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Active control of a flexible structure with time delay
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Abstract. Time delay exists inevitably in active control, which may not only degrade the system
performance but also render instability to the dynamic system. In this paper, a novel active controller is
developed to solve the time delay problem in flexible structures. By using the independent modal space
control method, the differential equation of the controlled mode with time delay is obtained from the
time-delay system dynamics. Then it is discretized and changed into a first-order difference equation
without any explicit time delay by augmenting the state variables. The modal controller is derived based
on the augmented system using the discrete variable structure control method. The switching surface is
determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from
sensor measurements and the actuator control force is converted from the modal one. Since the time delay
is explicitly included throughout the entire controller design without any approximation, the system
performance and stability are guaranteed. Numerical simulations show that the proposed controller is
feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is
not explicitly included in the controller design, instability may occur.
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1. Introduction

Flexible structures have been widely used in many engineering applications, such as aerospace,

aviation and robotics. In general, flexible structures have a small material-damping ratio. When the

structures are excited by external excitations, the structural vibration will last for a very long time if

no controllers are used. It will not only affect the normal performance but also result in the

premature fatigue breaking of the structures, and consequently shorten the service life of the

structures. Passive control is the earliest control strategy used for structural vibration suppression.

This strategy has the characteristics of easy implementation, low cost and simple structure. However

it is short of maneuverability in control. In addition, its control effectiveness highly depends on the

characteristics of the external excitations. In modern control systems, more and more attentions are
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being paid to the vibration suppression using active control strategies. Active controllers have the

advantages that the control performance is hardly affected by the characteristics of external

excitations, and evidently superior to that of passive controllers. Therefore, vibration suppression of

flexible structures using active controllers has been a very important research topic during the past

several decades (Baz and Poh 1999, Darby and Pellegrino 1999, Schafer and Holzach 1985, Wang

and Huang 2003, Meirovitch and Baruh 1982, Zee and Hughes 2000, Gennaro 1998, Bailey and

Hubbard 1985, Zhang et al. 1996). In the active controller, the independent modal space control

(IMSC) method may implement separate control of each controlled mode, so it has become a main

analytical method in modal control strategies. There are many studies using the IMSC method for

vibration control of flexible structures (Baz and Poh 1999, Schafer and Holzach 1985, Wang and

Huang 2003, Meirovitch and Baruh 1982, Bailey and Hubbard 1985,  Zhang et al. 1996) and modal

controller is usually designed using linear optimal control method. 

On the other hand, time delay exists inevitably in active control systems. Many factors, such as

measurement of system variables, calculation of controller and processes for actuators to build up

required control force, may result in non-synchronization of control force. Although time delay in

most cases is small, it still makes actuator apply energy to the control system even when no energy

is needed. This may cause the degradation of control efficiency and even render the system unstable

(Hu 1997, Cai and Huang 2002a). So far time delay problems are mainly investigated in

mathematics and control systems and most studies are focused on stability and maximum time delay

for stability of time-delay system (Qin 1987, Chen 1995). For active control of structures, time

delay has been usually neglected to avoid incomprehensible complexity of control design. But due

to the inevitable existence of time delay, big errors often occur between theoretical control results

and experimental ones if time delay is not considered in control design. So many researchers have

made studies on time delay problem in structural control and some treating methods were developed

(Chung et al. 1988, Yang et al. 1990, Abdel-Mooty and Roorda 1991, Agrawal et al. 1993, Chung

et al. 1995, Wong 2005). In these methods, the expansion of Taylor series and the technique of

phase shift are the two that are widely employed to deal with time delay (Abdel-Mooty and Roorda

1991, Chung et al. 1995, Cai 2002). However, these two methods are only available for very small

time delay (Cai and Huang 2002a, Chung et al. 1995, Cai 2002, Cai and Huang 2002b). For

example, for the technique of phase shift, active controller is firstly designed without considering

time delay, the control gain is then revised referring to natural frequency of system with and

without considering time delay in order to obtain the controller with time delay. When biggish time

delay exists, this technique fails to compensate time delay and renders the control system unstable

(Cai and Huang 2002a, Chung et al. 1995, Cai 2002, Cai and Huang 2002b). Recently, Cai and

Huang (Cai and Huang 2002a, Cai 2002, Cai and Huang 2002b) developed a treating method for

time delay problem, which is applied for vibration control of seismic-excited building structures. In

their study, active controller is designed directly from time-delay differential equation and no

approximation and estimation are made in the process of control design, so system performance and

stability are guaranteed. Thus this controller is suitable for an arbitrary time delay. However, for

vibration control of flexible structures, there has been no study on time delay problem up to now.

Therefore, it is essential to study time delay problem for flexible structures.

 In this paper, the IMSC strategy is applied to active vibration control of a flexible structure with

time delay, in which time delay is compensated using the method adopted in (Cai and Huang

2002a, Cai 2002, Cai and Huang 2002b). Modal controller is designed using a discrete variable

structure control (DVSC) method. A discrete switching surface is designed for the proposed
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controller. Numerical simulation studies are carried out to demonstrate the effectiveness and

efficiency of the proposed controller in the end of this paper.

This paper is organized as follows. Section 2 briefly presents the system motion dynamics with

explicit time delay in the differential equation, and the differential equation of the controlled mode.

The proposed controller design is given in Section 3, including the discretization and standardization

of the modal equation, the determination of discrete switching surface, the design of DVSC modal

controller, the estimation of modal coordinates from sensor measurements and the conversion of

actuator control forces from the modal control forces. Section 4 provides numerical simulation

studies of a flexible cantilever beam using the proposed control algorithm. Finally, a concluding

remark is given in Section 5.

2. Motion equation

The flexible structure considered in this paper is a flexible cantilever beam. The transverse

vibration control problem of the Bernoulli-Euler beam is studied. The beam has a constant cross-

section area with every center inertia axis being in the same plane xoy (see in Fig. 1) and an

external load acting in this plane. The motion equation of the beam can be expressed as

(1)

where y(x, t) represents the transverse displacement of the point that is x from the origin o at the

moment t. Parameter E is the Young’s modulus of the beam material, J is the area moment of

inertia of the beam cross-section, ρ is the mass per unit volume, A is the cross-section area, and

P(x, t) is the external distributed force.

Defining the following dimensionless parameters

(2)

where L is the length of the beam, and P* is the dimensionless distributed force, then (1) can be

transformed into the following dimensionless form
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Fig. 1 Cantilever beam model
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(3)

For convenience in theoretical analysis and numerical simulation, the dimensionless motion equation

in (3) of the flexible beam is used as the analytical object in this study.

When using the IMSC method for the flexible beam, the distributed actuators are required to

supply the modal control forces. However the distributed actuators are not always available in

practice, and point actuators are usually used instead. Assume that the first r1 modes of the beam

are controlled. According to the IMSC method, r1 actuators are required to be installed on the beam

to control the r1 modes separately. The control forces applied on the beam are assumed to have the

same delayed time. Adding the time delay in the control forces in (3), we have  

(4)

where δ (•) is a Dirac function defined as  when , and  when

. Variable  represents the location of the j-th actuator on the beam, j = 1, 2, ..., r1;

 is the control force used to control the j-th mode of the beam; and λ is the time delay.

For (3), the normalized mode shape corresponding to the i-th mode can be written as

(5)

where . The eigenvalue ki should satisfy the frequency

equation coskicoshki = −1. The natural frequency of the i-th mode of the flexible beam is .

The analytical solution of (3) can be written as

(6)

where  is the i-th modal coordinate. A set of uncoupled modal-controlled dynamic equation

can be obtained as

(7)

where

(8)

where  is the modal generalized force of the i-th mode and  is the modal control

force to be designed. An extra uncoupled modal damping ratio ζi is added to each modal equation

to represent the beam damping factor. Thus, (7) can be written as

(9)
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3. Independent modal space control

The IMSC method is used to suppress the vibration of the beam, in which the modal controller is

designed using a DVSC method. Before the DVSC is presented, it is essential to introduce the

characteristics of the VSC and the DVSC.

The goal of the VSC is to find a hypersurface in the system phase space. This hypersurface can

divide the phase space into two parts: s > 0 and s < 0. Then the controller is designed based on a

certain condition, which will force the state trajectories outside the hypersurface to reach the

hypersurface in finite time, then slide on it and finally move to the system origin (Gao 1998). This

hypersurface is called the switching surface. The motion of the state trajectories on the hypersurface

is called sliding mode. The condition under which the state trajectories reach the switching surface

is called the reaching condition. So the variable structure controller design includes two parts: the

switching surface and the controller (Gao 1998). The remarkable feature of the VSC is its

robustness and invariance to external disturbance and system parameter uncertainty. In addition, the

VSC can be used for the controller design of nonlinear systems (Gao 1998, Gao and Hung 1993).

The theory of the continuous VSC is well established. For a continuous VSC system, the state

trajectories can reach the switching surface exactly.

The DVSC is similar to the continuous VSC. The discrete variable structure controller design also

includes two parts: the discrete switching surface and discrete controller (Gao et al. 1995). But for a

DVSC system, the state trajectories can seldom reach the switching surface exactly due to the

discrete features of the DVSC (Gao et al. 1995). Possibly there does not exist the state  such

that , where  is a system state vector. Thus for the DVSC, a switching band that

contains the switching surface needs to be defined (Gao et al. 1995). The controller will force the

state trajectories outside the switching band to approach the switching band and then move into the

band. Once the state enters the band, it will stay in the band, and finally approach the system origin.

The controller can cause zigzagging motion of the state trajectories about the switching surface

instead of the motion on the surface. The motion of state trajectories in the switching band is called

the quasi-sliding mode.

In the following section, the dynamic Eq. (9) with time delay is first discretized and changed into

a standard discrete form that does not contain an explicit time delay by augmenting the state

variables. Then discrete switching surface is designed and the DVSC modal controller is developed.

3.1 Discretization and standardization of the modal equation

The time delay can be written as

(10)

where  is data sampling period, l > 0 is a positive integral number, and . The

discretization method for the time-delay dynamic equation in (9) in the cases  and  is

discussed in details in (Cai and Huang 2002a, Chung et al. 1995, Cai and Huang 2002b). For

simplicity, only the case  is discussed in this paper. When , the time delay is integer

times of the sampling period, and (9) can be discretized into the following form (Cai and Huang

2002a, Chung et al. 1995, Cai and Huang 2002b)
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where  is a (2 × 1) state vector. The superscript T denotes the transpose of a

matrix or vector. Parameter ai is a (2 × 2) coefficient matrix, and bi and di are (2 × 1) vectors.

Augmenting the following generalized state variables as

(12)

and defining a new total generalized state vector as

(13)

then (11) can be changed into the following standard discrete form without any explicit time delay

(14)

where  is a (2 + l) vector. Parameters  is a  matrix, and  and  are

(2 + l) × 1 vectors, which are given by

(15)

respectively. Therefore, with the transformation of (12) and (13), (11) with time delay has been re-

written into the standard discrete form in (14) that contains no time delay. The discretization for

case  will result in the same form in (14) (for details, see (Cai and Huang 2002a, Chung et al.

1995, Cai and Huang 2002b)).

The sufficient condition for stability of system in (14) is that all the eigenvalues of  is within a

unit circle. The system in (14) is controllable provided that the matrix  is controllable.

3.2 Design of the discrete switching surface

As stated in Section 2, the first r1 modes of the beam are controlled separately by r1 actuators that

require r1 controllers. Thus r1 discrete switching surfaces should be designed for the r1 controllers.

Each controller has its independent switching surface. The external excitation term can be neglected

in the switching surfaces design (Yang et al. 1995), but will be considered later in the design of

modal forces. Neglecting the external excitation term, (14) becomes

(16)

The linear form of the discrete switching function can be considered as (Gao 1998, Gao et al. 1995)
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(17)

where ci is an  coefficient vector of the switching function to be designed.

Let  and  be partitioned as follows

(18)

where  is a  vector and  is a scalar. Parameter  is a 

matrix, and  and  are  and  vectors, respectively. Parameter  is a

scalar. So (16) can be written as

(19)

The switching function in (17) can be written as

(20)

where ci1 is an  vector and ci2 is a scalar.

The system  is controllable if  is controllable (Gao 1998, Gao et al. 1995).

Thus, for the subsystem given by the first equation in (19), there exists a feedback relationship

(21)

such that this subsystem is stable, where vi is an  vector. In addition, on the switching

surface, we have si(k) = 0. From (20) and (21), we have . So the coefficient vector of

the switching function can be obtained as

(22)

For simplicity, ci2 = 1 can be chosen. The vector vi may be designed using the discrete LQR method

such that the following discrete performance index attaining minimum

(23)

and is given by (Cai 2002, Kwakernaak and Sivan 1972)

(24)

The parameters  and  in (23) are  positive-semidefinite symmetric coefficient

matrix and positive scalar, respectively. The parameter  in (24) is the solution of the following

discrete Riccati algebraic equation which is a  matrix (Cai 2002, Kwakernaak and

Sivan 1972)
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(25)

When vi is obtained, from (22), the switching surface can be fully determined. Since the state

variable  given in (13) contains the former l steps of controls, the obtained switching surface

contains a linear combination of the former l steps of controls.

3.3 Design of the modal controller

The modal controller to be designed is a DVSC modal controller. This controller is designed to

drive the state trajectory into the switching band. To achieve this goal, the discrete reaching

condition in the form of approaching law is considered and written as (Gao et al. 1995)

(26)

where qi > 0, εi > 0, , and  is the data sampling period.

Substituting (14) into the left side of (26) and in consideration of (17), the DVSC modal

controller can be obtained as

(27)

Same with the discrete switching surface, at every step of calculation, the controller contains a

linear combination of the former l steps of control signals. For the i-th mode, the width of switching

band is  (Gao et al. 1995).

3.4 Estimation of modal coordinates and conversion of actuator control forces

The DSVC modal controller given in (27) is a function of modal displacement and modal

velocity. The modal displacement and velocity cannot be measured directly from sensors in practice.

They should be estimated from physical sensor measurements, and then are used to calculate the

modal control forces. Since the distributed type of sensors is not always available for the flexible

beam in practice, discrete sensors are usually used instead. Then the required modal coordinates can

be estimated from the sensor measurements. Here consider the case that the first  r2 modes of the

beam are estimated, . Thus it requires sensors installed on the r2 points of the beam to obtain

the physical displacements and velocities of these points. The required modal coordinate of the i-th

mode can be obtained using the following equation (Wang and Huang 2003).

 

(28)
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c{ iãi z̃i k( ) cib̃i fi k( ) ci z̃i k( )–+–=

 qi+ T ci z̃i k( ) εiT sgn ci z̃i k( )[ ]+ }, i 1 2 … r1, , ,=

εiT

r2 r1>

φi k( ) H
1–( )ijy* x̂j

* k,( )
j 1=

r
2

∑=

φ
·
i k( ) H

1–( )ijy·* x̂j
* k,( )

j 1=

r
2

∑=
⎩
⎪
⎪
⎨
⎪
⎪
⎧

x̂j
*

r2 r2×( )



Active control of a flexible structure with time delay 199

(29)

After the modal coordinates are obtained, the modal control forces can be calculated.

When the modal filter given in (28) is used, observation spillover may occur, as in practice the

number of modes is always greater than the number of sensors. Observation spillover occurs when

the output of the limited number of sensors cannot synthesize the modal coordinates exactly, i.e.,

the unobserved mode responses are embedded into the observed mode responses and the sensors

cannot give a clear picture of the structural vibration. The observation spillover may affect the

precision of the estimated modal coordinates, or even cause instability of the control system. A

useful and direct way to eliminate the observation spillover is to place the sensors on the nodes of

the unobserved modes so as to reduce the affection of the unobserved modes. There are also some

other techniques for eliminating the observation spillover, e.g., pre-filters (Balas 1980, 1982),

augmented observers (Chait and Radeliffe 1989), and adding sufficiently large number of sensors on

the beam (Meirovitch and Baruh 1985).

The control forces obtained using (27) are the modal control forces and not the physical control

forces of actuators applied on the beam. After the modal control forces are obtained, they must be

transformed into the actuator control forces. The actuator control force vector and the modal control

force vector are denoted by F(k) and U(k), respectively. From (8) and (Wang and Huang 2003), the

following relationship exists between F(k) and U(k)

(30)

where
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When the flexible beam is controlled by the independent modal controller, while it suffers from

the observation spillover, it may suffer from the control spillover as well. The control spillover
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4. Numerical example

To demonstrate the effectiveness of the presented control method, numerical simulation studies

are carried out. The flexible cantilever beam, given by (4), is used as the computational model. The

initial condition, external excitation and modal parameters are chosen to be the same as those in

(Wang and Huang 2003), given as follows. The initial condition of the flexible beam is given as

, . A sinusoidal excitation is applied at the tip of the beam, i.e.,

P* = sin(t*). The first ten modes of the beam are used to represent the actual vibration of the beam.

The damping ratio of all the modes are chosen as . The first four modes are

used as the controlled modes, i.e., r1 = 4. So four actuators are required to control these four

controlled modes. The locations of the four actuators are chosen at the peak points of the first three

modes, so we have (Wang and Huang 2003)

The modal filter is used as the state estimator. The first six modes are estimated using the modal

filter, i.e., r2 = 6. So the sensors are installed on six points of the beam to measure the physical

displacements and velocities at these six points. The locations of the sensors are chosen as the

nodes of the seventh mode of the beam, which are given by (Wang and Huang 2003)

y* 1 0,( ) 1 3⁄= y·* 1 0,( ) 0=

ζi 0.05= i 1 2 … 10, , ,=,

x̃i
* 0.291 0.471 0.694 1.000, , ,[ ]=

Fig. 2 Estimated responses of the first, third, fifth, and sixth modes using the modal filter without control for
the beam (Actual result , Estimated result ).............  
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In the numerical computation, the sampling period is chosen as .

The effect of the modal filter given in (28) is checked first. Consider the case without any

controller for the beam. Figs. 2(a), (b), (c) and (d) show the time-history responses of the first, third,

fifth and sixth modes, in which the solid line represents the results using the modal filter and the

dashed line the theoretical results. From Fig. 2, it shows that the modal filter is effective in

estimating the required modal coordinates. The estimation precise of the lower modes is better than

that of the higher ones. The first and third estimated modes [shown in Figs. 2(a) and (b)] are almost

the same as the theoretical results. The estimated second and fourth modes are almost the same as

their theoretical results too (figures omitted herein). Small observation spillovers are observed in the

fifth and sixth modes [shown in Figs. 2(c) and (d)].

Then consider the case with controller for the beam. First consider the case without the presence

of any time delay in the control system, namely λ = 0. In this case, the state variables do not need

to be augmented. The state vector  in (14) is equal to zi in (11), i.e.,  = zi. Then parameters 

and  in (19), and vi in (21) become scalars. Substituting (21) into (19) and setting =

0.5, i = 1, 2, ..., 4, the four coefficient vectors of the switching surfaces can be determined as

In the design of DVSC modal controller using (27), set = 0.01 and = 0.0001, where i = 1,

2, ..., 4. Thus the modal control forces can be obtained. Fig. 3 shows the time-history responses in

displacement [Fig. 3 (a1)-(a4)] and velocity [Fig. 3 (b1)-(b4)] of the first four modes of the beam,

where the solid and dashed lines represent the results with and without control, respectively. It is

observed that the first four modes can be almost fully controlled by the DVSC method. It is also

observed from Fig. 3 that, without control for the beam, magnitude of displacement and velocity of

the first mode are much larger than those of the other three modes. Furthermore, the higher the

mode order is, the smaller the magnitude of modal response is. In others words, response of the

beam is dominated mainly by the lower-order modes of the beam, especially by the first-order

mode. So control of the beam in the time domain may be changed to the control of several lower-

order modes of the beam in the mode domain, especially the control of the first-order mode. The

time-history responses in displacement and velocity of the tip position of the beam are illustrated in

Figs. 4(a) and (b), respectively, where the solid line represents the result with control and the

dashed line without control. It shows that the vibration response of the beam can be almost fully

controlled. The advantage using the DVSC modal controller in the IMSC method for the flexible

beam can be found evidently from Figs. 3 and 4.

Thirdly the case with the presence of time delay is considered. The delay is chosen to be λ =

0.05, thus l = 5 in (10). Our simulation results indicate that instability occurs when the active

control system of the beam with λ = 0.05 is controlled by the controller designed in the case of no

time delay. Therefore, the time delay problem needs a serious attention in the active control design.

Otherwise the control system is susceptible to dynamic instability. Next consider the existence of

λ = 0.05 in control design using the proposed control strategy. Here the matrix  in (14) is a

(7 × 7) matrix, and all the eigenvalues lie inside the unit circle. The rank of  is 7, i.e.,

 = 7. The matrix  in (23) is a (6 × 6) matrix, where , with all the other

x̂j
* 0.193 0.346 0.500 0.654 0.808 0.949, , , , ,[ ]=

T 0.01=

z̃i z̃i ãi11

ãi12 ãi11 ãi12vi–

c1 49.9949 0.7499,[ ]   c2 49.7976 0.7491,[ ]=,=

c3 48.4037 0.7474,[ ]   c4 43.7563 0.7447,[ ]=,=⎩
⎨
⎧

qiT εiT

ãi

ãi d̃i,[ ]
ãi d̃i,[ ] q̃i q̃i 1 1,( ) 10

6
=
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Fig. 3 Time-history responses of the first four modes without time delay (No control , With control
)

.............
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elements being zero, i = 1, 2, ..., 4. The scalar  in (23) is chosen to be  = 0.01, i = 1, 2, ..., 4.

Using the discrete LQR, the four coefficient vectors of the switching surfaces can be obtained as 

Again set  and . In this case, the time-history responses in displacement

and velocity of the first four modes are shown in Figs. 5(a) and (b), respectively, where the solid

line represents the result with control and the dashed line without control. It shows that using the

proposed control method with considering the existence of the time delay, the responses of the first

four modes do not suffer from instability and the control effectiveness of the first-order mode is

remarkable. However, different with the case of no time delay, the second, third and fourth modes

are not precisely controlled, especially for the third-order modal displacement. The result of the

third-order modal displacement with control is even larger than that with no control. This is

possibly resulted from the reason that the third-order mode is excited by the control forces due to

the existence of time delay. We can also observe from Fig. 5 that, the magnitude of the first-order

modal responses (displacement and velocity) are much larger than those of the other three modes,

so vibration control of the beam means mainly the control to the first-order mode of the beam,

which is the same as the case with no time delay. The tip displacement and velocity responses of

the beam are shown in Figs. 6(a) and (b), respectively, where the solid line represents the result

with control and the dashed line without control. Since the first-order mode of the beam is

effectively controlled (as shown in Fig. 5), so it is observed from Fig. 6 that the vibration of the

beam is reduced significantly although it is not fully suppressed.

The tip response of the beam when λ = 0.1 is shown in Fig. 6. When λ = 0.1, the matrix  in

(14) is a (12 × 12) matrix and all the eigenvalues lie inside the unit circle, and rank = 12.

The coefficient vectors of the switching surfaces are given as

r̃i r̃i

c1 4900.7 295.3 2.7 2.2 1.7 1.2 1.0, , , , , ,[ ]=

c2 1441.9 211.7 2.1 1.9 1.6 1.2 1.0, , , , , ,[ ]=

c3 4365.1– 36.0– 0.1– 0.3 0.7 0.8 1.0, , , , , ,[ ]=

c4 4367.9 16.9 0.1– 0.4– 0.2– 0.3 1.0, , , , , ,[ ]=⎩
⎪
⎪
⎨
⎪
⎪
⎧

qiT 0.01= εiT 0.0001=

ãi

ãi d̃i,[ ]

Fig. 4 Time-history response of the tip of the beam without time delay (No control , With control
)

.............
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Fig. 5 Time-history responses of the first four modes with time delay (No control , With control
(λ = 0.05) )

.............
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In the design of switching surfaces,  and  are chosen as the same as those in the case

of λ = 0.05. Again, instability occurs when the controller designed in the case of no time delay is

used for the beam with λ = 0.1 in control.

5. Conclusions

Time delay exists inevitably in active control systems. If the existence of time delay is neglected

in the controller design, the control system is susceptible to dynamic instability. Therefore, the time

delay should be analyzed and tackled properly before the controller is used to a dynamic system

with time delay. In this paper, the active control of flexible cantilever beam with time delay is

investigated using an independent modal space control strategy, where the modal controller is

designed using a discrete variable structure control method. The discrete switching surface and the

variable structure modal controller are designed for the proposed control algorithm. In addition, a

modal filter is designed to estimate the modal coordinates from physical sensor measurements, and

the conversion method of the physical control forces of actuators from the modal ones are provided.

Simulation results indicate that the proposed control method is effective in suppressing the vibration

of the beam. When there exists no time delay in the control system, the response of the beam can

be almost fully controlled. Instability may occur if the controller designed by neglecting the time

delay is used to control the flexible beam with the existence of time delay. In the proposed control

method, time delay term is incorporated into the mathematical model from the very beginning of

the control algorithm derivation, without any approximation and hypothesis. Therefore, the system

stability and control performance are prone to be guaranteed.

c1 4645.7 527.3 5.0 4.6 4.1 3.7 3.2 2.7 2.2 1.7 1.2 1.0, , , , , , , , , , ,[ ]=

c2 3259.9– 137.1 1.5 1.8 2.0 2.1 2.1 2.1 1.9 1.6 1.2 1.0, , , , , , , , , , ,[ ]=

c3 3838.2 27.3 0.1 0.3– 0.6– 0.7– 0.5– 0.1– 0.3 0.7 0.8 1.0, , , , , , , , , , ,[ ]=

c4 3459.9 5.8 0.1– 0.3– 0.1– 0.3 0.3 0.1– 0.4– 0.2– 0.3 1.0, , , , , , , , , , ,[ ]=⎩
⎪
⎪
⎨
⎪
⎪
⎧

qiT εiT q̃i, , r̃i

Fig. 6 Time-history response of the tip of the beam with time delay (No control , With control
(λ = 0.05) , With control (λ = 0.1) )

.............
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