be obtained in closed form by utilizing an explicit expression of the inverse of the coefficient

matrix in the equations of motion in the frequency domain. 

(3) The proposed frequency-domain method has a reasonable accuracy in the computation of

earthquake input energy in comparison with the conventional time-domain method. 

(4) The sensitivities of the earthquake input energies to a structure and to an overall base-isolated

building with respect to uncertain base-isolation parameters can also be obtained in closed

form by taking advantage of the frequency-domain approach. The sensitivity of the transfer

function needed in the evaluation of the sensitivities of the earthquake input energies to a

structure and to an overall base-isolated building can be derived in closed form by using the

equations of motion in the frequency domain. 

(5) It has been confirmed through comparison with results by the finite difference method that the

proposed method has a reasonable accuracy and its reliability and efficiency are remarkable. 

In this paper, only the linear elastic response has been considered. In the case where base-isolation

devices exhibit non-linear responses, deterministic and stochastic equivalent linearization techniques

could be used. This topic will be discussed in the future. It is commonly recognized that the degree

of uncertainty of structural parameters in fixed-base buildings is smaller than that in BI buildings,

especially in base-isolation devices. In this sense, the present uncertainty analysis plays a key role in

BI buildings. 

Fig. 7 Variation of earthquake input energy with respect to uncertain parameters 
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Appendix I: Inverse of matrix A defined in Eq. (16) 

Let us re-express the matrix A defined in Eq. (16) as 

(A1)

where dj, ej are as follows.

dj = kj + kj+1 + iω (cj + cj+1) − ω
2
mj ( j = 0, ..., N − 1) (A2) 

dN = kN + iωcN − ω
2
mN (A3)

ej = kj + iωcj ( j = 1, ..., N) (A4)

Let us define the following ordered set {Pj} of the principal minors of A.

(A5)

It is known that {Pj} satisfies the following recurrence relation. 

(A6)

It is therefore concluded that {Pj} and det A can be obtained systematically without difficulty. Then the first
column of the inverse of A may be expressed as Yanai (1980) 
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