Structural Engineering and Mechanics, Vol. 20, No. 3 (2005) 279-292 279
DOI: http://dx.doi.org/10.12989/sem.2005.20.3.279

Direct determination of influence lines and
surfaces by F.E.M.

Engin Orakddgent and Konuralp Girging
Faculty of Civil Engineering, Technical University of Istanbul, 34469 Ayazaga, Istanbul, Turkey

(Received June 14, 2004, Accepted March 16, 2005)

Abstract. In this study, element loading matrices are defined for static application of classical Miiller-
Breslau principle to finite element method. The loading matrices are derived from existing element
matrices using Betti’s law and known governing equations of F.E.M. Thus, the ordinates of influence lines
and influence surfaces may be easily obtained from structural analysis for the loading matrices derived
from governing equations, instead of through introduced unit force or displacement techniques. An
algorithm for a computer program and comparative numerical examples are also presented to illustrate the
procedure for determination of influence line and surface ordinates.
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1. Introduction

The internal force and displacement influence functions of a structure are of prime importance in
engineering mechanics, especially when live loads are considered. An influence function at a
particular point of a structure represents the variation in any response such as displacements and
internal forces due to unit external forces moving on the structure and they are very useful concepts
for obtaining maximum or minimum values of responses of moving and live loads. One of the
classical techniques for obtaining influence functions is to analyze the structure for different
positions of unit external effects. Since this technique is time consuming, a more efficient technique,
based on Miiller-Breslau Principle, is applied in general, Ghali and Neville (1978). According to
this principle, the influence function of any response relating to a structure, whether statically
determinate or indeterminate, is proportional to the deflected shape of the structure obtained by
inducing a known displacement or discontinuity in the direction of the response. Fu (1973) defined
an equivalent load vector for influence surface ordinates by inserting a relative deformation to
nodes. However, the method requires a corrective vector due to the average deformation
considerations along element edges and it is concluded from numerical examples that the accuracy
of this solution depends on the mesh sizes. Cifuentes and Paz (1991) have developed an algorithm
based on the Miiller-Breslau Principle applicable to frames and shells. Sample input data are also
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given for the MSC/NASTRAN finite element code. However, this method requires revising the
input data, since extra nodes and constraints should be defined to be able to give a relative unit
displacement according to the Miiller-Breslau Principle. Shen (1992) has extended the Miiller-
Breslau Principle to structures consisting of finite elements by introducing a loading vector for
average stress at any point on the structure. Since the average stress is considered, the structure
should be finely meshed in the vicinity of the point at which influence function ordinates are to be
determined and constant strain fields called Standard Displacement Modes (SDM) need to be
defined for each type of finite element considered in the problem. SDMs for n-node isoparametric
plane stress elements and three-node triangular plate bending elements are given in the study.
Belegundu (1986, 1988) proposed a method called the Adjoint Method for influence lines. In this
method, an adjoint variable vector is calculated for any response function using the adjoint
equations and then influence line ordinates are obtained by solving the equilibrium equations.
Memari and West (1991) suggested a remedy for adjoint variable vectors since a correction to the
adjoint variable vector is necessary in the case of the response function in the directions of
constrainted degrees of freedom. Kwak and Song (2001), have used Pusher’s influence surfaces
(1977), to find the most unfavourable internal forces due to the vehicle loads. Akesson ef al. (1995),
have utilized the classical Miiller-Breslau influence function technique for determination of stress
intensity factors at the crack tip. Hanson et al. (2004) and Yamashita ef al. (2004), have used the
displacement influence functions of elastic bodies for crack growth simulations. In these studies,
classical approach based on the unit force or stress loading is used to obtain influence coefficients.

In this paper, element loading matrices are defined by using Betti’s law and governing equations
of finite element method for direct determination of the influence lines or surfaces in frame and
shell structures. In contrast to other methods in the literature, since the matrices are derived by
using existing finite element matrices, it may be applied to the structures consisting of any type of
finite element without revising the input data or defining any SDMs or adjoint variable vectors. This
proposed approach corresponds to the direct application of the classical Miiller-Breslau Principle to
finite element method. This paper also explains the statement [f the coefficients of a stress matrix
are used as right-hand sides, the solutions are the stresses resulting from unit loads on each
variable in turn outlined in Irons and Ahmad (1986) and illustrates it’s numerical applications to
frame and shell structures.

2. Influence function ordinates of nodal displacement components of frame and
shell elements

It is well known from structural mechanics that, according to Betti’s Law, influence function
ordinates of any displacement component in a linear-elastic structure can be obtained as the
displacement ordinates due to the unit loading in the direction of considered displacement
components. If the structure is discretized by frame or shell finite elements, the resulting
displacement vector d which is obtained by the solution of linear simultaneous equations

Sd=q (D

gives the influence function ordinates at nodes or so called influence coefficients, where S is the
system stiffness matrix and q is the system loading vector whose element in the direction of the
displacement component considered is equal to 1 while the remaining elements are zero.
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If the Eq. (1) is rewritten for influence coefficients of all nodal displacement components of a
particular element, it yields

SD=Q (2)

where D is a matrix of which each column consists of influence coefficients of an independent
nodal displacement component and Q is the system loading matrix of which each column consisting
of q global loading vectors due to the unit loadings in the directions of independent nodal
displacement components of the considered element. Furthermore, when the matrix S and Q are
rearranged such that the node numbers of the particular element are consecutive, the matrix Q
includes an identity matrix

Q=1 (3)

In other words, if the element loading matrix for determining the influence coefficients of the
nodal displacement components of a particular element is represented by R, it yields an identity
matrix

R=1 4)

3. Element loading matrix for influence coefficients of stress components

The influence coefficients of stress components at a particular point on an element may be
obtained by using the governing equation of finite element method in terms of the influence
coefficients of nodal displacement components as follows:

c=EBD (5)
Substituting
G=EB (6)
in (5) gives
c=GD (7)
or
c'=DG' (8)
where,

G is a matrix consisting of the influence coefficients of the stress components at a particular point
on the element,
E is the elasticity matrix of the element,
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B is a matrix consisting of the derivatives of the element’s shape functions written in terms of the
local point coordinates,

G is the element stress matrix, and

D is a matrix consisting of the influence coefficients of the nodal displacement components of the
element.

Although the influence coefficients of stress components may be obtained by matrix multiplication
in terms of influence coefficients of nodal displacement components by using (5), they may also be
directly obtained as in the following:

If the element loading matrix in (4) is taken as

R=IG"=G" )

the resulting displacement matrix gives D G" as the product or ', which, according to (2) and (8),
consists of influence coefficients of stress components at particular points on the element. In
conclusion, for obtaining influence coefficients of stress components, transposal of the element
stress matrix G may be taken as the element loading matrix R. It should also be noted that,
transformation of the element loading matrix R from the local axis to the global ones is necessary
for constructing the global loading matrix Q. If the influence surface coefficients of any stress
component are to be determined separately, the column of matrix G' corresponding to stress
component should be taken as the element loading vector r. However, when the influence surface
coefficients of average stress components are to be obtained, the averages of the element stress
vectors connected at a node must be applied together as an unique loading case.

4. Element loading matrices for influence coefficients of displacement and strain
components

Similar to the explanations in the previous section, the influence coefficients of displacement and
strain components at a particular point on the element may be directly obtained by using the finite
element equations

u'=DN" (10)
and
e'=DB" (11)

where,

u is a matrix consisting of the influence coefficients of the displacement components at a particular
point on the element,

€ is a matrix consisting of the influence coefficients of the strain components at a particular point
on the element, and

N is the shape function matrix of the element written in terms of the local point coordinates.

Matrix B has been already defined in section 3.
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5. Element loading matrix for influence coefficients of internal force components in
frames

The influence coefficients of internal force components in frame structures may also be obtained
in terms of the influence coefficients of nodal displacement components by using the governing
equation as

P=KD (12)
or
P'=DK" (13)

where,

P is a matrix consisting of the influence coefficients of the internal force components of the frame
element,

K is the element stiffness matrix, and

D is a matrix consisting of the influence coefficients of the nodal displacement components of the
element.

In a manner similar to that explained in Section 3, for obtaining influence coefficients of internal
force components in frame structures, transposal of the element stiffness matrix K may be taken as
the element loading matrix R. If the influence line ordinates of any internal force component are to
be determined separately, the column of matrix K" corresponding to the internal force component
should be taken as element loading vector r. It is also concluded that the load vector r defined
herein is precisely the adjoint load vector given in Belegundu (1986, 1988).

6. Computer implementation

A finite element computer program was written for influence cefficients of frames and plates
utilizing the derived loading matrices. The algorithm of the computer program is given as follows:

1- Read the finite element input parameters of the structure by identifying the element and
defining the local coordinates of the point for the influence coefficient which is to be evaluated,

2- Construct the global stiffness matrix S,

3- Construct the global loading vector Q for the stress, displacement or strain components by
using the matrices K*, G', N" or B" of the considered element,

4- Perform the static analysis of the structure and find the displacement matrix D,

5- Separate the vector D into sub-vectors to obtain the influence coefficients for the external loads
in the directions of the nodal displacement components.

6- Correct the influence coefficients in the direction of response, since an initial unit displacement
is introduced.

7- Obtain the influence line or surface ordinates within the elements using element shape
functions.
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7. Numerical examples

In this chapter, four numerical examples are given to illustrate the present formulation and to
compare the results with those obtained in previous studies.

7.1 Example 1

Consider the truss shown Fig. 1(a). This example is taken from Belegundu (1988), Cifuentez and
Paz (1991).

For the influence line for the axial force in rod 3-9, a loading vector is defined by using the
columns P; or P; of the transposed element stiffness matrix K, since the axial force is constant
along the element length. Positive sign convention and transposal of element stiffness matrix K in
local axes are shown in Fig. 2, the loading vector r*? in global axes is given in Table 1.

(a
ROD 3-9 ROD ELEMENTS
: \ 1 1 2 13
. \
=)
1 7
= 2 3 4 5 6 e X
| 6 X 30 = 180
I |
E=1.0
A=1.0
1/3
® @ — T

Fig. 1 (a) Plane truss, (b) influence line for the axial force in rod 3-9
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Fig. 2 Positive sign convention and transposal of element stiffness matrix in local axes
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Table 1 Element loading vector of rod 3-9 in global axes

Freedom # r?
1 0
2 —0.025
3 0
4 0.025

As is shown in Fig. 1(b), the influence line coefficients are the same as those given by Belegundu
(1988) and Cifuentes and Paz (1991).

7.2 Example 2

Consider the three span continious beam shown in Fig. 3(a). This example is taken from Mc
Cormac (1984) and Cifuentes and Paz (1991).
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Fig. 3(a) Three span continious beam, (b) influence lines for Mg, R; and T,
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For obtaining influence line of bending moment Mg, column P, of the member stiffness matrix
has been chosen as the loading vector of member 7-8. In a similar manner, column P4 of stiffness
matrix was chosen as the loading vector of member 6-7 for obtaining the influence line of shear
force T;. However, column P4 for member 2-3 and column P; of member 3-4 were chosen together
as loading vectors for support reaction Rj since the vertical equilibrium equation at node 3 is
R;=T 32 cor 374. In influence line R;, the vertical displacement of node 3 is obtained as equal to
zero from the analysis as the displacement is restrained. But, since the loading vectors correspond to
the unit vertical displacement, the resulting vertical displacements should be superimposed with this
initial relative unit displacement. Thus, the vertical displacement of node 7 is obtained as 0.850 and
influence line ordinate of shear force T, at the 7 end of element 6-7 should be equal to —0.150. The
positive sign convention and the member stiffness matrix are shown in Fig. 4, the element loading
vectors used for the influence lines are given in Table 2.
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Fig. 4 Positive sign convention and element stiffness matrix

Table 2 Element loading vectors used for influence line ordinates

Freedom # r8 >3 r r*’
1 -0.200 0.060 —-0.060 —0.060
2 0 0 0 0
3 —-0.060 0.012 -0.012 0.012
4 —-0.040 0.060 —-0.060 0.060
5 0 0 0 0
6 —-0.060 0.012 -0.012 0.012
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It is concluded from this example, all the influence line ordinates shown in Fig. 3(b) are in close
agreement with those of Mc Cormac (1984) and Cifuentes and Paz (1991).

7.3 Example 3

Consider the simply supported square plate shown in Fig. 5 and the corresponding finite element
mesh Cifuentes and Paz (1991). The stiffness and stress matrices of fully compatible, 16 DOF plate
finite element shown in Fig. 6, are taken from Bogner et al. (1965).

For the influence surface coefficients of M, for node 41, the column of the element stress matrix
corresponding to M, is taken as loading vector. The loading vectors used for the analysis are given
in Table 3. Since the average My stress is considered, the average loading vectors of the four
elements connected at node 41 are loaded together. Thus, ™ of the element loading vectors are
used for the analysis.

After the analysis of the plate for given element loading vectors, influence surface coefficients of
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Fig. 5 Geometrical characteristics and finite element mesh of square plate

Fig. 6 16 DOF plate finite element
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Table 3 Loading vectors for the influence surface coefficients of My

28

37

36

Freedom # r? r r r
1 499.200 —384.000 —115.200 0.000
2 -9.600 0.000 4.800 0.000
3 32.000 —-16.000 0.000 0.000
4 0.000 0.000 0.000 0.000
5 —384.000 499.200 0.000 -115.200
6 0.000 -9.600 0.000 4.800
7 16.000 -32.000 0.000 0.000
8 0.000 0.000 0.000 0.000
9 —115.200 0.000 499.200 —384.000
10 —4.800 0.000 9.600 0.000
11 0.000 0.000 32.000 —16.000
12 0.000 0.000 0.000 0.000
13 0.000 —115.200 —384.000 499.200
14 0.000 —4.800 0.000 9.600
15 0.000 0.000 16.000 -32.000
16 0.000 0.000 0.000 0.000

Table 4 Influence surface ordinates of M, at chosen nodes for square plate

Node # IS coefficient of M
11 0.01077
17 0.01077
21 0.04447
25 0.04447
31 0.11645
33 0.11645
39 0.05777
41 0.34609
49 0.11645
51 0.11645
57 0.04447
61 0.04447
65 0.01077
71 0.01077

M, are obtained. The coefficients at chosen nodes are given in Table 4.

Influence surface coefficient of M, at node 39 was obtained as —0.06 by Cifuentes and Paz
(1991). The negative sign of the ordinate obtained by Cifuentes and Paz (1991) may be due to
positive sign convention. It should be noted that the element stiffness and stress matrices given by
Bogner et al. (1965) were used in computer code for illustration of the procedure. However, the
procedure is open to the stiffness and stress matrices of any kind of finite element. The contour plot

of influence surface of M, for node 41 is also given in Fig. 7.
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Fig. 7 Contour plot of influence surface of M, for node 41 — values to be multiplied by 10~

7.4 Example 4

Consider the simply supported L shaped plate shown in Fig. 8 and the corresponding finite
element mesh. It was intended to obtain the influence surface coefficients of M, and M,, for node
41.
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Fig. 8 Geometrical characteristics and finite element mesh of L shaped plate
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The loading vectors used for the influence surface coefficients are given in Table 5. For the
average influence surface coefficients, the average loading vectors of four elements connected at
node 41 are loaded together. Thus, %™ of element loading vectors are used for the analysis.

After the analysis of plate for given loading vectors, influence surface coefficients of M, and M,
are obtained. The chosen coefficients are given Tables 6 and 7.

Table 5 Loading vectors for influence surface coefficients of My and My,

27 126 5 T
Freedom #

M, M,y M, M,y M, M,y M, M,y

1 499.200 0.000 —384.000 0.000 —115.200 0.000 0.000 0.000
2 -9.600 0.000 0.000 0.000 4.800 0.000 0.000 0.000
3 32.000 0.000 —16.000 0.000 0.000 0.000 0.000 0.000
4 0.000 -0.700 0.000 0.000 0.000 0.000 0.000 0.000
5 —384.000 0.000 499.200 0.000 0.000 0.000 -115.200 0.000
6 0.000 0.000 -9.600 0.000 0.000 0.000 4.800 0.000
7 16.000 0.000 —32.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 -0.700 0.000 0.000 0.000 0.000
9 —115.200 0.000 0.000 0.000 499.200 0.000 -384.000 0.000
10 —4.800 0.000 0.000 0.000 9.600 0.000 0.000 0.000
11 0.000 0.000 0.000 0.000 32.000 0.000 —16.000 0.000
12 0.000 0.000 0.000 0.000 0.000 -0.700 0.000 0.000
13 0.000 0.000 —-115.200 0.000 —384.000 0.000 499.200 0.000
14 0.000 0.000 —4.800 0.000 0.000 0.000 9.600 0.000
15 0.000 0.000 0.000 0.000 16.000 0.000 —32.000 0.000
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.700

Table 6 Influence surface coefficients of My at the chosen nodes for the L shaped plate

Node # IS coefficient of M,
7 0.00460
9 0.00439

17 0.02307
19 0.02048
31 0.06661
33 0.06277
35 —-0.00417
37 —-0.00236
38 0.00000
39 0.00000
41 0.28257
49 0.04823
51 0.04730
53 —-0.00299

55 -0.00223
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Table 7 Influence surface coefficients of My, at chosen nodes for L shaped plate

Node # IS coefficient of My,
7 0.00050
9 0.00023

17 0.00344
19 —-0.00072
31 0.02106
33 —-0.01893
35 —-0.00072
37 0.00023
41 0.00219
49 —-0.01656
51 0.02106
53 0.00344
55 0.00050
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Fig. 9 Contour plot of influence surface of M, for
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The contour plots of the influence surfaces of M, and M,, for node 41 are also shown in Fig. 9

and Fig. 10 respectively.

8. Conclusions

General loading matrices are defined for determination of influence line or surface coefficients of

internal force, stress,

governing equations and basic finite element matrices.

displacement or strain components in linear-elastic structures by using

Thus, the influence line or surface
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coefficients of any internal force, stress, displacement or strain components can be directly obtained
from the analysis of structure. Once the nodal values of the influence functions are determined,
those within the elements may be easily calculated using the element shape functions. The proposed
technique is very effective for the finite element codes, since it utilizes the existing finite element
matrices to obtain influence line or surface coefficients without any revision of input data or the
definition of loading vectors by calculating new displacement fields. Moreover, the technique
presented herein may also be utilized for crack growth problems solved by step by step
linearization, instead of through introduced unit force or displacement techniques.
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