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Abstract. Presented in this paper is the rigorous analysis for the determination of effective flange
width for composite beams. To make the solution suitable for routine design, formulas and tables for
determining effective flange width for varying load types and geometric shapes are suggested. A variety
of effective flange width problems for simple and continuous 7- and /-beams can be solved by these
tables and formulas. Although they are derived for 7- and I-beams with symmetrical shapes, flanges
and loads, they can be applied for non-symmetrical cases.

Typical numerical examples are given to show how to use the formulas and tables; and their validity
and accuracy are assessed by comparison with other known results that are based on the American
Codes AISC, AASHTO and ACL
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1. Introduction

Composite members, consisting of rolled or built-up structural steel shapes and concrete are
designed on the assumption that the steel and concrete work together in resisting loads. In
contrast with classical structural steel design, which considers only the strength of steel, the
inclusion of the contribution of the concrete results in more economical design as the required
quantity of steel is reduced.

In recent years, increasing use of the ultimate strength design methods has allowed the structural
designer to effect savings of material over traditional elastic techniques. However, available experi-
mental data (Levi 1961) has shown that the determination of the effective flange width be of
composite beams are more accurately determined using the elastic theory.

The rigorous analysis for effective flange width involves theory of elasticity applied to plates,
using an extremely long continuous beam on equidistant supports, with an extremely wide flange
having a small thickness compared to the beam depth. To make the solution suitable for routine
design, formulas and tables for determining effective flange width, in which section, loading
types, and the necessary geometric parameters are taken into account, are suggested in this study.
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A variety of effective flange width problems for simple and continuous 7- and I-beams can
be solved by these tables and formulas. Although they are derived for T- and I-beams with
symmetrical beams, flanges and loads, they can be applied approximately for beams with slightly
nonsymmetrical flanges and loads. Moreover, these formulas and tables can also be used to
study associated problems, since the parameters included appear in a clearly defined form and
the effect of each parameters can be estimated and calculated easily.

Some typical numerical examples are given to show how to use the formulas and tables;
and the validity as well as the accuracy of these formulas and tables are assessed by comparison
with other known results that are based on the American Codes, AISC, AASHTO and ACL

2. Code requirements

As a simplification for design purpose, the American Institute of Steel Construction (AISC
1986) and the American Association of State Highway and Transportation Officials (AASHTO
1973) have adopted the same method of computing effective flange widths as used by the American
Concrete Institute Building Code (ACI 1989) for reinforced concrete beams. The permissible
effective width be is defined in terms of the span length L and of the flange thickness ¢. Also,
the effective width can not exceed the given bo.

Referring to Fig. 1 the maximum value of effective flange width be=(2bn+bw) permitted by
the codes is the least of the values computed by the following relations:

2.1. For an interior girder with slab extending on the both sides of girder:

a. be<l/4
b. be<bo (for equal beam spacing)
c. be<bw+16¢

2.2. For an exterior girder with slab extending only on one side:
8. be<L/12+bw

b. be<1/2 (bo+bw)
c. be<bw+6¢
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Fig. 1 Dimensions governing effective width be on T-beam.



An accurate effective flange width of composite beams 199

Similarly, for highway bridge design, effective width according to AASHTO is identical with
that given by AISC except that Eq. ¢ for an interior girder is replaced by

a. be<12t

and for an exterior girder, Eq. a and c are replaced by:

a. be<l/12
c. be<6t

In the case of a floor slab built monolithically over floor beams, there is transverse bending
in the slab between beams. This tends to reduce effectiveness of the slab in carrying compression
at remote points from the beam stem (Salmon and Wang 1985). Thus, there is a valid reason
for using a conservatively low effective flange width in the codes. The codes seem properly
adequate for certain cases but unduly conservate for most others. From the elastic theory and
test results, the ACIL, AISC and AASHTO requirements have limited accuracy because the codes
consider that the neutral axis (N.A.) remains in the middle of the stem and also some of the
compression acting on the system is carried by the stem, thus reducing the effective flange width
be. In composite beams, the neutral axis (N.A.) usually remains either very close to the flange
or inside the flange. Therefore, compression acting on the system is not carried by stem thus
resulting in larger effective flange width.

A computer program was developed to calculated the moment-curvature curve for a given
composite cross section from the stress-strain curves of steel and concrete used (Barnard 1965).
In this calculation, for a given value of strain in the extreme concrete fiber, the neutral axis
remained very close to the flange and full compression was carried by the flange. For this
reason, the elastic theory is considered to give accurate result in composite beams. However,
application of the theory is very difficult and the solution approach is too rigorous. Therefore,
for simplication purpose, tables have been developed, based on the rigorous elastic solution,
for various loading conditions and beam types. These tables provide improved values for effective
width flange.

3. Theoretical approach

The approach is to define the effective width bn of the compressive flange so that, by replacing
the actual stress distribution over this effective width by a uniform stress distribution, the values
of ultimate load and of curvature will remain practically unchanged. Thus an equivalent uniform
stress distribution (Fig. 3) is created to replace the varying stress along the flange-beam surface
(Fig. 2). The resulting flange forces in each system are equated:

(om)2be)t=t f o dy (1a)
Slange

Solving for bn gives

bn=tf o.dy/2 oyt (1b)

0

The problem is to define the expression for ax so that bn can be solved. The actual expression
for bending moment Mx along the length of the beam can be expanded into an odd term
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Fig. 2 Original system. Fig. 3 Equivalent system.

Fourier series of the type (Heins 1976, Schleicher 1955, Sechler 1953):

Mx=YMn sinn mx/L
Mn =Fourier coefficient
21, =period
The selection of either sine or cose terms was made for the case of simply supported beam
since the moments at the ends will be zero. Thus the sine terms satisfy the boundary conditions
at the supports.

Considering the flange as a plate loaded at the junction of the rib and the flange, the stresses
in the flange must then satisfy the elastic theory equation (Southwell 1936, Wang 1953):

%0/ Ox*+20%p/ Ox*Fy*+ d*p/ dy* =0 (2)

where @=Airy's stress function, and the stresses as given in the elastic theory (Timoshenko
and Woinowsky-Krieger 1959) are:

ar=0°¢/dy’ (3)
oy =0¢/dx* (4)
wy =—0¢/dxdy (5)

Analyzing the stresses resulting from the nth term of Fourier expansion of moment,
Mx=Mnsinn nx/L

According to bending theory the flexural stresses along any longitudinal fiber vary directly as
the moment and hence as sin n 7 x/L. The stresses are considered to vary according to some
function Yn, which is independent of coordinate x. Therefore, a stress function ¢ in the product
form is used for the solution of the elastic theory equation:

en=Yn sinn nx/L

which is the same equation as used for the multi-material beam solution in elastic theory.
The general solution for the stress function is then:
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Fig. 4 Joint forces.

en=(Al sinhn my/L+A2coshn ty/L+A3 y sinhn ty/L
+A4ycoshn ty/L) sinn tx/L 6

where A1, A2, A3 and A4 are constants to be determined. Also boundary conditions will be
determined for different cases.

4. Channel section (or L-section)

The first case that will be examined will be a simply supported channel or L-section which

may act as spandrel beam to support floor slab. If the stem or rib and plate are now separated,
as shown in Fig 4, compatibility of stresses at the junction gives

OX 1ip = OX flunge= OM SIN 1 1X/L (cl)
ay=0 (c2)
Trib— tﬂang(' (C3)

Taking stress equation (6) in accordance with equations (3) through (5) and applying the boundary
conditions (cl) and (c2) at y=0 and y=2c¢ gives:
y=0.  oy=0p/’=0=—A(42). A2=0
;. oy=7*g/’=0=—A(4l sinh A2c+A432c
sinh A 2c+44 2c cosh A2¢)
y=0. ax=0*¢/&*=omsin Ax=[43 A2] sin Ax

I

y
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y=2%1 ax=d¢/k*=om sin Ax
ax=[A1l Asinh A 2c+A43 A(2 cosh A2c+2¢ Asinh A 2c)
+A44 A(2sinh A2¢+2c Acosh A2c)] sin Ax

The solution of these equations gives the following values for the coefficients 41, 42, A3 and
A4

Al=(om c/A) [(1—cosh2 Ac)/sinh’>2 Ac]
A2=0
A3=om/2A

A4=(om/2A(1—cosh 2 Ac)/sinh 2 A c]

where A=n 71/L
Substituting these coefficients into the stress equation for ax,

ax=03%p/dy =[A1 A’sinh Ay+A42 A>cosh Ay
+A3 A (2cosh Ay+y Asinh Ay)
+A44 A (2sinh Ay+y Acosh Ay)] sin Ax

and integrating across the flange width gives:

%
R= J axdy=t om/AL(2 Ac+sinh 2 Ac)/(cosh 2 Ac+1)] sinh Ax
0

This result represents the numerator of Equation (1b); therefore the effective width is

[, =]

hm=————
2omt

where om=om sin Ax
bn=(om sin Ax/AL(2 Ac=sinh 2 A¢)/(cosh 2 Ac+1)] (1/2 osin Ax)
substituting the value of A=n n/L

bn=(om sinn n/LY/(n ML) [(2n a/L c+sinh2n n/L)
(cosh2n /L c+1)] (1/2 om sinn n/L x)

rearrange for each Fourier series term n,

b :Z L sinh 2n ¢/L)+(2n nc/L)
" 2nnm cosh 2n me/L)+1

for the extreme case when ¢/L approaches infinity and n=1,

bn=L/2 mn=0.159L
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Table 1 Summary of effective width solutions

Case I: Two ribs, symmetric loading. lateral sinh2 Ac+2 Ac
edges free(Channel & L-Section). "= 3 A(cosh 2 Ac+ N

Case 2: Multiple ribs, symmetric loading, B 2(cosh2Ac—1)
lateral edges continuous. bn= AT+ 20 cosh 2 Ae—(1 42 2A0)]
(Multi-Beams) '
Case 3: One rib, lateral edges free. B 2(cosh2 Ae—1)
(T-Beams) =G+ w) cosh 2 e+ L(1+wy/2]2Ae)+(5— )]
Case 4: One rib, lateral edges continuous Same as case 2
or fixed.

Case 5: Two ribs, anti-symmetric loading. : . . —
Y & bn:@mhxlc-b{(l(cosh/lc 1)

lateral edge free. Acosh 2 Ac—1)
Case 6:  Multiple ribs, anti-symmetric _ (2) 2 cosh Ac(cosh Ac—1)+(1+w Ac sinhc
loading. lateral edges continuous. bn= =3 3+ sinh 2 Ac+(1+u) 2hc

—u is Poisson’s ratio. A=nn/L

— All beams are simply supported at ends.

—Symmetric loading means all ribs are bent in same direction.

— Antisymmetric loading means alternate ribs arc bent in same direction.

— Lateral edges free means no lateral stresses ay.

— Lateral edges continuous means no lateral displacement of ribs.

— Poisson’s ratio does not enter into cases 1 and 5 since the ribs are considered free to rotate axially as well as
to deflect laterally, hence there arc no stresses resulting from suppression of Poisson’s ratio.

The effective flange width is not dependent on flange thickness ¢ stem width bw and overall
depth of section A, and is constant for each fourier series term.

5. Multi-beams

Consider the case of a series of multi-beams. The boundary conditions are: y=0,
y=2c:z=0 or the lateral displacement is zero.
Additionally, at y=0, y=2:ax=om sin Ax
The equation of stress ax have previously been defined; the displacement equation, however.
is required. This equation is found as described in elastic theory (Sechler 1953) as.

[(F /Oy + Q2+ wd e/ dx0y)]= — 3°z/0"*

and for all values of ax the displacement z and thus J%z/dx" equal zero: therefore it is required
to solve

[(@0/dy*+ 2+ 109/ 0x°y)]=0

at y=0 and y=2c. The solution to this problem has been obtained and the resulting effective
width evaluated and given by:
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Table 2 Value of effective plate width coefficient bn

Values of Bn

Case No.
¢/Ln 1 2 & 4 3 5 6
0.05 0.049 0.049 0.049 0.025 0.025
0.10 0.094 0.094 0.093 0.049 0.049
0.15 0.130 0.130 0.129 0.072 0.073
0.20 0.158 0.158 0.157 0.094 0.095
0.25 0.176 0.178 0.175 0.113 0.116
0.30 0.186 0.191 0.187 0.130 0.134
0.35 0.190 0.199 0.195 0.145 0.151
040 0.191 0204 0.199 0.158 0.165
045 0.189 0.207 0.201 0.168 0.177
0.50 0.186 0.208 0.201 0.176 0.187
0.159 0.205 0.205 0.159 0.205
Ln=L*n
bn=Bn*Ln

bn is effective width of overhancing portion of compression flange.

N2 (cosh2 Ac—1)
bn=2.5 [(3+u) sinh 2 Ac—(1+ a) zac)]

The evaluation of plate effective width, for other geometry and beam arrangements have also
beem computed and listed below. The numerical evaluations of these equations, for each series
term s, have also been solved and compiled into Table 1. The application of these tables is
very simple and extremely accurate.

6. Design example

It is required to determine the effective width and ultimate moment capacity of the composite
section shown in Fig. 5 according to:

(a) Code requirements
(b) Theoretical approach
Assume fc'=3000 psi(2] MPa)

a) Code requirements
Determine the effective width:
be<L/4=105 in(2625 mm)
be<bo=116.14 in.; bo=20+bw
be<bw+16t=8824 in(2206 mm)
Effective width be for design is the smallest of these three equations.
be=8824 in(2206 mm), from the code requirements for composite design.
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Fig. 5 Composite section for design example.

b) Elastic theory
Determine the effective width:
Ln=L* n=420 in(10500 mm), consider n=1 for the maximum value of the effective width
be.
¢/Ln—54/420=0.128 and using the Table 1. Case 2.
Bn=0.11556 by interpolation.
bn=Bn*Ln=0.11556* 420=48.54 in.; and be=2bn+bw
be=97.09+8240=105.32 in(2633 mm)
be=105.32 in(2633 mm)

7. Determine uitimate moment capacity

The procedure for determining the ultimate moment capacity depends on whether the neutral
axis occurs within the concrete slab or within the steel beam. If the neutral axis occurs within
the slab, the slab is considered to be adequate ie., the slab is capable of resisting the total
compressive force. If the neutral axis falls within the steel beam, the slab is considered inadequate
i.e., the slab is able to resist only a portion of compressive force, the remainder being taken
by the steel beam. Referring to Fig. 9, determine the neutral axis and ultimate moment capacity.

a) Code requirements:
be=8824 in.(2206 mm), As=18.3 in (11807 mm?), Fy=36 ksi(248.2 MPa)
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a=As Fy(0.85 fc' be)=18.3* 36/(0.85* 3* 88.24)

a=293 in.<r=50 in. the neutral axis occurs within the slab. The slab is capable of resisting
the total compressive force.

C=085 f' a be=085*% 3* 293* 88.24=658.8 kips(2951.4 Kn),

T=As Fy=183* 36=658.8 kips(2951.4 Kn).

Moment arm is referring the Fig. 9,

d=hs/2+t—a/2=10495+5—146=14.035 in(358.75 mm)

Ultimate moment capacity Mu,

Mu=1td—Cd=6588* 14.035=770.52 ft-kips(1044.82 KN-M)

Mu=77052 ft-kips(1044.82 KN-M), from the code requirements for composite design.

b) Theoretical solution:
be=10532 in., 4s=183 in. (11807 mm?), Fy=36 ksi.(2482 MPa)
a=As Fy/(0.85 f' be)=183* 36/(0.85* 3* 105.32)
a=245 in(61.3 mm)<r=50 in(l125 m), the neutral axis occurs within the slab. The slab
is capable of resisting the total compressive force.
C=085 f’ a be=085* 3* 245* 105.32=658.8 kips(2954 Kn)
T=As Fy=183* 36=658.8 kips(29514 Kn).
Moment arm is given by:
d=hs/2+1=a/2=10495+ 5~ 1225=14.27 in(356.75 mm)
Ultimate moment capacity Mu,
Mu=Td=Cd=6588* 1427=783423 ft-kips(1062.3 KN-M)
Mu=783423 ft-kips.(1062.3 KN-M), from the elastic theory without the flange stiftness for
composite design.

From Example:
The neutral axis (N.A.) remains inside the slab and the slab is capable of resisting the total
compressive force. Large effective width is obtained and large ultimate moment capacity resuits.

be(code)<be(elastic theory)

88.24 in. (2106 mm)<105.32 in(2632.5 mm)
Mu(code)<Mu(elastic theory)

770.52 ft-kips(1044.2 KN-M)<783423 ft kips(106.23 KN-M3)

8. Conclusions

It can be concluded from the results of this research and study that:

1. In composite structures, the neutral axis (N.A)) usually remains either inside the flange
or close to the flange. Therefore, compression acting on the structure is not carried by
stem and effective width be should not be reduced.

2. The true effective width is dependent on the type of loading and the ratios t/h,
L/bw, L/bo whereas, the effective width is defined in nearly all codes in terms of the beam
length and flange thickness. Also the effective width can not exceed the given width bo.
Effective flange width bn is almost accurately calculated by elastic theory.

3. Using the appropriate effective flange width bn not only increases the ultimate moment
capacity but decreases the stress in the flange.
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4, Tests results prove that the elastic theory is safe enough to use for calculating the effective
flange width bn. Without any additional safety factor.

5. Curves clearly show the greater importance of the elastic theory for calculating the effective
flange width bn (Fig.6 to Fig.20 given in the appendix).

Notations

t : Flange thickness

bw : Stem width (width of web)

L : Span length

2¢ : Clear distance between stems

bo : Center to center distance between stems

bn : Effective width of overhanging portion of compression flange

be : Total effective width for concrete design (2bn+bw) for T-section flanges

A : Overall depth of section

F, : Yield stress of steel

[’ Compressive strength of concrete
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Appendix

Fig. 6 to Fig. 20 were developed to show differences between the elastic theory and the code requirements.
Referring to the figures, y-axis indicates ratio between the effective width of overhanging portion of
compression flange and half clear distance between stems, x-axis indicates ratio between span length
and half clear distance between stems. The curves clearly show that the code requirements (AISC, AA-
SHTO and ACI) are conservative in all cases. Larger values for effective flange width can be used
on the basis of theoretical approach and for cases of L/c that are normally encountered. The cases
illustrated are only multiple 7-beam uniformly loaded.

10 12 14

Fig. 6 Comparison of eff. flange width #/A=0.1,  Fig. 7 Comparison of eff. flange width t/h=0.1,
L/ibw=10. L/bw=50.

Fig. 8 Comparison of eff. flange width //h=0.1,  Fig. 9 Comparison of eff. flange width #/A=0.1,
L/bw=100. L/bw=150.
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Fig. 10 Comparison of eff. flange width t/h=0.1,

L/bw=200.

Fig. 12 Comparison of eff. flange width t/A=0.2,

L/bw=350.
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Fig. 14 Comparison of eff. flange width t/h=0.2,
L/bw=150.

Fig. 11 Comparison of eff. flange width /h=0.2,
L/bw=10.

Fig. 13 Comparison of eff. flange width t/h=0.2,

L/bw=100.
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Fig. 15 Comparison of eff. flange width /h=02,
L/bw=200.
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Fig. 16 Comparison of eff. flange width t/A=0.3,
L/bw=10.
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Fig. 18 Comparison of eff. flange width 1/A=0.3,
L/bw=100.
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Fig. 17 Comparison of eff. flange width t/h=0.3,

L/bw=50.
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Fig. 19 Comparison of eff. flange width t/h=023,
L/bw=150.

Fig. 20 Comparison of eff. flange width 1/2A=03,

L/bw=200.





