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Spline function solution for the ultimate
strength of member structures

Qi-Lin Zhang! and Zu-Yan Shen

College of Structural Engineering, Tongji University, Shanghai, China

Abstract. In this paper a spline function solution for the ultimate strength of steel members and member
structures is derived based on total Lagrangian formulation. The displacements of members along longitu-
dinal and transverse directions are interpolated by one-order B spline functions and three-order hybrid
spline functions respectively. Equilibrium equations are established according to the principle of virtual
work. All initial imperfections of members and effects of loading, unloading and reloading of material
are taken into account. The influence of the instability of members on structural behavior can be included
in analyses. Numerical examples show that the method of this paper can satisfactorily analyze the
elasto-plastic large deflection problems of planar steel members and member structures.

Key words: member structures; spline function solution; ultimate strength.

1. Introduction

The solution of the ultimate strength of members and member structures is one of the important
problems in nonlinear stability theory of steel structures. Numerical integration method (NIM)
(Chen, et al. 1977 & Zhang, et al. 1987) is powerful in analyzing the nonlinear behavior of
steel members. However, the time-consuming multiple cyclic computation must be carried out
in executing NIM program. Finite element methods (FEM) (Aslam 1983, Kam 1983 & Ding,
et al. 1992) are usually adopted to analyze the ultimate strength of member structures, in which
plastic hinge assumption is used to consider the elasto-plastic behavior of material. Obviously,
the accuracy of FEM depends on the reasonableness of the assumptions about plastic hinge
distributions.

In this paper, spline fuctions are used to constitute the displacements of steel members, total
Lagrangian formulation and Green strain definition are adopted to describe the geometrical
nonlinearity of members, and practical constitutive relationships of material are introduced to
consider the elasto-plastic loading, unloading and reloading of members. A spline function solu-
tion is derived to analyze the ultimate strength and the whole loading procedure of members
and member structures, in which all imperfections, different boundaries and instability effects
of members are taken into account. The analyzed results show good agreement with those obtai-
ned from experiments and other numerical methods.
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2. Basic assumptions

Following assumptions are adopted in deriving the spline function solution:

1. Cross sections of members remain plane after deflecting;

2. Only normal stress parallel to the longitudinal axis of the members are considered:;
3. Strains are small compared to the unit;

4. Material is assumed to be ideally elastic plastic and Bauschinger’s effect is ignored:

3. Nonlinear geometrical relationship of members

A member divided into m segments is shown in Fig. I, in which local member and global
coordinate systems, £n, xy, XY, are also expressed.
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Fig. | A member in coordinate systems

Introducing one-order B spline function [ ¢y ()] and three-order hybrid spline function [@;;
(&)] the displacements of the member axis along the x and y directions respectively can be
interpolated and expressed as follows:

{ ua:(:(pl.i(f):] {u} (1:0, 11 2w T m) (1)
v,=[®:;(5)] {vl (=—1.0. 1, . m m+1)
where, {u}="{uo, uy, -+, u, )", {v}=Lo-i, v =, Vu I

The hybrid spline function [@,(£)] in Eq. | can be deduced from the three-order B spline
function [ ¢, ,(&)] as follows (Liu 1990):

(7]
(D 1=1¢n.] [7] 2
(T,

(m—+3)X(m+3)

where, for fixed ends:
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L is the length of this member.
There are three kinds of boundaries

Two fixed ends: V_|=W), Uy+1="Un
/4

Two pin ends: v =Wt Uys1=0,
One fixed end and one pin end:
V1=V Upe1=Uy OF U = Uy Uys1= Uy

The displacements of any point of the section can be expressed as:
{ uy=u,—1n L] {v}
V,=U,

where, [ &, (&)]=[d®:(£)/dE].

From Eq. 3, we have:

{ Au,=[ o (O {Au} —n [D)(E] {Av)
Av,=[d; ,(&)] {Av}

©)

@
OAu, {Au}
ox— Dux] {{Aﬁ}}

JAu, {Au}
oy =LDuy] { {Av} }
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aAv —[Dux ]{EZH )
e vl

where,

[Dux]) =L\ U1, —nlDUO1S, — (D UOIT,,
[Dwy)=LL (DI — LU, — (@I ]
[Dux]=[[0J[ & (&)]J)}]

[Dwy]=[[0J:L (O], ]

()

In Eq. 6, J,;' is the element at k line and 1 column in the inversed Jocobi matrix. The
jocobi matrix at 29 state is:

Ix  ox
o9& on
= (7)
gy oy
o¢ oan
According to the total Lagrangian formulation, Green strain tensor can be expressed as:
_ 1/ dAu, dAu ou, OAuy | du; dAu,
Ag,=— lj . OUx k| OUg k
& 2( é’x, ox; * ox; Ox; + ox; Ox; > ®

Introducing Eq. 5 into Eq. 8, we can finally obtain the nonlinear geometrical relationship
of the member as follows:

{Aet=[B.] { t“z}} } )
where,
[ (1+%)[Dux]+%" [Dux] l
[B,]= %ﬂ [Duy]+(1+-%—"_ﬂ)[Duy] (10)
_ \1+ ) LDuy 1+ {1+ 5 ) [Dux]+ 5, [Dwd] + ‘f;( [Dw] |

{Ag=[Ae,. Ae,. 24¢e,]"

4. Nonlinear constitutive relationships of material

Denoting Ao’ and Ag¢’ as the incremental normal stress and strain parallel to ¢ axis of
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Fig. 2 The stress and strain relationships of material

the member respectively, we can write the nonlinear constitutive relationship of the material
shown in Fig. 2 as follows:

Ac’'=E,A¢' 1

When the material is loaded in elastic range and unloaded in plastic range E,, takes the elastic
modulus, and when loaded in plastic range E,,=0.

Denoting {Aol=[Aoc. Aoc, At,]" as the incremental stress tensor of the member under
xy coordinate system, we have

{Act={T} Ac’ (12)
Ae'={TV"{Ad (13)

where, {T}=[F. m", Im]. | and m are the cosines of the & vector to xy coordinate system.
Substituting Egs. 12 & 13 into Eq. 11, we have

{Act=[D]{Ad (14)
Here,
[D]={1} E (T} (15)

Eq. 15 shows the nonlinear constitutive matrix of the material.

5. Nonlinear equilibrium equations of members

According to the principle of virtual work. the equilibrium equation of continuum at state
N+ can be expressed as

o+ Acps(Ae) V=] (i+ Al 8(Au)da=0 (16)
I, I,

Eqg. 16 can also be written as follows

[l tac,5a q,)+%q,-6<—&%—%7—k—)dV: [ v+ ansauwyaa—f o,6ae)av

(17)
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where, 0; is Kirchhoff stress tensor at state 2"
The second item in Eq. 17 can be expressed as

| JAu; dAuy
790 % %a
dAu _ JAu JAv _ JdAv JAu _ JAu JdAv _ JdAv

B e e w  m E Ta

OAu OAu oAU O0Au JAv _ CAv JAv  JAv
é d‘( l:;»' @V +6 @} T dx +6 X Ty &y +6 @} Ty d’(
i

v}

=5 {4 g, 7 057 1 {14

where,

[Dux ]
[Dux]
[(Duy]
[(Dw]

ES]:[ Lo, L, ]

12 Ty 12 O}

[10
+=[o1]

Introducing Egs. 9, 14 & 18 into Eq. 17, we can obtain

I+ W }:{g,i j‘\ffi}— el

[(Byv]=

where

kJ=]]] (B (D] (B.JaV
(k=[] [Bu1LS) [Bylav
GV
= Y {c }dV
T

o, O, t, are Kirchhoff stresses at state 2.
Eq. 22 can be written as:

o {2}y

Rearranging Eq. 26, we have

(18)

(19)

(20)

2n

(22)

(23)

(24)

(25)

(26)
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where, superscript ' represents the residual tensor excluded the boundary items.

Eq. 27 can be written as

Then we obtain

T
Sim

ﬁn‘) T
fu 0
fu -1

fu m

S
2
2

[km] {Adh} = {fm}(n+ 1)_ {me}(")

where,

[km] = [[khb:] - [km] [kn'jil[k/b]]

Ut =16 —Thkad [kid (£}

{fmk} = {ﬁwR} — Lkl [k:‘i]‘l{ﬁR}

Eq. 28 is the incremental equilibrium equation of members.
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27

(28)

29)
(30)
(1)

The items in Eq. 28 can be obtained by Gauss numerical integration technique. Members
can be divided into m segments and two Gauss points are selected in each segment. The sections
at Gauss points can be divided into several small rectangular areas ‘and the magnitudes of

whole section can be obtained by accumulating all those of rectangles.
The equilibrium equation aligned in global coordinate system can be written as:

(k] AAD 1= F, )" "= {F "

where,
(K, 1=[T,1" [k,] [T,]
{Fm}:[Tm]T {/;n}
{FmR}:[Tm]T{me}
and
[L. M, 0 0
L, M, 0 0
_ 0o 0 1 0
[’Tm]_ O 0 0 L,\'
0 0 0 L,
L0 0 0 0

O‘E;ooo
—ocococoo

(32)
33)

(34)
(35)

(36)

In Eq. 36, L. M, are the cosine of the x axis to the XY coordinate system, and L,, M, are

that of y axis, at state 2©.



192 Qi-Lin Zhang and Zu-Yan Shen

The total equilibrium equation of member structures can be obtained by assembling all member
equations as Eq. 32 of members and can be written as:

K] {AD}={F)"" "= {F}" (37)

6. Solving of nonlinear equilibrium equations of structures

Eq. 37 can be written as:

{(n+1)

[K1""" {AD}, , ={AF}+{R); (38)

Here, {R}, {F"—{F R}:'n+l)- Superscript n+ 1 represents at 2" state and subscript i repre-
sents the 7/ th iteration.
Defining {AF}=AA.{F}, in which AA is the load parameter, we can express Eq. 38 as:

[K1""" {ADY=1F}, (39)
[K1""" {AD}'={R}""" (40)

!

n+1)

and
{AD}H]:A/L'H {AD}I+ {AD}” (41)

Denoting do as the main controlled displacement, we can write the constraint condition in
solving Eq. 38 as:

Ad():AA,,'-H Ad(l)+ Ad(l)l (42)

where, Ad, is the given displacement magnitude in the first iteration. And Ad, is made zero
from the second iteration.

From Eq. 42, we can obtain:

1l
AA,H:&“ZEA—‘Z“- (43)
0

In computation, the reference load {F}, is first selected and the incremental displacement Ad,,
is given. For i=0 from Egs. 39 & 40 we obtain {AD}'={0} (Ad"=0) and {AD} (Ad). and
from Egs. 43 & 41 we can solve A4, and {AD},. For the following iteration step i, [K] and
{R} can be formed. then {AD} and {AD}" can be solved from Egs. 39 & 40, A4, (when Ad,=0)
can be obtained from Eq. 43 and {AD} can be found from Eq. 41. Carrying out the cyclic
computation we can obtain {D}""={D}"* "+ {AD}.., and A" "=A"""+ AN, .

In every iteration i, the incremental deflection vector {AD} in global coordinate system must
be transformed into those {Ad,} in xp system by using Eq. 36. The equations of members can
then be re-formed and the changed [K] and {R} can be found.

When the iteration converges, the load and deflection increments of member structures under
the given displacement increment Ad, will be obtained. The computation for every displacement
increment needs about three or four iterative times before the structures reach the ultimate strength,
and about seven times when the structures are loaded beyond the ultimate points. Fig. 3 shows
the illustration of the iterative solution.

The rule for identifying the ultimate strength point of the structures is:

Det IKI SE]
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Fig. 3 Illustration of the solving procedures
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Fig. 4 The whole load-deflection curves of a tubular column

The convergence condition of solution is:

2m+4

‘Zl (Ri— Fk)2—<— &

where, & and & are the controlled accuracy, and R, and F; are the k line elements of {R}
and {F} respectively.

7. Numerical examples
7.1. The ultimate strength of single members

Fig. 4 shows the whole load-deflection curve of an axially loaded tubular member. The experi-
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ments were conducted in Tongji University (Shen & Yang 1992). The comparison between the
experimental and the theoretical results is shown in Fig. 4.

Fig. 5 shows the theoretical results of this paper for eccentrically loaded members. The NIM
results are also shown in Fig 5.

7.2. The elastic large deflection behavior of a two-member truss
The load-deflection relationship of a two-member truss obtained from FEM (Zhang 1991)

is shown in Fig. 6. The result of this paper is also shown in the figure.

It is seen from Fig. 6 that the method of this paper can treat the geometrical nonlinearity
accurately.

7.3. The ultimate strength of a planar frame

Fig. 7 shows the experimental results about a planar frame obtained by Schilling in 1956

~—— NIM (Zhang &
Shen, 1987)
¢ This paper

.

‘I-: x107

Fig. 5 The whole load-deflection curves of steel members
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Fig. 6 The elastic large deflection behavior of a two-member truss
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Fig. 7 The ultimate strength of planar frame

(Kam 1983). In this paper the load-deflection relationship of the frame is analyzed, and the
results are also shown in Fig. 7.

From Figs. 47 we can observe that the spline function method derived in this paper can
analyze the whole loading procedures and the ultimate strength of steel members and member
structures accurately and effectively.

8. Conclusions

1. The spline function method can be satisfactorily adopted in the analyses of the elasto-plastic
large deflection problems of members and member structures with initial imperfections;

2. The plastic hinge assumption for FEM to treat material nonlinearity is not needed in this
paper. And the method derived in this paper has higher efficiency compared with NIM
solution;

3. Different boundary conditions and joint types of members in structures can be treated
easily.
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