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Abstract. The analysis and tests of thin-walled channel frames including nonlinear flexible or semi-rigid
connection behaviour is presented. The semi-rigid connection behaviour is modelled using a mathematical
approximation of the connection flexibility-moment relationship. Local instability such as local buckling
and torsional flexural buckling of the member are included in the analysis. The full response of the frame,
up to the collapse load, can be predicted. Experimental investigation was carried out on a series of simple
double storey symmetrical frames with the purpose of verifying the accuracy and validity of the analysis.
Agreement between the theoretical and experimental results is acceptable. The investigation also shows that
connection flexibility and local instability such as local buckling and torsional flexural buckling can affect
the behaviour and strength of thin-walled frames significantly. The results can also provide further insight
into the advanced study of practical structures where interaction between flexible connections and phe-
nomenon associated with thin-walled members are present.
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1. Introduction

The analysis of frames with semi-rigid connections received plenty of attention in the past
decade (Jones. et al. 1983). With the increasing popularity in the use of thin-walled members
as main components, investigators (Wang 1974, Wang and Blandford 1978) have also studied
the behaviour of locally buckled frames. However, the influence of local buckling and torsional
buckling of individual frame members coupled with the nonlinear behaviour of semi-rigid
connection on the strength and behaviour of structural systems has not been extensively
investigated.

It is the purpose of this paper to present the investigation on the strength and behaviour
of plane frames composed of thin-walled plain channel members and semi-rigid connections.
The analysis, which is based on the stiffness matrix method of solution, includes the effects
of local buckling and torsional buckling of the members and nonlinear behaviour of semi-rigid
connections. The reduction in the plastic moment capacity due to axial load and local buckling
is also accounted for. The full response of the frame, from the onset of loading to the point
of collapse, can be predicted.

The actual moment-rotation or M—¢ relationship of the connections used in the frames
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studied were obtained from experiments(Tan 1991). From the experimental data, a mathe-
matical model capable of representing the M — ¢ behaviour of the connection is formed. For
the structural system, a series of symmetrical double storey frames were tested to collapse with
the purpose of verifying the predicted collapse load and response.

2. Member stiffness matrix

A prismatic beam element / with partially restrained ends is shown in Fig. 1. The origin
of the right-handed axes system is located at end j. The centroidal axis of the member coincides
with the x-axis, which is positive from j to k . The z axis is the principal axis of the cross-section
of the member, that is, the xy plane is the principal plane of bending. L, 4, I and J are the
length, cross-sectional area, principal moment of inertia and torsional constant of the member
respectively. E is the modulus of elasticity of the member material. Three possible generalized
displacements and corresponding end actions are defined at each end and these are numbered
sequentially. The semi-rigidity of the connection at ends j and k of the member is modelled
by two rotational springs of stiffness R; and R respectively as shown in Fig. 2. The stiffness
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Fig. 2 Springs at semi-rigid ends

matrix of such a member with axial load effect in the global or structure axes system has
been shown (Tan 1991 ) to be:
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0 is the clockwise rotation of the member about end j in order to bring the member axes
to coincide with the global or structure axes system. When the axial load P is tensile, the
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trigonometric functions of the stability functions s and ¢ are replaced by the corresponding
hyperbolic functions.

3. Local instability

The most prominant local instability in a thin-walled structural member is local buckling,
which is characterized by a number of ripples or buckles along the walls of a section. While not
necessarily causing immediate failure, this phenomenon will radically reduce the stiffness of
the member against further compression and hasten ultimate failure.

Performing the post-buckling analysis in a rigorous manner is extremely complex and
tedious. The complication of large deformations combined with inelastic behaviour in the later
stages of post-buckling makes a widely applicable solution difficult. A much simpler and
generally applicable means for incorporating the effects of local buckling is the effective width
concept as adopted by BS5950 Part 5(British Standard Institution 1987).

In the effective width approach, the most severely buckled portions of an element are as-
sumed to be ineffective in resisting load, and the applied compression is resisted by portions
situated adjacent to the supported edges as illustrated in Fig. 3. The compressive stress di-
stribution in both the stiffened and unstiffened elements is non-uniform. This is idealized
by an uniform stress distribution which acts only on the effective portion of the buckled plate
element based on the effective width concept. Also shown in Fig. 3 are parts of the buckled
plate elements that have been deleted.
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Fig. 3 Effective width concept: Stress distribution in locally buckled section

The effective width b, used to account for the post-local buckling strength of the buckled
compression of a stiffened element of full flat width b and thickness ¢ when subjected to
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compressive stress o, can be determined from:

Z—“: {1+14[( ;’ )05—0.35]4}0‘2 @

The critical local buckling stress is given by:

2

t
6. = 185000K ( = ) 3)

The local buckling coefficient K is dependent on the type and cross-sectional dimensions
of the element. Eq. (2) is only applicable when the ratio of o./c., is greater or equal to 0.123.
If the ratio is less than 0.123, then the effective width is taken as the full flat width of the
element.

For an unstiffened element of full flat width b, the effective width b.. is given by

b, =089, +0.11b @)

where b, is determined from eqn. (2).

In the frame analysis, the effective widths are computed from Egs. (2) and (4) at each load
level. From the effective widths, the reduced or effective flexural rigidity £/, and axial rigidity
EA, will be determined and then substituted into the member stiffness matrix, Eq. (1). In
this manner, the effects due to local buckling can be accounted for.

Depending on the cross-sectional geometry and length of the column, local instability in
the form of torsional flexural buckling may occur. As in the case of local buckling, this
phenomenon will hasten collapse of the overall structure. To account for this effect, the effective
length multiplier B is used. For a plain channel section symmetrical about the x axis, the
critical torsional flexural buckling load is

— 1 2 5
P,—E{(PX+PZ)—\/(PX FP.)’—4aP.P, } ()

where @ is a constant dependent on the cross-sectional properties. P, and P, are the Euler
load about the x axis and torsional buckling load of the column, respectively. § can be co-
mputed from:

0.5

3

where P, is the Euler load about the y axis. Eq. (6) is only valid when P, is greater than
P,. The value of B is taken as unity if P, is less than P,.

Hence, to account for the effects of torsional flexural buckling of the columns during the
analysis, the new factored length of each column, obtained by multiplying B to the original
length, will be used in the computation of the coefficients of the member stiffness matrix,
ie, Eq. (1).

4. Connection stiffness modelling

The moment-rotation or M—¢ curves of realistic connections of the form shown in Fig. 4
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were obtained from experimental investigation(Tan 1991). The beam and column were bolted
to the connection through the single and double bolt holes respectively. The connection thi-
ckness 7. was varied from 3 mm to 7 mm, in step of 1 mm, in order to achieve a variation
in the connection strength and stiffness. The connection stiffness R at a particular connection
moment M is approximated by the mathematical model:

__R.0
M=T7co )

Fig.4 Beam-to-column conncction

R, the connection initial stiffness or stiffness at zero moment. and C are constants obtained
from curve fitting technique. Table | lists the connections and their respective modelling
constants.

Table I Connection modelling constants.

C e T(' R 0 C
onnection < |
(mm) (10" Nmm/rad) (rad ')

Cl 3 3.15 9.5850
C2 4 540 11.967
C3 5 9.50 16.505
C4 6 9.75 9.6870
C5 7 9.87 8.1920

Fig. 5 shows a typical comparison between the experimental results and the mathematical
modelling. It can be seen that although in an approximate form. the representation of the
connection moment-rotation relationship using Eq. (7) 1s accurate enough for practical pu
rposes.

5. Analysis procedure
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The analysis procedure employs the stiffness matrix method of solution, the governing
equation of the structure being

{Fl=[K] {d} ®)

where [K] is the global stiffness matrix of the structure. This is formed in the conventional
manner by “adding” the individual member stiffness matrix formed from eqn. (1). {d} and
{F} are the vector of joint displacements and loads, respectively.

Moment (KNmm)

35 F
. Experiment

S L

0 0.05 0.1 0.15 0.2
Rotation (rad)

Fig. 5 Connection C2 moment/rotation plot

With the effect of axial thrust included in the analysis, the equation becomes
{Fl=[K(P)] {d} e

However, the axial thrust in the members is a function of the displacements of the joints,
ie., Eq. (9) is actually nonlinear, and can be written as

{Fl=[KPE@)] d) (10)

When {F} is given a small variation {8F}, a small variation {8d} will result in {d} with
[K(P)] essentially remaining unchanged. Thus, Eq. (10) can take the form

{6Ft=[K(P)] {8 d} (1D

Actually, the coefficients of [K(P)] are also functions of the connection stiffness, member cross
sectional area and second moment of area of the member at each load level when there is
local instability. However, since the computation of the effective cross sectional properties are
dependent on the stresses, which in turn depend on the axial thrust, Eq. (11) may be written
as it is, generally.

The singularity of [K(P)] is equivalent to the structure stiffness being zero. The test employed
to detect singularity is to the determinant of the structure stiffness matrix, which should be
positive until it becomes zero. Practically, the determination of a zero determinant is almost
impossible. Singularity is deemed to occur when a small negative determinant, within an
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acceptable range of error, is produced.
The theoretical analysis was written into a computer programme, the flow chart of which
is shown in Figs. 6(a) and 6(b). Listed below is a step-by-step description of the flow chart.
1) The data input consists of the followings:

a) Number of nodes.

b) Number of elements.

¢) Nodal coordinates.

d) Element material properties, element section geometry, element number and nodal
designations.
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Fig.6 Computer flow chart

¢) Boundary conditions.

f) Initial applied loads.

g) Connection modelling constants.

h) Initial load factor (LF), the increment (INC) to be applied to it and the accuracy (ACC)
in the final results.

2) The analysis can be performed with or without local buckling.

3) N is used to count the number of loading cycles. The axial forces in the elements are
generally unknown before the analysis begins and are all assumed to be zero. Initial
guesses might be read in as input data but this is unlikely to reduce the computing time.

4) The loading cycle is increased by one. As the axial forces at each load level are initially
only known approximately, a number of solutions, counted by I, are performed.
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5) Individual element stiffness matrix in the structure axes system is formed. The stiffness
coefficients are calculated using the current effective geometry (if local buckling is co-
nsidered), connection stiffness and the axial forces of the respective elements.

6) The element stiffness matrices are assembled to form the overall stiffness of the structure.

7) The determinant, DET2, of the reduced structure stiffness matrix is calculated.

8) If DET2 is singular, and if the load cycle is one, it means that the initial applied load
is too high or some unrealistic data was used. The analysis is terminated and returned
to the step 1. If the load cycle is greater than one, then the critical load has been reached.
An accuracy check is then performed to decide if better accuracy is required. If the desired
accuracy is achieved, the critical load is given and from there, there is an option of
performing another analysis or terminating the programme. The load is decreased and
the process repeated if the desired accuracy is not obtained.

9) The structure load vector is formed if DET2 is not singular.

10) Computation of nodal displacements of each element.

11) Element nodal forces are computed.

12) Nodal stresses are calculated, again using the current effective section geometries if lo-
cal buckling is considered.

13) If there is local buckling, the effective widths computed are used to determine the new
effective section properties of each element.

14) The repetition of the analysis performed at each load level is terminated when the terms
of the assembled stiffness matrix converge to a steady state at successive cycles. DET2
is used as a convenient quantity, whose value depends on the stiffness coefficients. If
DET? has reached a steady state, it is likely that the stiffness coefficients of the matrix
have done so, i.e., convergence of individual displacements. When the loading approaches
the critical level, the assembled stiffness matrix becomes increasingly ill-conditioned and
successive values of DET2 may vary widely. In this case, the repeated analysis is ter-
minated at /=200, ie., if local buckling is considered. With no local buckling, the te-
rmination is at /=10.
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Fig.7 Frame overall dimensions
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15) The reduced nodal plastic moment M, of individual element end nodes due to axial
thrust is calculated and compared against the respective nodal moment M. When M>1.05
M, the load is decreased and the analysis repeated till the required tolerance is met.

16) For semi-rigid connections, the stiffness changes with each load level according to the
end moment. This change is accounted for with the use of eqn. (7). The load is increased
by another step and the analysis is repeated.

6. Results and discussion

In order to verify the accuracy and validity of the analysis, experiments were carried out
(Tan 1991). Although seldom used in practice, channel members were selected because of
the simplicity in fabrication. Also, local instability in the form of local buckling and torsional
flexural buckling can be easily introduced by simply varying the members physical dime-
nsions. In the experimental investigation, two series, each consisting of five symmetrical double
storey frames were constructed from cold-formed thin-walled plain channels and tested to
collapse. All the frames are of similar overall dimension as shown in Fig. 7. However, each
frame uses a different set of connections. A complete listing of all the frames in each series
with their respective connections and members cross-sectional geometry is tabulated in
Table 2. The dimensions of the members of series 1 frames, i.e., F1 to F5, are chosen such

Table 2 Frame member cross-sectional dimensions.

Column  Column Beam Beam t Connection
Frame b (mm) b, (mm) b, (mm) b, (mm) (mm) used
F1 27 25 25 25 0.835 Cl
F2 27 25 25 25 0.835 C2
F3 27 25 25 25 0.835 C3
F4 27 25 25 25 0.835 C4
FS 27 25 25 25 0.835 Cs
F6 27 15 25 15 0.700 Cl
F7 27 15 25 15 0.700 C2
F8 27 15 25 15 0.700 C3
F9 27 15 25 15 0.700 C4
F10 27 15 25 15 0.700 Cs5

that both local buckling and torsional flexural buckling will occur. As for frames F6 to F10
of series 2, only local buckling will dominate. Shown in Fig. 8 is the frame setup just before
the onset of loading. The frame, which is fully fixed at its base, is symmetrically loaded by
two vertical concentrated loads on the top beam.

The experimental results of the frame tests are shown in Figs. 9 and 10. The load-disp-
lacement refers to the applied loading and corresponding vertical displacement at one of the

two similar loading points. From the two series of tests, it can be seen that both the frame
stiffness and collapse load increase when stiffer connections are used. For all the frames, the

first set of plastic hinges formed simultaneously the loading points. For frames F1 and F6,
which were constructed with the most flexible connections C1, further increase in load lead
to the collapse of the frame due to the eventual plastic deformation of the two top connections.

However, for F2 to F5 of series 1, the columns buckled in the torsiorial flexural mode when
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Fig.8 Frame test setup
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Fig.9 Experimental load/displacement plot (F1-F5) Fig. 10 Experimental load/displacement plot (F6-F10)

the load is further increased after the formation of the first set of hinges. Fig. 11 shows a
collapsed frame with torsional flexural buckling of the columns. As for frames F7 to F10 of
series 2, further increase in load after the initial occurrence of hinges at the loading points
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Fig. 11 Torsional flexural buckling of columns

resulted in the plastic deformation at the top end of the columns. At this point, the frame
collapsed rather suddenly (Fig. 10), as compared to the gradual collapse of frames F2 to F5
of series 1 (Fig. 9).

A typical comparison of the loading path between the experimental and various theoretical
results for frame F4 is shown in Fig. 12. Without the consideration of both local buckling
and torsional flexural buckling, the analysis overestimated the frame stiffness and collapse

load significantly. When only local buckling is included, the predicted collapse load is reduced
considerably. Furthermore, the load at which the first set of hinges formed is in better ag-
reement with the experimental result. The prediction from the analysis which accounted for
both local buckling and torsional flexural buckling produced the best agreement with the
experiment result.

The effect of the connection stiffness on the frame collapse load is illustrated in Figs. 13
and 14. For both series of frames, the trend of the variation of the collapse load with the

connection stiffness is consistent for the various predictions and this is in line with the ex-
perimental results. Although local instability will reduce the stiffness and hasten the collapse
of the frame, the use of stiffer connections resulted in an increase in the strength and stiffness
of the frame.

Table 3 compares the experimental and theoretical collapse loads. P, and P. represent
the collapse load obtained from the analysis without local buckling or torsional flexural
buckling and from the experiment, respectively. For frames F1 to F5, P, refers to the theoretical
collapse load with the inclusion of both local buckling and torsional flexural buckling. Ho-
wever, for frames F6 to F10, only local buckling was included as there was no tendency for
torsional flexural buckling to occur.

From the fifth column, it can be seen that without the consideration of local instability, P,
can be overestimated by as high as about 59 percent (frame F4). For series 2 frames, i.e., F6
to F10, the average error is approximately 19 percent and this is very much lower when co-
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Fig. 12 Comparison of theoretical and experimental results
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Fig. 13 Experimental and theoretical collapse load(F1-F5)

mpared to series 1. The reason is that due to the cross sectional dimensions, local buckling
of the members is less severe. The last column shows that when local instability is accounted
for in the analysis, the maximum error is only slightly more than 10 percent (frame F1). All
predictions for series 1 frames are less than the experimental results. This is due mainly to
the approximate nature of Egs. (2) and (4) to account for local buckling. Strictly speaking,
the use of these equations will lead to a member with varying cross sectional area. Such a
problem can be solved by dividing each member of the frame into smaller elements. As oppose
to series 1, theoretical results for series 2 frames were all overestimated. This is largely due
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Fig. 14 Experimental and theoretical collapse load (F6-F10)

Table 3 Theoretical and experimental collapse load comparison.

Frame Py P, Pa P P
(KN) (KN) (KN) Py Py

F1 3.60 3.05 2.765 1.302 1.103
F2 390 3.19 2916 1.338 1.094
F3 420 332 3.088 1.360 1.075
F4 5.20 3.59 3277 1.587 1.096
F5 530 3.61 3478 1.524 1.038
F6 1.75 1.37 1.449 1.208 0.945
F7 1.80 1.42 1.516 1.187 0.937
F8 1.85 145 1.551 1.193 0.935
F9 1.90 149 1.603 1.185 0.930
F10 193 1.55 1.640 1.177 0.945

to the assumption of the warping restraint at the end of the member(Rhodes 1991) when
formulating Eq. (6). Although not always the case, it indirectly lead to a slightly conservative
prediction of the collapse loads.

7. Conclusions

In the analysis, approximations of the connection stiffness and accountability of local in-
stability such as local buckling and torsional flexural buckling were used. Nevertheless, the
results show that a rather accurate prediction of the collapse load of the frames studied can
be obtained. It can also be concluded that stiffer connection will lead to higher frame strength.
Although the effects of connection stiffness on the strength of structures is a well known fact
among structural engineers, the behaviour of frames with the presence of local instabilty in
addition to flexible connections, has received little investigation and is not widely known. It
is also the intention of the authors that the results from this study will provide further insight
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into the study of more commercialize and practical cold-formed thin-walled structure with
flexible connections.
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