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Abstract. A new method for deriving analytical solution of the annular elastic plate on elastic
foundation under axisymmetric loading is presented. The formulation is based on application of Hankel
integral transforms and Bessel functions’ properties in the corresponding boundary-value problem. A
representative example is studied and the obtained solution is compared with published numerical results
indicating excellent agreement. 
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1. Introduction 

The model of the plate on elastic support is used in a wide range of civil or mechanical

engineering problems, such as tanks’ or silos’ foundations, aerospace engineering, building

infrastructures etc. The reaction of the foundation in these problems can be considered as a linear

function of the plate’s deflection w at each point. These problems often belong to the following type

of boundary-value problems: 

 

(1) 

 

Especially, for simply supported or fixed circular (or annular) plates with axisymmetric loading,

where w = w(r), p = p(r), q = q(r), the boundary conditions have the following form: 

 

 (2a)

 

 (2b)

Lw x y,( ) p x y,( )w x y,( )+ q x y,( ), a1 x b1≤ ≤ a2 y b2≤ ≤,=

w ri( ) c1 and w′ ri( ) c2= or w″ ri( ) c3==

w ro( ) d1 and w′ ro( ) d2= or w″ ro( ) d3==
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where L is a fourth order linear differential operator, p(r) and q(r) are variable coefficients, w(r) is

the plate’s vertical deflection and ri, ro are the inner and outer radius of the annular plate

respectively. The analytical solution of the above problem cannot be found for all p(r) and q(r) (e.g.

Papakaliatakis and Simos 1997). Numerical procedures to solve such boundary-value problems are

mostly based on finite elements (Cheung and Zienkiewicz 1965), finite differences (Long and Alturi

2002, Krysl and Belytschko 1995) or meshless methods (Van Daele et al. 1994, Melerski 1989). An

interesting hybrid procedure combining finite elements and analytical method to analyze annular

plate-soil interaction is presented by Chandrashekhara and Antony (1997). Hankel integral

transforms have also been used by Wang and Ishikawa (2001) to analyze thick or multi-layered

plates resting on rigid foundation. An alternative numerical procedure for the thin circular plate on

elastic foundation developed by Utku et al. (2000) represents the considered plate as a series of

simply supported annular plates resting on support springs along their common edges and obtains

the stiffness coefficients by the classical thin plate theory. 

Analytical solutions of the Eq. (1) have been formulated e.g. by Timoshenko and Woinowsky

(1959) in terms of infinite series. However, they are limited to the case of a free infinite circular

plate on an elastic foundation loaded by a concentrated load acting on the center. Concerning the

rectangular plates, the method of double series representation (Navier method) and the method of

single series representation (Levy method) (e.g. Naruoka 1981) can be used in order to solve the

basic differential equation . Although extension of these solutions to a

variety cases of loading types and boundary conditions is possible, it depends on each case. 

In the present work a unified analytical solution based on Hankel integral transforms and Bessel

functions’ properties is presented to solve annular elastic plates on elastic foundation. Since most of

the generalized functions (e.g. δ-function and Heaviside function) and several typical algebraic

functions are Hankel integral transformable, the solution of an infinite plate on an elastic foundation

is performed herein in closed form for several axisymmetric loading types (e.g. step wised loading,

concentrated line loading, exponential loading, diminishing harmonic loading etc.). Using the

derived analytical solution for an infinite plate, a technique based on the superposition of solutions

which produce the real boundary conditions at the end points of a finite annular plate embedded

within an infinite plate on elastic foundation is used to solve relevant boundary-value problems. To

this end, the basic differential equation is transformed into a linear algebraic system incorporating

the real boundary conditions. The required solutions are obtained using inverse Hankel transforms. 

 

2. Formulation of the problem 

 

An annular elastic plate with thickness t, inner radius ri, and outer radius ro rests on Winkler type

foundation (Fig. 1). The plate is loaded by the axisymmetric loading q(r) and by the foundation

reaction q*(r) assumed to be proportional to the vertical deflection w(r) of the plate, i.e.,

 

(3)

 

where ks is the modulus of the Winkler foundation. 

It is well known that the basic differential equation describing the circular plate on elastic

foundation under axisymmetric loading has the form: 

 

∇2∇2
w x y,( ) p x y,( ) D⁄=

q* r( ) ksw r( )=
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 (4)

 

where  is the differential operator given by 

 

 (5)

 

and D is the flexural rigidity of the plate depending on the modulus of elasticity E and Poisson

ratio ν : 

 

(6) 

 

At the locations of inner and outer radius, the annular plate shown in Fig. 1 is simply supported.

Then, the boundary conditions of the problem can be written as: 

 

 (7)

(8) 

(9) 

(10)

 

where Mrr is the bending moment in the direction r − r. 

 

3. Analytical solution 

 

3.1 Solution for the infinite circular plate on elastic foundation under arbitrary load q(r)

lying on the infinite area 0 < r < 

To solve the differential Eq. (4), the Hankel integral transform will be used. The definition for

this transform and its inverse form employed in the proposed solution is written: 

 

(11)

 

D∇4
w r( ) q r( ) q* r( )–=

∇4

∇4
w r( ) ∇2∇2

w r( ) d
2

dr
2

-------
1

r
---

d

dr
-----+

d
2
w r( )

dr
2

-----------------
1

r
---

dw r( )
dr

--------------+= =

D
Et

3

12 1 ν
2

–( )
-------------------------=

w ri( ) 0=

Mrr ri( ) 0=

w ro( ) 0=

Mrr ro( ) 0=

∞

f n ξ( ) Hn f r( );ξ{ } rf r( )Jn ξr( )dr

0

∞

∫= =

Fig. 1 Annular plate on elastic foundation under axisymmetric loading



212 D. G. Pavlou, N. V. Vlachakis and M. G. Pavlou

and 

 
 (12) 

 

where Jn(x) is the n-th Bessel function and  are the Hankel and inverse

Hankel transform operator, respectively. 

Taking the operator H0 to Eq. (4) it can be written: 

 (13)

Considering the substitution 

 
 (14)

 

the transformation  can be written: 

 

 (15)

 

or 

 

(16) 

 

According to Sneddon (1972a), the following property of the Hankel transform can be used: 

 

 (17) 

 

where 

 (18)

Taking into account Eqs. (17), (18) and putting n = 0, it can be written: 

 

(19)

 

In the above equation, if w(r) is inserted instead of f (r) the following form can be obtained: 

 

(20)

 

Considering Eq. (14), the Eq. (19) takes the form: 

 (21)

 

This equation with the aid of Eq. (20) results: 

 

(22)

f r( ) H  n

1–
f n ξ( );r{ }

0

∞

∫ ξ  fn ξ( )Jn ξr( )dξ= =

Hn f r( );ξ{ }, H n

1–
f n ξ( );r{ }

H0 ∇4
w r( );ξ{ }

ks

D
----H0 w r( );ξ{ }+

1

D
----H0 q r( );ξ{ }=

∇2
w r( ) f r( )=

H0 ∇4
w r( );ξ{ }

H0 ∇4
w r( );ξ{ } H0 ∇2

f r( );ξ{ }=

H0 ∇4
w r( );ξ{ } H0

d
2
f r( )

dr
2

---------------
1

r
---+

df r( )
dr

------------;ξ
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Hn Bn f;ξ{ } ξ
2
Hn f;ξ{ }–=

Bn

d
2

dr
2

-------
1

r
---

d

dr
-----

n
2

r
2

-----–+=

H0 ∇2
f r( );ξ{ } ξ

2
H– 0 f r( );ξ{ }=

H0 ∇2
w r( );ξ{ } ξ

2
H– 0 w r( );ξ{ }=

H0 ∇2∇2
w r( );ξ{ } ξ

2
H– 0 ∇2

w r( );ξ{ }=

H0 ∇4
w r( );ξ{ } ξ

4
H0 w r( );ξ{ }=
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Then, Eq. (13) gives: 

 

 (23)

 

or 

(24)

 

where 

(25)

 

(26) 

 

Considering Eq. (24), the analytical solution of the differential Eq. (4) can be written: 

 

(27)

 

Eq. (27) represents the deflection distribution of an infinite circular plate on elastic foundation

under arbitrary axisymmetric loading q(r) lying on the infinite area 

 

3.2 Solution of infinite circular plate on elastic foundation under step wised distributed

loading qo lying in the finite area ri < r < r0
 

For the case of uniform loading qo lying in the finite area ri < r < r0, the function q(r) can be

written: 

 

(28) 

 

where H(r − a) is the Heaviside function. To determine the Hankel transform for this loading case,

the following property (Sneddon 1995b) is used: 

 

(29)

 

Then, according to Eqs. (28), (29), the Eq. (25) can be written:

(30)

 

and Eq. (27) takes the form: 

 

(31)

 

ξ
4
H0 w r( );ξ{ }

ks

D
----H0 w r( );ξ{ }+

1

D
----H0 q r( );ξ{ }=

H0 w r( );ξ{ }
q 0 ξ( )

ξ
4

λ+
---------------=

q 0 ξ( ) 1

D
----H0 q r( );ξ{ }=

λ
ks

D
----=

w r( ) H 0

1– q 0 ξ( )

ξ
4
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⎩ ⎭
⎨ ⎬
⎧ ⎫

=

0 r ∞< <
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q 0 ξ( ) 1

D
----q0 J1 ξri( ) J1 ξr0( )–( )=
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q
0

r( )
q0

D
-----H0

1– J1 ξri( ) J1 ξr0( )–

ξ
4

λ+
----------------------------------------;r
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⎨ ⎬
⎧ ⎫

=



214 D. G. Pavlou, N. V. Vlachakis and M. G. Pavlou

or 

 

(32)

 

where 

 (33)

 

Consequently, the distribution of bending moment  due to qo can be obtained: 

 

(34)

 

Taking into account the formula 

 

 (35)

 

it can be written: 

 

 (36) 

 

 

3.3 Solution of infinite circular plate on elastic foundation under concentrated line load P

acting along a circle with radius r = a

 

To derive the solution of the infinite circular plate on elastic foundation under a concentrated line

load P acting along a circle with radius r = α, the uniform distributed load q* lying in the area

a < r < a + ε is considered (Fig. 2). By the equilibrium between P and q* it can be written: 

 

(37) 

 

w
q
0

r( )
q0

D
-----H0

1–
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f1 ξ( )
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4
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----------------------------------------=
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0
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Fig. 2 Equilibrium between concentrated line load P and uniform distributed load q* for ε→ 0 
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where P is a concentrated line load acting along a circle with radius 

(38) 

 

Then 

 

 (39)

 

According to Eq. (25) it follows: 

 

(40)

 

Considering the solution (27) and Eq. (40), the deflection distribution wP(r) due to a concentrated

load P acting along a circle with radius r = α can be obtained: 

 

(41)

 

or 

 

(42)

 

With the aid of Eqs. (34), (35) the corresponding bending moment  can be obtained: 

 (43)

 

where 

 

 (44)

 

3.4 Solution of infinite plate on an elastic foundation under exponential and diminishing
harmonic loading types 

For the case of an exponentially distributed loading described by the expression 

(45)

the function  given by the Eq. (25) can be determined with the aid of a relevant table of

Hankel transforms obtained by Sneddon (1995b). According to this reference it can be written: 

 (46)
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harmonic function of the type 

 (47)

the corresponding function  can be obtained: 

(48)

Then, the solution of the differential Eq. (4) for the above loading types can be derived by the

Eq. (27). Table 1 summarizes the solution of a plate on an elastic foundation under axisymmetric

loading for the above described loading types. With the aid of the Table 1, results of typical

examples of the above cases are shown in Figs. 3(a)-(d). 

 

 3.5 Solution of the boundary-value problem 

 

To solve the boundary-value problem of the simply supported annular plate on elastic foundation

under uniform loading q(r) = qo, the boundary conditions given by the Eqs. (7)-(10) must be

satisfied. Firstly we calculate the values of four suitable loads Pi (i = 1, …, 4) acting on an infinite

circular plate, which produce these boundary conditions (Fig. 4). The loads P1, P3 act on the

boundaries ri, ro of the prospective annular plate respectively, while the loads P2, P4 act outside, on

the corresponding locations (ri− δ ) and (ro + δ ). The distance δ has an arbitrary value lying in the

q r( )
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2
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2
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⎨
⎧

=

Table 1 Solution of the infinite plate on elastic foundation under several types of axisymmetric loadings

Loading type  Loading function  Analytical solution  

 Arbitrary 
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loading 
 q(r)
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Fig. 4 Solution w(r) of the infinite plate on elastic foundation under the following types of axisymmetric
loading q(r): (a) Step wised loading qo acting in the area 0 < qo < 1 (example: qo = 1, λ = 1, D = 1), (b)
Concentrated line loading P acting on r = 1 (example: P = 1, λ = 1, D = 1), (c) Exponential loading

 (example: qo = 1, λ = 1, D = 1), (d) Diminishing harmonic loading 
(example: qo = 1, λ = 1, D = 1)
q r( ) e

q
o
r–

= q r( )
sin qor( )

r
-------------------=
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area 0 < δ < ri which can be taken δ = ri/2. However, the value of δ is not important (Oztorun

2002). Taking into account Eqs. (7)-(10) it can be written: 

 (49) 

 

(50) 

 

 (51) 

 

 (52) 

 

The algebraic linear system given by Eqs. (49)-(52) leads to the suitable values Pi (i = 1, …, 4)

which produce the boundary conditions of the real simply supported annular plate on elastic

foundation considered to be embedded within the corresponding infinite plate. Similar procedure is

followed in the method of boundary elements (e.g. Pavlou 2002). Then, the deflection w(r) and the

bending moment Mrr(r) at any point of this annular plate can be calculated: 

 (53)

 

(54)

 

4. Verification of the method in a representative example 

 

With the aid of Eqs. (31), (34), (42), (43) the linear algebraic system of Eqs. (49)-(52) takes the

form: 

 

 (55) 

 

where the integrals Iij are given in appendix I. Then, Eqs. (53), (54) can be written: 

 
(56)

(57)

 
where the functions Gi, Ti (i = 1, …, 5) are given in appendix II. 
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Fig. 3 Action of suitable loads Pi (i = 1, …, 4) on an infinite plate on elastic foundation in order to satisfy the
boundary conditions of the corresponding annular plate
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To verify the above procedure, data of a representative problem obtained in the literature (Utku et al.

2000) are used. The geometrical parameters of the annular plate under consideration have the values

ri = 2.5 m, ro = 5.0 m, t = 0.25 m. This plate rests on a subgrade with ks = 10000 kN/m3, while the

uniform distribured load has the value q0= 20 kN/m2. The material properties of the plate are

E = 2.7 × 107 kN/m2 and ν = 0.2. For the parameter δ, the value δ = 1 is used. The coefficients Iij of

the algebraic system (55) are obtained by integrations carried out by the commercial program

Mathematica (Wolfram Research Europe Ltd. 2000). Taking into account the described procedure,

the deflection and bending moment distribution along the above annular plate are obtained by

Eqs. (56), (57). Fig. 5 shows the comparison of the derived results with results obtained by Utku et al.

(2000), indicating excellent agreement. 

To investigate the influence of the parameter δ on the results, the deflection in the middle

r = (2.5 + 5.0)/2 = 3.75 m of the annular plate is calculated for several values of δ. The obtained

error (%) derived by the comparison of the proposed method’s results with the results of Utku et al.

(2000) is presented in Fig. 6. This figure indicates that the error is very small for the values of

δ > 0. When  the location of the load P2 converges to the location of the load P1 and the

location of the load P4 converges to the location of the load P3. In this case, the required number of

four independed loads (suitable to produce the four boundary conditions) is reduced to the number

of two independed loads, increasing thus the error rapidly. From mathematical point of view, when

δ tends to zero, the members of the pairs (Ii1, Ii2), (Ii1, Ii2) of the coefficients of the linear system as

well as the members of the pairs (G2, G3), (G4, G5), (T2, T3), (T4, T5) of Eqs. (52), (53) tend to be

identical, leading thus to numerical discrepancies. 

δ 0→

Fig. 5 (a) Comparison of the deflection distribution of annular plate on elastic foundation with results taken
by Utku et al. (2000), (b) Comparison of the bending moment distribution of annular plate on elastic
foundation with taken by Utku et al. (2000)
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5. Conclusions 

A new analytical method based on Hankel integral transform and Bessel functions’ properties was

derived to solve the problem of annular plate on elastic foundation. For this purpose, the fundamental

solutions of the infinite plate on elastic foundation under the action of several loading types were

obtained. Advantages of the proposed solution are: (a) provides a unified expression of any

axisymmetric loading type q(r) (see Eq. (27)), and (b) although it needs numerical integration tools for

the integral calculations, the solution has a closed analytical form (see Table 1). However, the method

has two main limitations: (a) the loading functions q(r) must be Hankel integral transformable, and (b)

in some cases, it is difficult to calculate the integrals of the type . In most cases this

task requires numerical procedures. 

In order to solve a typical boundary-value problem, the values of four suitable loads acting on the

boundaries and outside the boundaries of a prospective annular plate, embedded within the infinite

plate, were determined to produce the real boundary conditions. The sensitivity of the solution by

the location of above suitable loads was investigated. The derived results compared with existing

numerical results obtained by the literature, were in excellent agreement. 
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