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Free vibration analysis of rotating beams 
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Abstract. In this paper, free vibration of rotating beam with random properties is studied. The cross-
sectional area, elasticity modulus, moment of inertia, shear modulus and density are modeled as random
fields and the rotational speed as a random variable. To study uncertainty, stochastic finite element
method based on second order perturbation method is applied. To discretize random fields, the three
methods of midpoint, interpolation and local average are applied and compared. The effects of rotational
speed, setting angle, random property variances, discretization scheme, number of elements, correlation of
random fields, correlation function form and correlation length on “Coefficient of Variation” (C.O.V.) of
first mode eigenvalue are investigated completely. To determine the significant random properties on the
variation of first mode eigenvalue the sensitivity analysis is performed. The results are studied for both
Timoshenko and Bernoulli-Euler rotating beam. It is shown that the C.O.V. of first mode eigenvalue of
Timoshenko and Bernoulli-Euler rotating beams are approximately identical. Also, compared to
uncorrelated random fields, the correlated case has larger C.O.V. value. Another important result is, where
correlation length is small, the convergence rate is lower and more number of elements are necessary for
convergence of final response.

Key words: rotating beam; random properties; random fields; stochastic finite element method; second
order perturbation.

1. Introduction

The vibration analysis of rotating beam is important in understanding behavior of rotating

structures such as propellers, turbine blades, helicopter rotors and satellite booms. To study vibration

of rotating beams, Abbas (1986) and Yokoyama (1988) used finite element methods. Lee and Lin

(1994) studied the vibration of non-uniform rotating beam by neglecting the Coriolis effect. Yang

and Tsao (1997) studied the vibration and stability of a pretwisted blade under nonconstant rotating

speed. Pohit et al. (1999) investigated free out-of-plane vibration of a rotating beam with a

nonlinear elastomeric constraint. Al-Bedoore and Hamdan (2001) developed a mathematical method

for a rotating flexible arm undergoing large planar flexural deformations. Bazoune et al. (2001) used

finite element method to study the dynamic response of spinning tapered Timoshenko beams.

Vibration of a rotating damped blade with an elastically restrained root was investigated by Lin et al.
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(2004). The comparison between Bernoulli-Euler and Timoshenko beam theories in a composite

rotating beam is performed by Jung et al. (2001) and Chandiramani et al. (2003).

Aforementioned studies are limited to vibration of rotating beams with deterministic properties.

However, in reality, properties of structures and mechanical systems are random. The first study in

vibration analysis of a system with random properties was carried out by Boice and Goodman

(1964) using perturbation method. Singh (1985) studied the turbine blade reliability with random

properties. Iwan and Haung (1996) presented a procedure for obtaining the dynamic response of

nonlinear system with parameter uncertainty. Chakraborty and Dey (1998) proposed a stochastic

finite element method in the frequency domain for analysis of structural dynamic problems

involving uncertain parameters. Ishida (2001) studied the eigenvalue problem of uniform and

optimum beam with uncertain cross-sectional area. Lin (2000) evaluated the influence of the

random parameter changes to the dynamic behavior of rotating Timoshenko beam. Also, Lin (2001)

investigated the probabilistic behavior of rotating Timoshenko beam. The stochastic finite element

method (SFEM) was developed for analysis of a system with random properties by Combou (1975)

and Handa and Anderson (1981). An important procedure in SFEM is to discretize random fields,

e.g. midpoint method (Handa and Anderson 1981), local average method (Vanmarcke and Grigoriu

1983), and interpolation method (Liu et al. 1986).

In this paper, free vibration of rotating beam with random properties is studied. This work is

based on the Lin’s paper (2000, 2001). He considered the free vibration of rotating beam with

uncertain material, geometry properties and rotating speed. In his papers, these parameters are

modeled as random variables, and used analytical methods for investigation of the free vibration of

a rotating beam. In our work the cross-sectional area, elasticity modulus, moment of inertia, shear

modulus and density are modeled as random fields and the rotational speed as a random variable.

To study uncertainty, stochastic finite element method based on second order perturbation method is

applied. To discretize random fields, the three methods of midpoint, interpolation and local average

are applied and compared.

Fig. 1 Timoshenko rotating beam schematic
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2. Finite element formulation of Timoshenko rotating beams

Fig. 1 shows a uniform beam with hub radius R0 and length L, rotating about the Z-axis with

constant angular velocity Ω. The origin of X, Y, Z coordinate axes is at the hub center. The origin of

x, y, z coordinate axes is at the hub periphery connected to the neutral axis. The x-axis is along the

beam length and coincident with the X-axis, the y-axis is along the beam width and the z-axis is

along the thickness. The beam midplane makes angle Ψ with the rotational plane called setting

angle. One may divide the beam into m elements (l = L/m) as shown in Fig. 1. Using the

Timoshenko beam theory, strain energy in element level is:

 (1)

The first, second and third terms are bending, shear and centrifugal strain energies, respectively.

The centrifugal force Nx' is calculated as follows: 

(2)

and the kinetic energy is calculated as:

(3)

due to translational and rotational kinetic energy contributions. 

Due to centrifugal force Fz' that affects in Z direction, the potential energy is obtained as:

(4)

where Fz' = ρΩ2wsin2ψ. Using two-node elements with 8 degrees of freedom for beam discretization,

the transverse displacement w and bending rotation ϕ in each element length are approximated by

Hermite shape functions with respect to nodal displacements: 

(5)

where ( ' ) shows derivative with respect to spatial variable and 

(6)

where . Hence, the stiffness and mass matrices are obtained: 
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(7)

Where

Using the usual assemblage of matrices, one may obtain stiffness and mass matrices. Finally,

using the Hamilton principle, the following equation is obtained for vibration of rotating beam:

(8)

Where

For a harmonic motion, the following eigenvalue equation is obtained:

(9)

Where , and λ is the eigenvalue of rotating beam and {q}* is the

vibration amplitude. 

3. Free vibration of rotating beam with random properties

In this paper, we assume that the rotating beam has uncertainty in its properties, i.e., elasticity

modulus, shear modulus, moment of inertia and density which are modeled as random fields and

the rotational speed as a random variable. If αi, i = 1 ... 6 is a random field then using αi =

(1 + εi) where  is expectation of αi, the random field ε i can be obtained with zero expectation.

To consider for uncertainty in Eq. (9), the second-order perturbation method is applied. In this

method, all random elements of an equation are expanded about expectation of random variables

using the Taylor series up to second order terms. If this method is applied to Eq. (9), one gets:
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where N is total number of random variables. Substituting Eq. (10) in Eq. (9):

(11)

Note here, the summation law for repeated indices is applied. The comma shows partial

derivative, and [·]
0 and {·}

0 show deterministic value of matrix and vector. Eqs. (11) should be

solved successively to obtain the final response. 

4. Calculation of first and second derivative of eigenvalues and eigenvectors

It is seen from Eqs. (11) that to solve the above equations, the first and second derivatives of

eigenvalues and eigenvectors should be calculated. By applying eigenvalue properties, the following

equations can be obtained (Kleiber and Hien 1992):

(12)

(13)

Superscript “T ” shows transpose. It is necessary to note that Lin (2000, 2001) used the finite

difference method to compute the derivatives of eigenvalues. Two methods are proposed for

calculation of derivatives of eigenvectors (Kleiber and Hien 1992). In the first method, the

derivative of the eigenvector is obtained from linear combination of all eigenvectors. In the second

method, the derivative of the eigenvector is obtained by additional relations found by derivation of

orthogonal relations with respect to random variables. If the second method is applied, we have:

where

(14)
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Using the above equations, one may calculate expectation, variance and coefficient of variation

(C.O.V.) of first eigenvalue of rotating beam. 

5. Sensitivity analysis of rotating beam

The purpose of sensitivity analysis is to determine that with variation of a parameter, how much

variation one gets in response. One of the important advantages of sensitivity analysis is to

determine the parameters, which have the most effects on the response characteristics. On the other

hand, this analysis determines the random parameters that have the least effects on deviation of

response; thus one can assume them as deterministic parameters. 

In this paper following the sensitivity analysis of Lin (2000, 2001), the effect of uncertainty of

random variables on response deviation is represented by the following equation:

(16)

Here  and Sλ are standard deviation of response and that of random variables respectively. The

parameter ηi is defined as relative sensitivity factor. If Eq. (15) is used, ηi will be equal to: 

(17)

6. Discussions

In this paper, shear modulus, G(x), cross-sectional area, A(x), elasticity modulus, E(x), moment of

inertia, I(x), and density, ρ (x), are modeled as random fields and rotational speed, Ω, is modeled as

a random variable. It is necessary to note that Lin (2000, 2001) used the parameters “T ” and “H”

(thickness and width of the cross section) instead of “I(x)” and “A(x)”. To discretize random fields,

three methods of midpoint, interpolation and local average are applied and results are calculated

using these methods. Here, the following property values are used (Lin 2001): 

Where E[.] is expectation operator and the correlation function of random fields is defined as: 

(18)

Where r is the length between two arbitrary points of the beam and “a” is a constant. The ratio L/a

is called “correlation length”. If a = 0, two points in random field are fully correlated and if a = ∞,

the two points will be fully uncorrelated. Variance vector and correlation function matrix of random

fields are defined as:
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(19)

Subscripts 1, 2, 3, 4, 5 show  respectively. Correlation matrix of

random fields is obtained as:

Rotational speed is defined as random variable α6. 

In Figs. 2-5 coefficient of variation (C.O.V.) of first mode eigenvalue is plotted versus rotational

speed. The variance of all random fields equals to 0.01 and random fields are assumed independent

and a = +∞, so:

(20)

In these figurers, four curves are plotted: 

Curve (a): all properties are assumed random 

Curve (b): only material properties are assumed random (A = C = E = 1 and the rest are zero) 

Curve (c): only geometry properties are assumed random (B = D = 1 and the rest are zero),

Curve (d): only rotational speed is assumed random (F = 1 and the rest are zero).

The accuracy of results is investigated by Monte-Carlo method. Simulation is carried out by

10000 samples and is compared with second-order perturbation method. It is realized that there is a

good agreement between second-order perturbation method and Monte-Carlo method, which

exhibits accuracy of results for all rotational speed range. 

Fig. 2 shows C.O.V. for Timoshenko type, where the setting angle is equal to zero. It is seen that

if rotational speed is random (curve (d)), C.O.V. curve is ascending with respect to rotational speed

and if material (curve (b)) and geometry (curve (c)) properties are random, C.O.V. curves are

descending. If all properties are random (curve (a)), the C.O.V. curves are descending due to having

random of material and geometry and then due to rotational speed they are ascending. If rotational

speed increases, the effect of randomness of this parameter (Ω) increases, and consequently, the

C.O.V. curve of this parameter will be ascending. On the other hand, if rotational speed increases,

the mean value of the first mode eigenvalue increases. But the variance of eigenvalue remains

constant (the variances of geometrical and material random properties are constant) and

consequently the C.O.V (variance over mean value) curves of material and geometry will be
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decreasing with respect to rotational speed. The next point to consider is the close similarity

between the curves of geometry and material. To justify the similarity between curves (b) and (c) in

Fig. 2, we simply assume Bernoulli-Euler rotating beam with zero rotational speed for which

(Eqs. (8) and (9)):

(21)Kb[ ] q{ }* λ Mt[ ] q{ }*
=

Fig. 2 C.O.V. of first eigenvalue of Timoshenko rotating beam versus rotating speed, setting angle is 0 degree

Fig. 3 C.O.V. of first eigenvalue of Timoshenko rotating beam versus rotating speed, setting angle is 90
degrees
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By factoring “EI” and “ρA” in Eq. (7) we have

(22)

Then one can rewrite Eq. (21) as 

(23)

Above equation shows that the “order of magnitude” of geometrical properties (A, I ) and material

properties (ρ, E ) are the same. So, with having identical variation in geometrical and material

properties, then one will have identical variation in eigenvalues. This leads to the same C.O.V.

curves.

The properties of Figs. 3 and 2 are similar except that the setting angle in Fig. 3 is assumed to be

90 degrees. It is seen from Fig. 3 that with the increase of setting angle, curves become smoother

and the randomness effect of rotational speed decreases. To justify this, we rewrite the centrifugal

stiffness matrix (Eqs. (2) and (7)) as: 

(24)

then Eq. (8) will be

(25)

Since the translational mass matrix [Mt] is a positive definite matrix and the expression

 is multiplied by Ω2, if Ψ = 0, then the variation in rotating speed has the largest

effect on variation in the first mode eigenvalue. 
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EI Ka[ ] q{ }* λρA Ma[ ] q{ }*
=
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Kγ[ ]=

Kb[ ] Ks[ ] Ω2
Kγ[ ]( sin

2
ψ Mt[ ] )–+ +( ) q{ }* λ M[ ] q{ }*

=

Kγ[ ] sin
2
ψ Mt[ ]–( )

Fig. 4 C.O.V. of first eigenvalue of Bernoulli-Euler rotating beam versus rotating speed, setting angle is 0
degree
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Figs. 4 and 5 show curves of Bernoulli-Euler rotating beam. It can be seen that aforementioned

figures are similar to corresponding Figs. 2-3 for the Timoshenko beam. Consequently, C.O.V. of

first mode eigenvalue of Timoshenko and Bernoulli-Euler rotating beams are approximately

identical. The reason is the first mode eigenvalue of Timoshenko and Bernoulli-Euler rotating

beams are nearly identical and consequently the variation of corresponding eigenvalues and finally

their C.O.V. curves are nearly same.

Figs. 6 and 7 show the C.O.V. of rotating Timoshenko beam versus rotational speed with different

variances. All the curves are plotted by assuming that all properties are random and variances are

identical and equal to 0.0025, 0.01, 0.0225, 0.04. Fig. 6 is plotted with setting angle equal to zero.

Monte-Carlo simulation with 10000 samples is plotted to be compared with second-order

perturbation method. It is seen that, agreement is very good. Also, it is realized that if variance of

random properties increases, the C.O.V. increases accordingly. The properties of Fig. 7 are similar to

those of Fig. 6 except that the setting angle is assumed to be 90 degrees. Theses curves are

smoother than the curves of Fig. 6. To justify this, using Eq. (25), since the translational mass

matrix [Mt] is a positive definite matrix, and the expression  is multiplied by

Ω2, when Ψ = 0, the variation in rotating speed has the largest effect on variation in eigenvalue

which creates sharp changes in the curve pattern, while when Ψ = 90, this effect is the smallest, so,

the curve pattern will be smoother. 

Fig. 8 shows the C.O.V. of first mode eigenvalue as a function of standard deviation of random

properties with different rotational speeds. It is realized that with increasing of standard deviation of

random properties, the C.O.V. increases. Also, with increasing of rotational speed, the slope of

curves decreases. The relation between C.O.V. and standard deviation is linear. 

The aforementioned results are obtained with the assumption that each random field of a random

property is fully-correlated. If random fields are semi-correlated, the random fields as well as beam

should be discretized. Consequently, three methods for discretization of random fields may be applied. 

Kγ[ ] sin
2
ψ Mt[ ]–( )

Fig. 5 C.O.V. of first eigenvalue of Bernoulli-Euler rotating beam versus rotating speed, setting angle is 90
degrees
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To discretize random fields, methods of midpoint, interpolation and local average are applied.

ρ (x) and E(x) are assumed random and their variances are identical and equal to 0.01. As a result,

the correlation matrix has 4 nonzero elements: 

(21)ρ r( )[ ]3,3 ρ r( )[ ]5,5 ρ0 r( )= , ρ r( )[ ]5,3 ρ r( )[ ]3,5 b*ρ0 r( )= = =

Fig. 6 C.O.V. of first eigenvalue of Timoshenko rotating beam versus rotating speed with different variances

Fig. 7 C.O.V. of first eigenvalue of Timoshenko rotating beam versus rotating speed with different variances
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Where , and b is a constant that defines the correlation between random

fields ρ (x) and E(x).

Fig. 9 shows C.O.V. versus the number of elements for the three methods of discretization. The

figures represent correlated and uncorrelated random fields. The rotational speed is zero. It is seen

that compared to uncorrelated case the correlated case has large C.O.V. Also, if the value “a” is

large or if correlation length is small, the convergence rate is lower and more number of elements

ρ0 r( ) exp a r /L–( )=

Fig. 8 C.O.V. of first eigenvalue of Timoshenko rotating beam versus standard deviation of random properties
with different rotating speed.

Fig. 9 C.O.V. of first eigenvalue of Timoshenko rotating beam versus number of elements with different
discretization methods for correlated and uncorrelated random fields
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are necessary for convergence of final response. 

It is realized that in correlated case (a = 4.29, b = 1) the convergence rate of interpolation and

local average methods is higher than that midpoint method. As it is seen from Fig. 9, the midpoint

and interpolation methods converge to the solution from upper limit where the local average method

approaches the solution from the lower limit. The curves of uncorrelated case (a = 10, b = 0) are

Fig. 10 C.O.V. of first eigenvalue of Timoshenko rotating beam versus number of elements with different
discretization methods and rotating speed

Fig. 11 C.O.V. of first eigenvalue of Timoshenko rotating beam versus number of elements with different
discretization methods and three correlation functions
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also investigated. It is seen again, that the convergence rate of interpolation and local average

methods is higher than that of midpoint method. Consequently, in general, the convergence rate of

interpolation and local average methods is higher than that of midpoint method. 

Fig. 10 shows the C.O.V. versus the number of elements for three different rotational speeds. The

most important result of the figure is that with the increase of rotational speed, the C.O.V.

decreases. It can be concluded that the change of rotational speed has a small effect on convergence

rate. In summary, the method of discretization has significant effect on the convergence rate of

response. The number of elements necessary for a good convergence rate has direct relationship

with correlation length. The smaller correlation length, the larger the number of elements. On the

other hand, if the number of elements is large, the stiffness and mass matrices will also be large.

This creates problems in the numerical calculation of these matrices.

Fig. 11 shows the effect of correlation function on convergence rate. The curves are plotted versus

the number of elements and for three correlation functions of , =

,  namely “Gaussian”, “first order autoregressive” and

“second order autoregressive” respectively. It can be inferred that the correlation function has a

small effect on convergence rate. 

Fig. 12 shows the C.O.V. versus a = L/(Correlation Length) for three different rotational speeds

(b = 0). It is apparent here that for small rotational speed as the parameter “a” increases, the C.O.V

decreases. In other words, when the correlation length decreases, the C.O.V. also decreases.

Likewise, as the rotational speed increases, the slope of curves decreases. It is necessary to note that

in rotational speed Ω = 400 rad/s the curve is not monotonic.

Fig. 13 is plotted assuming the random fields E(x) and ρ(x) are correlated (b = 1). It is seen that

as the rotational speed increases the C.O.V. decreases. Likewise the C.O.V increases with respect to

“a” in range of 0 < a < 3.5 and if a > 3.5 the C.O.V. decreases. This feature is approximately

apparent for all rotational speeds.

ρ0 r( ) exp a r /L( )2
–( )= ρ0 r( )

exp a r /L–( ) ρ0 r( ) 1 a r /L+( )exp a r /L–( )=

Fig. 12 C.O.V. of first eigenvalue of Timoshenko rotating beam versus parameter “a = 0.8/(Correlation Length)”,
for uncorrelated random fields 
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Fig. 14 shows the C.O.V. versus rotational speed using 14 elements. It should be taken into

account that here only the material properties are random . Curves are plotted

for correlated and uncorrelated random fields and setting angle 0 and 90 degrees (a = 1). The

C.O.V. corresponding to uncorrelated random field is larger than the correlated random field. For

correlated and uncorrelated cases, the C.O.V. corresponding to setting angle of 90 degrees is higher

E x( )  ρ x( )  G x( ), ,( )

Fig. 13 C.O.V. of first eigenvalue of Timoshenko rotating beam versus parameter “a = 0.8/(Correlation
Length)”, for correlated random fields

Fig. 14 C.O.V. of first eigenvalue of Timoshenko rotating beam versus number of elements for correlated and
uncorrelated random fields
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than setting angle of 0 degree. The reason might be the existence of term  in

stiffness matrix (Eq. (25)) and the fact that where the setting angle increases the randomness effects

of ρ(x) increase (matrix [Mt] is function of ρ(x)). 

Fig. 15 is plotted with properties of Fig. 14, with the exception that the geometry properties (A(x),

I(x)) are assumed to be random. The figure is similar to the previous one. Also, in this figure the

C.O.V. corresponding to uncorrelated random field is larger than the correlated random field.

Likewise, because matrix [Mt] is function of A(x), where the setting angle increases the randomness

Kγ[ ] sin
2
ψ Mt[ ]–( )

Fig. 15 C.O.V. of first eigenvalue of Timoshenko rotating beam versus number of elements for correlated and
uncorrelated random fields

Fig. 16 Relative sensitivity coefficient of first eigenvalue of Timoshenko rotating beam versus rotating speed,
setting angle is 0 degree
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effects of A(x) increase.

For sensitivity analysis of random properties on response, parameter “η” (relative sensitivity

coefficient) is defined. This parameter determines the effect of randomness of each property on

deviation of response. The advantage of the analysis is that it determines the random weight of each

random property. As a result, the random properties with small η can be assumed to be

deterministic. For this aim, Figs. 16 to 19 are plotted. Here the random fields are assumed

uncorrelated and any field is fully-correlated and the variance is 0.01. In Fig. 16 “η”, is plotted

Fig. 17 Relative sensitivity coefficient of first eigenvalue of Timoshenko rotating beam versus rotating speed,
setting angle is 90 degrees

Fig. 18 Relative sensitivity coefficient of first eigenvalue of Bernoulli-Euler rotating beam versus rotating
speed, setting angle is 0 degree 
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versus rotational speed for Timoshenko beam and the setting angle is 0 degree. It is seen the effect

of randomness of parameter “G(x)” is approximately zero. It means that without any error we can

assume G(x) to be a deterministic property. In the first mode eigenvalue of a rotating beam, the

effects of shear deformation is very small and because the shear deformation is directly proportional

to shear modulus G(x), then the variation of shear modulus has very small effects on variation of

first mode eigenvalue. On the other hand, the value of parameters A, ρ, I, E which have medium η

will decrease with an increase of rotational speed. The curves corresponding to rotational speed is

ascending i.e., this parameter has high η in high rotational speed. The setting angle in Fig. 17 is 90

degrees. The figure is similar to previous one with the exception that here, the curves are smoother.

The justification is the presence of term  in stiffness matrix, will change the

stiffness as ψ changes. Consequently, the randomness of properties will bear different results. 

Figs. 18 and 19 are plotted for Bernoulli-Euler beam with setting angle of 0 and 90 degrees. Here,

one gets the same results as the ones for Timoshenko beam and there are not much differences

between the parameter η of these two types. 

7. Conclusions

In this paper, free vibration of rotating beam with random properties is studied. Cross-sectional

area, elasticity modulus, moment of inertia, shear modulus and density are modeled as random

fields and the rotational speed as a random variable. To study uncertainty, stochastic finite element

method based on second order perturbation method is applied. To discretize random fields, the three

methods of midpoint, interpolation and local average are applied and compared. The most important

results of the paper as follows:

1. If rotational speed is random, C.O.V. curve is ascending with respect to rotational speed and if

Ω2
Sin

2Ψ Mt[ ]–

Fig. 19 Relative sensitivity coefficient of first eigenvalue of Bernoulli-Euler rotating beam versus rotating
speed setting, angle is 90 degrees
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material or geometry properties are random, C.O.V. curves are descending. If all properties are

random, The C.O.V. curves are first descending due to randomness of material and geometry

and then due to rotational speed they are ascending.

2. C.O.V. of first mode eigenvalue of Timoshenko and Bernoulli-Euler rotating beams are

approximately identical.

3. If variance of random properties increases, the C.O.V. increases accordingly.

4. Compared to uncorrelated random fields the correlated case has larger C.O.V. value.

5. If correlation length is small, the convergence rate is lower and more number of elements are

necessary for convergence of final response.

6. The convergence rate of interpolation and local average methods is higher than that midpoint

method.

7. The midpoint and interpolation methods converge to the solution from upper limit where the

local average method approaches the solution from the lower limit.

8. With the increase of rotational speed, the C.O.V. decreases.

9. The rotational speed has fairly small effect on convergence rate.

10. The correlation function has fairly small effect on convergence rate.

11. When the correlation length decreases, the C.O.V. also decreases.

12. The C.O.V. corresponding to uncorrelated random field is larger than the correlated random

field.

13. The effect of randomness of parameter “G(x)” is approximately zero. It means that without

any error we can assume G to be a deterministic property. On the other hand, the parameters

A, ρ, I, E have medium η that with the increase of rotational speed their value decrease.

14. There are not much differences between the parameter η of Timoshenko and Bernoulli-Euler

types.
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