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Buckling of cylindrical shells with
internal ring supports

C. M. Wangt, J. Tiant and S. Swaddiwudhipong tt

Department of Civil Engineering, National University of Singapore, Kent Ridge 0511, Singapore

Abstract. This paper is concerned with the elastic buckling of cylindrical chells with internal rigid
ring supports. The internal supports impose a zero lateral deflection constraint on th- buckling modes
at their locations. Aii automated Rayleigh-Ritz method is presented for solving this buckling problem.
The method can handle any combination of end conditions and any number of internal supports.
Moreover, it is simple t¢ code and can yield very accurate solutions. New buckling results for cylindrical
shells with a single internal ring support, and under lateral pressure and hydrostatic pressure, are given
in the form of design charts. These 1esults should be valuable to engineering designers.
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1. Introduction

Circular cylindrical shells are widely used in many types of structures, for examples in aircrafts,
space vehicles, marine vessels, pressure vessels, reactor vessels and silos. The buckling aspect
of these shells under various loading and boundary conditions is an important design considera-
tion.

In the early 1900s, Lorenz (1908) and Timoshenkc (1910) pioneered the study on buckling
of cylindrical shells under axial pressure. The buckling of these shells under lateral and hydrostatic
pressures was subsequently studied by many researchers, such as vca Mises (1914, 1929), Batdorf
(1947), Nash (1954), Galletly and Bart (1956), Armenakas and Herrmann (1963) and Soong (1967).
In these studies, a simple one-term deflection func‘ion wa, used and the problem was solved
under the special boundary conditions which can be safrsfied by the 1ssumed deflection function.
Later, by integrating the basic functions directly, more accurate solutions were ob.ained by Ho
and Cheng (1963), Sobel (1964), Thielmann and Esslinger (1964), Schnell (1965) and Yamaki
(1968) under a variety of loading and boundary conditiuns.

Buckling of cylindrical shelis with stiffeners, such as ring stiffeners or longitudinal stiffeners
was also studied by Salerno and Levine (1950, 1951), Nash (1953, 1954), Bodner (1957), Baruch
and Singer (1263), Ellinas and C.»nll (1981), Wang and Zeng (1983). Kendrick (1970) presented
an extensive survey of the¢ buckiing of ring-stiffened cylindrical pressure vessels.

So far, there has been very litle work done on the buckling of cylindrical shells with internal
rigid ring supports. Prompted by this lack, we pre<ent an automated Rayleigh-Ritz ..cthod for
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Fig. 1 Externally pressurized cylindrical shell with internal ring supports.

the buckling analysis of such shells under external pressures. The method is simple to code
and can furnish very accurate solutions for shells having any combination of support conditions
and any number of internal ring supports. Critical lateral loads and hydrostatic loads for cylindri-
cal shells with an internal rigid ring are computed and presented in the form of design charts.
These new buckling solutions should be valuable to engineers who are designing cylindrical
shell structures.

2. Energy functional for cylindrical shell buckling

Consider a geometrically perfect, closed-ended cylindrical shell of thickness 4, radius R, length
L, Young’s modulus E, Poisson’s ratio v. The ends of the shell may be simply supported or
clamped. The shell is also internally supported by r number of rigid ring supports which
imposes a zero lateral displacement at the supported positions (see Fig. 1).

There are several thin cylindrical shell theories due to how and when the terms z/R and
h/R are to be neglected with respect to unity in the setting up of the constitutive equations or
in the enumeration of the force and moment integrals (Markus(1988). Considering the simplest
theory of Donnell (1934) and the more precise theory of Sanders (1959), the strain-displacement
relationships may be universally written as

&= %’C (la)
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_1[dw 3 & ndu
ko= R [axae T xR ao] (D
in which x is the longitudinal coordinate; @ is the circumferential coordinate; &, €, &4 are the
linear strain components of the shell middle surface and «.. ks k. the curvature changes; and
w, u and v are the displacements in the lateral, longitudinal and tangential directions, respectively.

Depending on the adoption of which of the two shell theories, the scalar indicator n takes
the value of

n=0, according to Donnell (1934) (2a)
n=1, according to Sanders (1959) (2b)

However, it must be noted that Donnell’s theory furnishes erroneous buckling solutions when
the shell is relatively long and thick (Galletly and Bart 1956, Soong 1967). Sanders’ theory does
not have this drawback. It is worth noting that Love (1944) and Timoshenko (1961) cylindrical
shell theory approximates k.,=(0 w/dxd6— dv/dx)/R>. This approximation does not lead to
much different results from Sanders’ buckling solutions.

The elastic strain energy due to in-plane stretching of the shell is given by (Timoshenko
and Gere 1961, pp. 443)

- 2)Jj [s +59+2v&£9+12 re]Rdde (3)

while the elastic strain energy due to bending of the middle surface of the shell is given
by

U=

ER [T .. -
szmf f b v 21— | R @

The potential energy of the lateral pressure p is given by (Wang and Zeng 1983)

L (2r F
= 1’5{ Tw ., w]}wRdex 5
fﬂ-"ﬂ 2 RU 69 n ( )

and the potential energy of the axial pressure 8p is

w_ffh ke ]mma ©

where B is the ratio between axial pressure to lateral pressure and the considered range of
B is 0LB<1. The pressure is simply lateral pressure when =0 and is hydrostatic when =1
Note that this class of cylindrical shell buckling problems is not within the imperfection sensitive
group since the axial load is not the dominant load.

In view of (1)-(6), the total potential energy functional is given by
F=UA+U,+V +V,

” sl e Gn] o R

R
ER wl', 1[2 P ov[dw][dw
24(1~v)[[ 2] R“[ 92+’7W]+R2[ax2][a02+’7“’]

+
Gl




32 C. M. Wang J. Tian and S. Swaddiwudhipong

+_Q;l I’w +3_ QX_. lau
R? oxd0 " 4 1ox 4R d0

PR[ [‘;92 nw]+g—[g¥] ]}Rdde )

For generality and convenience, the following nondimensional terms are adopted:

w0 __x. ,_pRA=V). __u . __v .
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Using the foregoing nondimensional terms, the total potential energy functional may be ex-

pressed as
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The following trigonometric functions in the circumferential coordinate & may be used to
separate the spatial variables x and @:.

u(x, ©)=U(X) sin 2m® (10a)
V(xX, ©)=V(X) cos 2m@ (10b)
W (%, @)= W(X) sin 2mO (10c)

Note that the trigonometric functions satisfy the requirement of periodicity.
By substituting (10) into (9) and then integrating with respect to @ leads to the following
simpler energy functional form

F—-—f [ ] [ch+ W] 2va{[d—][§ v+ WJ+ —C[ad—’/+nU]
+Q[ [dx ]+W2(n P+ 2va? [‘ﬁf’][mn nz)]
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where n is the circumferential wave number.

3. Geometric boundary conditions

Owing to possible different combinations of in-plane displacement components (u, v), there
are four kinds of boundary conditions for simply supported cylinders which are designated as
follows (Sobel 1964):

S w=v=0 (12a)
Sy w=0 (12b)
S w=u=0 (12¢)
S¢ w=u=v=0 (12d)

Similarly, the four kinds of clamped condition are:

Cy w:‘%‘/ZVZO (13a)
O w:‘%:o (13b)
Cs w=%=u=0 (130)
Ce w=B=u=y=0 (13d)

At the j-th internal ring support, the geometric constraint is such that
w=0 at x=a;L (14
where ;L is the longitudinal coordinate of the j-th internal ring support position (see Fig. 1).

4. Analysis via Rayleigh-Ritz method

In view of the foregoing kinematic boundary conditions, the following Ritz functions for cylind-
rical shells with internal ring supports may be adopted

l7=[§cffi"] [5]02[1 —f]%: gc,& (15a)
—:[ id,f""] [)7]“9[1 —x]n%: idﬁ, (15b)

W:[ ie,-)?‘"‘] [i]ﬂa[l —)7]% jﬁ [)_c—a,]l\j: f:e,- W, (150)
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where g; is the distance (normalized with respect to the length L) of the j-th internal ring support,
r the number of internal ring supports, the power A=0 if there is no ring support and A=1
when there are ring supports and depending on the type of boundary condition (B.C.), the powers

£2 take on
B.C. S S S S ¢ G G G
Q, 0 0 1 1 0 0 l 1
Q. 1 0 0 1 1 0 0 |
Q.. 1 1 1 1 2 2 2 2

and the superscripts of §2. ie. 0 and /. denote the cylindrical shell ends at x=0 or x=L.

Applying the Rayleigh-Ritz method,

oF .
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Substituting (15) into (11) and then into (16) yields

(K. (K.l [K.] [0] [0] (0] {c} o}
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where
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and the elements of [K] and [G] are given by

1
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where i j=1,2,- M.

The elastic buckling load A is obtained by solving the generalized eigenvalue problem defined
in (17). The integration and differentiation of the polynomial functions were carried out in an
€xact rmanner.

5. Numerical resuits
5.1. Convergence and comparison case studies

Convergence studies were carried out to establish the number of polynomial terms M required
for accurate solution. Table 1 presents typically the convergence behaviour of the buckling solu-
tions A for simply supported (S;—S)) cylindrical shells under lateral pressure for v=03 and
various dimensions, a=R/L=1/10, 1/40, 1, 2; {=h/R=1/100, 1/500, 1/1100, 1/1900 and with no
internal ring support (a=0) or with a single ring support at the mid-span (¢=0.5). It can be
observed that the Rayleigh-Ritz method gives monotonic convergence. The number of polynomial
terms for converged results is found to be M=10 and this value has been used to generate
all subsequent results.

Moreover, it can be seen from Table 2 that the computed results for cylindrical shells without
internal ring supports agree with those obtained by Sobel (1964) and Soong (1967). Nash (1954)
results for clamped shells are approximate upper bound solutions.

5.2. Buckling results for cylindrical shells with an internal ring support

Although the method can handle any number of internal supports and any combination
of end support conditions, only results for S;—S,, C,—C,, C;—S; shells with a single internal
support located at a distance al from one end are presented due to space limitation.

Fig. 2 presents the variations of the critical lateral pressure (8=0) with respect to the radius
to length ratio, R/L for various internal support positions. The integers on the curves indicate
the number of circumferential waves n of the buckling mode. Owing to a relatively higher buckling
load for shorter and thicker shells, this value of n increases with respect to increasing R/L and
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Table 1 Convergence study: Critical lateral pressure parameter A (X 10%) for simply supported (S,—S))
cylindrical shell according to Sanders’ theory

Polynomial h/R=1/500 WR=1/100
terms
R/AL=1 R/AL=1/10 R/AL=1 R/L=1/10
M No internal |Internal ring| No internal |Internal ring| No internal |Internal ring| No internal |Internal ring
ring support [ support at |ring support |support at |ring support|support at |ring support|support at
a=05 a=0.5 a=05 a=05
2 0.8288(13) 2.7258(18)  0.07908(4) 0.2813(6) 10.0625(8) 27745511y 0.8487(3) 7.3876(4)
4 0.7925 1.8309 0.07346 0.1687 9.5864 23.2788 08165 1.8733
6 0.7924 1.6900 007345 0.1500 9.5864 22.2339 0.8164 1.6684
8 0.7924 1.6877 007345 0.1498 9.5864 222137 0.8164 1.6655
10 0.7924(13) 1.6877(18)  0.07345(4) 0.1498(6) 9.5864(8) 222136(11)  0.8164(3) 1.6655(4)
Soong(1967)| 0.7920(13) 0.07347(4) 9.58R6(8) 0.8151(3)
Polynomial A/R=1/1100 A/R=1/1900
terms
R/L=2 R/L=1/40 R/AL=2 R/L=1/40
M No internal |Internal ring| No internal | Internal ring)No internal | Internal ring| No internal | Internal ring
ring support | support at | ring support|support at |ring support|support at |ring support|support at
a=05 a=0.5 a=05 a=05
2 0.5189(22) 1.5634(30)  0.006185(3)  0.3929(4) 0.2255(25) 0.7418(35)  0.002517(3)  0.3860(4)
4 04964 1.1624 0.006052 001272 0.2143 04977 0.002383 0.005826
6 0.4963 1.0815 0.006051 001181 0.2143 04570 0.002383 0.004924
8 04963 1.0811 0.006051 001180 0.2143 04570 0.002383 0.004912
10 04963(22) 1.0811(30)  0.006051(3)  0.01180(4) 0.2143(25) 04570(35)  0.002383(3)  0.004912(4)
Soong(1967)) 0.4962(22) 0.006058(3) 0.2142(25) 0.002377(3)

Table 2 Comparison study: Critical pressure parameter A (X 10% for cylindrical shell

Lateral pressure (8=0) L Hydrostatic pressure (8=1)

h/R= Simply supported ends (S\—S\) Clamped ends (C,—C))
/100 Donnell's theory | Sander’s theory Donnell’s theory Sander’s theory Donnell’s theory
RIL Soong | Present | Soong | Present | Sobel | Soong | Present | Soong | Present | Nash | Sobel | Present

(1967) [ analysis | (1967) |analysis| (1964) | (1967) | analysis | (1967) | analysis | (1954) | (1964) | analysis
2000 | 222891 222878 | 222228 222129 | 19.1646 19.1608 19.1619 | 19.0837 19.0752 | 266630 241332 24.1368
1000 | 96437 96433 ) 9.5886 9.5864 | 89526 89553 895290 ) 88892 88900 | 126308 100464 100498
0500 | 44666 44653 ) 44005 44063 | 43170 43179 43173 | 42518 42562 | 63436 45709 45711
0250 22195 22219} 21864 21882 ) 21795 21809 21798 | 21424 21441 | 32832 22559 22733
0.100| 08867 08855 | 08151 08164 | 08807 08812 08807 | 08096 08114 | 15260 08896  0.9091
0050) 04229 04229 | 03674 03679 - 04219 04217 | 03657 03663 - - 04865
0025) 03398 03395 | 02578  0.2580 - 03393 03393 | 02578 02578 - - 0.3554

h/R ratios. For a given shell dimension # is slightly increased with the introduction of an internal
support since the buckling load is also raised. The increase in the elastic buckling capacity
can be about two to three times by introducing a single internal ring support. For such
symmetrical boundary conditions, it is obvious that the optimal location for the internal support
is at the mid-span (ie. a=0.5). Fig. 3 shows similar curves for S,—S, cylindrical shells under
hydrostatic pressure (8= 1), but with a corresponding lower value for A when compared to those
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Fig. 3 Critical hydrostatic pressure A for $1—S, cyli-
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Fig. 2 Critical lateral pressure A for $;—S; cylindri-
cal shells with an internal support at various
positions al.

in Fig. 2.

Figs. 4 and 5, respectively, present the critical lateral (8=0) and hydrostatic pressures (8=1)
for cylindrical shells with C,—C, end conditions. The maximum increase of the critical pressures
is also about two to three times when a=0.5.

Figs. 6 and 7 present the solutions for C;—S, shells. Similar trends were observed. Figs. 8
and 9 show more clearly the influence of the internal ring support location on the buckling
load for shells under lateral pressure and hydrostatic pressure, respectively. The buckling load
is more sensitive to the effect of internal support position when the shell is relatively short
(R/L=10) and thick (//R=0.03). Also, it was observed that even though one end is clamped
and the other is simply supported, the optimal location of the internal support is near the midspan.
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There is only a slight shift of this optimal location towards the simply supported end when
the shell is short and thick.

6. Conclusions

An automated Rayleigh-Ritz method is presented for the elastic buckling analysis of externally
pressurized cylindrical shells with internal ring supports. Close agreement of buckling results
with those obtained by previous researchers for shells without an internal support shows the
validity and high accuracy of the method.

Based on this method, generic buckling design charts for cylindrical shells under lateral (§=0)
or hydrostatic (f=1) pressure and having an internal ring support are obtained. These new
buckling results should be valuable to engineering designers.
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