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Vector algorithm for reinforced concrete shell
element stiffness matrix
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Abstract. A vector algorithm for calculating the stiffness matrices of reinforced concrete shell elements is
presented. The algorithm is based on establishing vector lengths equal to the number of elements. The com-
putational efficiency of the proposed algorithm is assessed on a Cray Y-MP supercomputer. It is shown that
the vector algorithm achieves scalar-to—vector speedup of 1.7 to 7.6 on three moderate sized inclastic prob-
lems.

Key words: vector algorithm; stiffness matrix; inelastic finite element analysis; cray Y-MP; supercomputer.

1. Introduction

Currently, the design of reinforced concrete shells is performed based on stresses obtained
from a linear elastic analysis and the reinforcing steel bars are provided according to pointwise
limit state behavior (Gupta 1984b, ACI 1989). General applicability of this design practice is
not yet established for reinforced concrete shells. Numerical simulations using computers have
been quite common in recent years as an alternative to expensive experiments (Hand et al.
1973, Lin and Scordelis 1975, Milford and Schnobrich 1984, Akbar and Gupta 1985, Min
and Gupta 1992). But the number and the size of the problems that could be studied have
been limited due to the computing resources of conventional scalar machines (Akbar and
Gupta 1985).

Introduction of supercomputers has brightened the prospects of solving many problems
that could not be solved a few years ago. To achieve the full potential of supercomputers, not
only do we need to reorganize the program structure, but also adopt alternate numerical algo-
rithms in conjunction with the machine architecture and the vector compiler for the target ma-
chine (Lambiotte 1975, Dongarra et al. 1984, Noor and Peters 1986, Hughes et al. 1987, Sil-
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vester 1988, Storaasli et al. 1989, Min and Gupta 1991, Golub and Ortega 1993). Currently
available supercomputers can be broadly categorized into two major groups: (1) vector com-
puters, which consist of a few very powerful pipelined vector processors, for example, Cray Y-
MP C90, IBM ES/9000, Alliant FX/Series, and Convex C-3 models, (2) massively parallel
processing (MPP) computers, which usually have hundreds or thousands of inexpensive proc-
essors, such as INTEL’s Paragon XP/S, NCUBE’s Ncube, MasPar’s MP line, Bolt, Beranek
and Newman’s BUTTERFLY, Thinking Machine’s Connection Machine, and Kendall Square
Research’s KSR1. In vector supercomputers the performance is achieved through utilizing
pipelined processors and vector optimization (Noor and Peters 1986, Silvester 1988, Min and
Gupta 1991). Coarse-grain parallelization can be implemented to improve the performance
further in machines that have a small number of processors (Hughes et al. 1987, Storaasli et
al. 1989, Lou and Friedman 1991, Foresti et al. 1993, Yagawa et al. 1993). For MPP comput-
ers the performance is achieved by fine-grain parallelization (Malone 1988, Farhat et al.
1990, Hutchinson et al. 1991).

In the present study, a finite element computer program for inelastic analysis of reinforced
concrete shells, originally developed by Akbar and Gupta (1985) for an IBM 3081 scalar com-
puter, was vectorized and implemented on a Cray Y-MP at the North Carolina Super-
computing Center (NCSCQ). Earlier (1991), we had developed vector algorithms for a computer
program for two—dimensional finite element analysis. We studied vector algorithms for four
basic modules, namely computation of element stiffness matrices, assembly of the global stiff-
ness matrix, solution of the system of linear simultaneous equations, and calculation of stress—
strains with an 8-node isoparametric element for linear elastic analysis. Out of four modules
the equation solver takes most of the computational effort in the analysis and consequently
needs to be optimized the most. But, by optimizing the rest of the program, we could achieve
an additional speedup of 10-40% from scalar to vector operations. In the case of nonlinear
analysis, the computation for the stiffness matrix and stress—strain modules is increased sub-
stantially due to the iterative nature of nonlinear analysis and additional calculations for
residual forces.

A vector algorithm for calculating the element stiffness matrices for uncracked and cracked
reinforced concrete shell elements is presented here. A four-node superparametric element
(Ahmad et al. 1970) is used. In the formulations presented here, we have retained the assump-
tion made by Akbar and Gupta (1985) that the bending stresses do not affect the cracking of
concrete and yielding of steel. This assumption was justified on the grounds that inplane—
membrane stresses govern the behavior of many shells, for which, this program was used.

2. Formulation of shell element stiffness matrix

A stiffness matrix formulation similar to that proposed by Gupta and Mohraz (1972) and
Gupta (1983) was used. The element stiffness matrix [£] consists of nn x nn submatrices [4;,]
of the order of 6x6 relating the forces at node / to the displacements at node 7, where nn is
the number of nodes in an element, and is 4 here. A submatrix [%4;;] can be separated into
two matrices, [4,,] for inplane stiffness, and [£g,] for transverse shear stiffness.

When the constitutive properties are constant on the surface of an element, the submatrix
[%p,] can be written as
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in which 7 is the thickness of the element and is assumed to be constant; E, E, E, E, Es
and E are the terms of the constitutive matrix for inplane concrete stresses, defined in the fol-

lowing equation
Oy E E, E, Ex (2)
Try sYm E; Yxw

where [0r 0y t7y]” and [ex €7 7y’ represent inplane stresses and strains with respect to
the orthogonal shell coordinates, x and ¥. For uncracked concrete elements, E; and E; are
zero. For the steel part, 67= Egozrez, 0r= Espyey, in which E is the Young’s modulus of
steel, and oy and py are the reinforcement ratios in the xr and ¥ directions, respectively.
Steel is assumed to be elastic and perfectly plastic. In the calculation of stiffness matrices, Eg
is assumed to remain constant even after ex or €y has exceeded the yield strains to avoid nu-
merical problems. Any overestimation of corresponding stresses is compensated by applying
appropriate residual forces.
The six p—matrices are defined below,

(61 = [ NexNox [0z 1 Dz ld A

[p.] = J—A (N;gN;z [zyjr[;r] +Ni,rNj,y[;r]T[zzr] YA A,

_ (N;gN;z+N; zN;g) [n2) [nz] :l
(1 = | [ Ny 2N (e e 1+ Dne VT ]) |40

(61 = [  Now N[y Tiz1d A, 3)

3 (N;.oN;. 2+ N; zN;.5) [0y [ny] }
1=, [ +NooN; o \[ng T e 1+ [nad 0ind) |40

[5 ]:f l: Ni,y'Nj,y[Er]T[iz']+Ni,rNj.y'[;_’lty']T[Er] JA
’ A +Ni.yNj.r[%r]T[7l;r]+Ni,rNj,r[7lzr]T[ﬂy'] ’

dA =|]|déd,

where N, s are the shape functions defined in terms of the local 1soparametric coordinates (£
7); | 7| the determinant of the Jacobian matrix for transformation between (x, ¥) and (&, 7)
coordinate systems; N,,» and N, partial derivatives of N, with respect to x and ¥, respecti-
vely (as in this case, a subscript followed by a comma anywhere in this paper denotes a partial
dertivative) ; and [ﬁr] and [Zg] the row vectors of the direction cosines of the orthogonal
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shell coordinates xr and ¥, respectively, wit}l> respect to the global Cartesian coordinates (x, ¥,
2). Another row vector of direction cosines [#z] is defined for a coordinate normal to the shell,
and is introduced later. Formulas for evaluating these direction cosines are straight forward
(Ahmad et al. 1970, Akbar and Gupta 1985), and are not presented here.

The submatrix [£s,] can be written as

2 2
Qa, 7, 4a,. qp 7, qb,.
ks Jos =Eh | " 2 | wpp| . (4)
2 2. 2 2y
7 9a, (l,l)Qa22 h‘]bzl (h)szz s
in which E; is transverse shear modulus, and submatrices [¢,] and [g,] are defined as
—qa“ 4a,, _ J’ |: N;zN;z [;Z'JT[%Z] N; zN; [%Z]T[;’;x] JA
| 9a,y day, 4 | NiN;zlnel'lnz]  N:N;[n2][nz] |
(5)

b, o, | _ [ NegNsglizl Diz] - NogN; Dezlliv] ]
| by Aoy, 4 | NiNsglng1'lnz] N:N; [ng] [ny] ’

In the original Akbar-Gupta program (1985), the transverse shear modulus parallel to the
cracks was assumed to be zero. The assumption, however, led to numerical instability (Min
and Gupta 1992). Any nonzero modulus would solve the numerical instability problem. We
did not expect the results to be sensitive to the actual value of the modulus used. Therefore,
we assumed the shear modulus to be the same in both transverse planes, parallel and perpen-
dicular to the crack direction. This assumption is implied in Equation (4).

3. Numerical integration

Integrations in Equations (3) and (5) are performed numerically by using appropriate selec-
tive Gaussian quadrature schemes. To avoid shear-locking, before cracking of concrete, the
stiffness terms related to €, and g are integrated using a 2x2 quadrature, and those related to
7w by a 1x1 quadrature (Pawsey and Clough 1971). Once the concrete element cracks, the
preceding selective integration scheme does not work because direct and shear stresses and
strains become coupled. Gupta and Akbar (1984a) proposed an alternative selective integra-
tion technique for the cracked concrete elements. They assumed that all the strains are con-
stant in a cracked element and calculated the stiffness matrix using a 1x1 quadrature. This
uniformly reduced integration scheme after cracking of concrete would lead to a singular stiff-
ness matrix. The problem of singularity is avoided by integrating the steel stiffness using a 2x2
quadrature. Before cracking, the stiffness terms related to ¥, and 7, are integrated using 1x2
and 2x1 quadratures, respectively (Pawsey and Clough 1971). A 1x1 quadrature is used after
concrete cracking (Akbar and Gupta 1985).
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4. Transformation

The above formulation is developed in terms of the global coordinates. Six degrees of free-
dom are assumed at each node, three translations and three rotations. However, the shell ele-
ment used here has only two rotational degrees of freedom, one each along the local shell coor-
dinates and x and ¥. That means that the element has zero rotational stiffness along the z—co-
ordinate. When the curvature at any node is either zero or very small, the global structural
stiffness matrix becomes singular. To avoid this singularity problem, we transform the three
global rotational degrees of freedom into two rotations at each node along the shell coordi-
nates .r and ¥. Thus, each node has five global degrees of freedom after the transformation.

The transformation matrix at any node can be partitioned into four submatrices as

= T, T _ [nsxs [O]axz _ 2'1 ?_'I
[T Jexs = I:TZI Tzz] = [[0]3X2 [Ts)se :l, [T2]= Zy Yy (6)

'rnZ y,z
where [I] and [0] represent identity and null matrices, respectively. After pre- and post—-multi-
plying the inplane stiffness submatrix given by Equation (1) with the transformation matrices,
we get

hLP] 0
[kPij ]st = O [Tzz]lT —?’[P] [T22]j . (7)
For transverse shear, [£s,] of Equation (4) can be similarly transformed into
L h[(]n] 2[012][T22]j
[kSi" ]SXS =& [ng]Z.T 2[021] [Tzzjj% [sz] [Tzz]j ’ (8)

where
l:(]ll 012] — qan+q”11 qalz+q’712
qu gz qazx+ql’21 qa22+4b22 :
5. Vector Algorithm

Vectorization is achieved by establishing vector lengths equal to the number of elements
whenever possible. All the p and g-matrices are independent of the constitutive properties.
The matrices are calculated once and stored. We use these matrices whenever we need to up-
date a stiffness matrix for new constitutive properties in an iteration.

There is a problem associated with keeping the vector length equal to the number of ele-
ments. As explained earlier, the quadrature used for the numerical integration of the stiffness
matrix changes after an element cracks. To avoid a complete scalar operation, we adopt a
modified scheme. First, a set of element stiffness matrices is calculated assuming that all the
elements are uncracked, making use of vector operations. Then, we update each cracked ele-
ment stiffness matrix using an index array pointing to the cracked elements by performing
scalar operations. As we would expect, the scheme works well when the structure develops a
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relatively small number of cracked elements.
The vector algorithm is summarized in Tables 1-5. Tables 1-4 show the vector algorithms
for stiffness matrix terms to be integrated using 2x2, I1x1, 1x2 and 2xl quadrature points,
respectively, and need to be computed only once, and not recalculated for each iteration.
Table 5 presents the vector algorithm for combining stiffness terms integrated using various
quadrature rules and for evaluating transformed stiffness matrices. Therefore, only the compu-
tational steps of Table 5 are repeated for each iteration with updated constitutive properties.

Table 1 Algorithm for stiffness matrix terms to be integrated using 2x2 quadrature points
Step Description Array sizes
1 Evaluate at each integration point, ; ., N;,, 2x(nn,4)
2*  Compute the elements of the Jacobian matrices J,x ,, ¥ .. x ,, ¥, (ne,4)
Compute the direction cosines, n = [nyrngnz)] (ne,9,ni)
ne=[r.,x,x,], ng=U,¥9,Y.;), nyr=[z,:242,]
3* Evaluate the determinant of the Jacobian and its inverse, | J |, U = 1/| J| 2x(ne)
Compute, N;.+ = U(N, U ,—N;,4,:), Nig=U(—=N;:x,+N; 2. 2x(ne,nn,ni)
4* Compute, w = |{J |- h (ne,ni)
For a 2 x 2 quadrature, a weight coefficient of unity is implied.
S5* Calculate; for i=1,nn; j=i,nn (ne,4nc)
': DN, DN, :| _ E[Ni,INJ,I Ni.rNj,zr}
DN3 DN4 Ni.y'Nj.I' Ni.y'Nj'y'
6* Compute the 21 upper triangular terms of the 6x6 matrix [nzng)’ [nzngl (ne,21,ni)
and store in the array T'T.
T* Compute p,, p, and p. to be used for uncracked elements.
(For any pair of nodes i,j for an element, the size of each p-array is 3x3. Due to
symmetry, we store only the 6 upper triangular terms for p, and p..)
p=p+DN TT(1,2,3,7,8,12) (ne,6nc)
p, = p.+DN:TT(4,5,6,9,10,11,13,14,15) (ne,9nc)
+DN, TT(4,9,13,5,10,14,6,11,15)
p.= p:+DN, TT(16,17,18,19,20,21) (ne,6nc)
All p-arrays are initialized before the operation.
ne = number of elements,
ni = number of integration points = 4,
nn = number of nodes in an element = 4,
nc = number of the upper triangular coefficients in an nn x nn matrix = nn(nn+1)/2 = 10,

*

Steps 2-7 are performed in a do loop on the integration points.
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Table 2 Algorithm for stiffness matrix terms to be integrated using 1x1 quadrature point
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Step Description Array sizes
8 Evaluate the integration point, N; ., N;,y 2x(nn)
9 Compute the elements of the Jacobian matrices J, x ,, ¥ ., x,, ¥ , (ne,4)
Compute the direction cosines, n = [nyngnz) (ne,9)
10 Evaluate the determinant of the Jacobian and its inverse, | J |, U = 1/| J| 2x(ne)
Compute, N;z=U(N;e¥,—N;2¥,e), Nig=U(—N;ex s +N;yx.) 2x(ne,nn)
Compute, NN = %(Ni_y, N;y) to be used for stiffness terms corresponding to (ne,2nn)
shear strain components in cracked elements.
11 Compute, w = |J| - (Wh), in which W is the quadrature weight coefficient and is (ne)
equal to 4.
12 Compute; for i=1,nn; j=i,nn (ne,4nc)
[DNs DNB:‘ _ [Ni.rNj,r Ni,rNj.zT]
DN7 DN8 Ni,y'Nj,I Ni:?NJ';F
Calculate; for i=1,nc; DN, = DN+ DN, (ne,nc)
13 Calculate, #iy = wlnzngl (ne,6)
Compute the 21 upper triangular terms of the integral of the 6x6 matrix (ne,21)
h;; [nzny] and store in the array PR
PR = i, [nzny]
14 Calculate ps to be used for Es term, (ne,9nc)
ps = DN; PR(16,17,18,17,19,20,18,20,21)
+DN; PR (4,9,13,5,10,14,6,11,15)
+DN; PR(4,5,6,9,10,11,13,14,15)
+DN; PR(1,2,3,2,7,8,3,8,12)
15 Compute the 27 terms of the integral of the 3x(3x3) matrix (ne,27)
— T T T . . .
wln, n., n, n., n,. n]and store in the array @S in row-wise vector
QS =wln, n,,n, n,,n, n,)
ne = number of elements,
nn = number of nodes in an element = 4,
nc = number of the upper triangular coefficients in an nn X nn matrix = nn(nn+1)/2 = 10.
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Table 3 Algorithm for stiffness matrix terms to be integrated using 1x2 quadrature points

Step Description Array sizes
16 Evaluate N,, N, ., N,,, at each integration point. 3x(nn,2)
17*  Compute the elements of the Jacobian matrices J, x ., ¥ ,, x ,, ¥ , (ne,4)
Compute the direction cosines, n = [nznz] (ne,6,ni)
nz= L E,x Eyy —Z—,z 1, nx= [;-x ;.y ;,z]
18* Evaluate the determinant of the Jacobian and its inverse, | J |, U = 1/| J | 2x(ne)
Compute, N, == U(N,;..¥,—N;,U.,.), (ne,nn,ni)
19¥ Compute, w = |J |- (Wh), in which W is the quadrature weight coefficient and is (ne,ni)
equal to 2.
20* Calculate; for i=1,nn; j=i,nn (ne,4nc)
[ DM, DM, } - l: N:.zN;x N;zN, ]
DM3 DM4 NiNj,f Nz‘Nj
21*  Compute the 21 upper triangular terms of the 6x6 matrix [nznz]” [nznz) (ne,21,ni)
and store in the array TR.
22*  Compute 9, > 4a,> 9, and Q,, to be used for uncracked elements. (Due to symme-
try, we store only the 6 upper triangular terms for ., and a,, J
Ao, = an+DM1 TR(1,2,3,7,8,12) (ne,6nc)
Qo = G, + 5 DM TR(4,5,69.10,11,13,14,15) (ne.9nc)
Gay = Qo+ DM, TR(49.13,5,10,14,6,11,15) (ne,9nc)
(ne,6nc¢)

Ga,, = €o, +7- DM TR(16,17,18,19.2021)

All g,—arrays are initialized before the operation.

ne = number of elements,
ni = number of integration points = 2,
nn = number of nodes in an element = 4,

nc = number of the upper triangular coefficients in an nn x nn matrix = nn(nn+1)/2 = 10,

*

Steps 17-22 are performed in a do loop on the integration points.
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Table 4 Algorithm for stiffness matrix terms to be integrated using 2x1 quadrature points

Step Description Array sizes
23 Evaluate N;, N; ., N;,, at each integration point 3x(nn,2)
24*  Compute the elements of the Jacobian matrices J, x ., ¥ ., x . ¥, (ne,4)
Compute the direction cosines, n = [nzng] (ne,6,ni)
ny=[z,2z,2.1, ng=¥_9.,¥,_]
25%  Evaluate the determinant of the Jacobian and its inverse, | J |, U = 1/] J| 2x(ne)
Compute, N; 7= U(-N;,: x »+N; 72.¢) (ne,nn,ni)
26* Compute, w = | J| - (Wh), in which W is the quadrature weight coefficient and is (ne,ni)
equal to 2.
27*  Calculate; for i=1,nn; j=i,nn ‘ (ne,4nc)
[DMs DM; ] _ E[Ni,yNj.g N; gN; :I
DM, DM, N.N; z» NN,
28*  Compute the 21 upper triangular terms of the 6x6 matrix [nzny]" [nzngl (ne,21,ni)
and store in the array TR.
29*  Compute Q> o, Do, and a,,, to be used for uncracked elements. (Due to symine-
try, we store only the 6 upper triangular terms for s, and s, )
aQ, = q,,H+DM5 TR(1,2,3,7,8,12) (ne,6bnc)
Qp, = qblz+%DMs TR(4,5,6,9,10,11,13,14,15) (ne,9nc)
_ 2 (ne,9nc)
a5, = qb21+7{DM7 TR(4,9,13,5,10,14,6,11,15)
@5, = @, + 7 DM, TR(16,17,18,19.20,21) (ne,6nc)
All g,—arrays are initialized before the operation.
30 Sum g, and q,, to form g vectors for uncracked element,
9 =0Q., T, Q= 0,70, (ne,6nc), (ne,9nc)
9 = Qo T s, s G2 = Ao, 1, (ne,9nc), (ne,6nc)
ne = number of elements,
ni = number of integration points = 2,
nn = number of nodes in an element = 4, _
nc = number of the upper triangular coefficients in an nn X nn matrix = nn(nn+1)/2 = 10,

*

Steps 24-29 are performed in a do loop on the integration points.
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Table 5 Algorithm for combining stiffness terms integrated using various quadrature rules and for evaluat-

ing transformed stiffness matrices

Step Description

Array sizes

Elements of the submatrix [k;;] are stored in the following order

(1

7

(k] = | CRodn [hide | _ 13
“ (Aol [kisle 19
25

L 31

31 Compute the concrete contributions (2x2 quadrature) to the terms of the [, 1.

matrix assuming elements to be uncracked; for i=1,nn; j=i,nn

2
8
14

20
26
32

3
9
15

21
27
33

4
10
16

22
28
34

5
11
17

23
29
35

6
12
18

24
30

36

El pl( 132a3a2,4,5a35596)

k,,(1,2,3,7,89,13,14,15) = {+Ezpz( 1,2,3,4,5,6,7,8,9)
+E.p(1,2,3,2,4,5,3,5,6)

32# Re-calculate the concrete contributions (1x1 quadrature) for cracked elements; for i

=1,nn; j=i,nn
kp,(1,2,3,7,8,9,13,14,15)

= (E\ DN;+E; DN;) PR(1,2,3,2,7,8,3,8,12)

+(E, DNs+E; DNs+E; DN;:) PR(4,5,6,9,10,11,13,14,15)
+(E. DN:+E; DNs+E; DN;) PR(4,9,13,5,10,14,6,11,15)
+(E. DNs+E;, DN;) PR(16,17,18,17,19,20,18,20,21)

33 Include the steel contributions (2x2 quadrature) and Es concrete terms (1x1 quadra-

ture); for i=1,nn; j=i,nn

k., (1,2,3,7,8,9,13,14,15) =

34 Compute [k, ] assuming elements to be uncracked; for i=1,nn; j=i,nn

k, (1,2,3,7,89,13,14,15)
+E+pi(1,2,3,2,4,5,3,5,6)
+Eyp(1,2,3,2,45,3,5,6)
+E; ps(1,2,3,4,5,6,7,8,9)

k, (1,2,3,7,8,9,13,14,15) = E: q.:(1,2,3,2,4,5,3,5,6)

k

Sy

35# Re-calculate [k, ] for cracked elements; i=1,nn; j=i,nn

(4’5,6)1051 1312,16sl7>18) - E7 (112( 1327374’576,7a8’9)
kg, (19,20,21,25,26,27,31,32,33) = E;¢q.(1,2,3,4,5,6,7,8,9)
kg (22,23,24,28,29,30,34,35,36) = E:qgx(1,2,3,2,4,5,3,5,6)

(ne,9nc)

(9nc)

(ne,9nc)

(ne,4x9,nc)

(4x9,n¢)
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k., (1,2,3,7,8,9,13,14,15)
= E(DN,+DN,) QS(19,20,21,22,23,24,25,26,27)
B, (4,5,6,10,11,12,16,17,18)

_2, { NN(i) QS(1,4,7,2,5,8,3,6,9)
7T+ NN(i+4) @S(10,13,16,11,14,17,12,15,18)

k,,(19,20,21,25,26,27,31,32,33)

_2p { NN(;) @8(1,2,3,4,5,6,7,8,9)
TRl +NN(+4) QS(10,11,12,13,14,15,16,17,18)

k (22,23,24,28,29,30,34,35,36)

_E { PR(1,2,3,2,7,8,3,8,12)
~ 4n* | +PR(16,17,18,17,19,20,18,20,21)

36 Sum [k, ] and [k, ], to form (6x6) x nc element stiffness matrices;
for i=1,nn; j=i,nn
kg, (1,2,3,7,8,9,13,14,15)
=k, (1,2,3,7,8,9,13,14,15)
+ &, ( 1,2,3,7,8,9,13,14,15)

k. (22,23,24,28,29,30,34,35,36)
= k,,(22,23,24,28,29,30,34,35,36)
+ Tk, (22,23,2428,29,30,34,35,36)

37 Perform transformation to obtain (5x5) x nc element stiffness matrices.
The transformed [&,,] is stored as

1 2 3 4 5

6 7 8 910

[F]z[[E]n [E]u]z 11 12 13 14 15
v [kij]Zl [kij]ZZ

16 17 18 19 20

21 22 23 24 25

The transformation matrix* at node i is stored as

Z: Y
r.]= E,y g.y =
‘r-Z y)Z

For i=1,nn; j=i,nn

wh U pea
[« 0 SN O]

135

(ne,ns)

(ne,6,nn)
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k;;(1,2,3,6,7,8,11,12,13) = B

S

,(1,2,3,7,8,9,13,14,15)

k., (4,4,10,10,16,16) T,(1,2,1,2,1,2)
k.;(4,5,9,10,14,15) :{ +hg, (5,511,11,17,17)  T,(3,4,3,4,3,4)

+hg,(6,6,12,12,18,18) T,(5,6,5.6,5,6)

T.(1,1,1,2,2,2) & (19,20,21,19,20,21)
k;;(16,17,18,21,22,23) ={ +743,3,3.4.4,4) kg (25,26,27,25,26,27)
+7.(5,5,5,6,6,6) k&, (31,32,33,31,32,33)

Compute a temporary matrix TM,
T:(1,1,1,22,2) kg, (22,23,24,22,2324) (ne,6)
{+Ti(3,3,3,4,4,4) k. (28,29,30,28,29,30)

+T,(5,5,5,6,6,6) kg (34,3536,34,35,36)

T™ =

TM(1,1,44) T,(1,2,12)
k;;(19,20,24,25) :{ +TM(2,2,5,5) T;(3,4,3,4)
+TM(3,3,6,6) T,;(5,6,5,6)

ne = number of elements,

nn = number of nodes in an element = 4,

nc = number of the upper triangular coefficients in an nn x nn matrix = nn(nn+1)/2 = 10,

ns = total number of the upper triangular blocks of coefficients in an nn x nn transformed matrix = nc x

(5x5) = 250.

#  Steps 32 and 35 are performed on the cracked element by an index array.

*  The nodal transformation matrices are computed only once. (Rest of the steps in the table are repeat-
ed for each iteration.)

6. Performance evaluation of the algorithm

To measure the efficiency of the algorithm presented in this paper, two structures, a
hyperbolic paraboloid (HP) saddle shell and a hyperbolic cooling tower, are used. The HP sad-
dle shell is discretized into two models and the hyperbolic cooling tower is discretized into one
model with a varying number of elements to measure the effect of the size of the problem on
the efficiency of the algorithm. A summary of the three models is given in Table 6.

Cray Y-MP computers have the capability to automatically optimize and vectorize a com-
puter program written for scalar machines. This can be accomplished either using the ‘full’ or
the ‘novector’—option (Cray SR-0018 C). The speedup with the full-option is usually greater
than that with the novector-option. However, the full-option often gives erroneous results, as
was the case when we ran the Akbar—Gupta program. We were able to implement the program
successfully with the novector-option. Without any vector programming on our part, the use
of the novector-option alone speeded up the CPU time for the HP saddle shell model S16 by
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Table 6 Parameters of the models

HP saddle shell Cooling Tower
Model S16 S32 C24
Number of elements 89 305 432
Number of nodes 133 389 475

a factor of 3.8 for the solution of the complete problem (not the evaluation of the stiffness ma-
trix alone).

Because of the greater reliability of the novector-option over the full-option for automatic
vectorization and optimization of a scalar program, we are using the novector-option as the
basis for the scalar program to measure speedup due to vectorization of the algorithm. The
version of the program specifically vectorized for the Cray Y-MP machine runs successfully
with the full-option, which is used here.

Table 7 summarizes the CPU times taken in the calculations of stiffness matrices using the
original Akbar-Gupta program and our program that employs the proposed algorithm, for the
three models listed in Table 6. The CPU times given in Table 7 do not include the portion of
the time taken to perform the calculations outlined in Tables 1-4. Because those calculations
are performed only once, and those in Table 5 are repeated for each iteration, the former are
insignificant.

Table 7 Comparison of the performance of the scalar algorithm and the present vector al-
gorithm for element stiffness calculation

CPU time (seconds)**

Model Iterations* Speedup***
Scalar Vector
S16 265 4.3 2.5 1.7
S32 493 19.2 6.1 3.1
C24 436 72.9 9.6 7.6

*  Total number of iterations for inelastic analysis.

**  Time was measured using CPU timer SECOND function of the Cray Math library
(Cray SR-2081 6.0).

*** Speedup = scalar/vector

For the three models, the speedup due to the vectorization of the stiffness matrix algorithm
ranges from 1.7 to 7.6. It is observed that the speedup is greater for models with a greater
number of elements which determines the vector length. As one would expect, the number of
cracked elements also has a strong influence on the speedup. The speedup for the saddle shell
model S32 with 305 elements is only 3.1 as compared to the cooling tower model with 432 el-
ements for which the speedup is 7.6. Thus, the cooling tower model with only 40% more ele-
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ments than the saddle shell model, has a speedup that is 2.5 times that for the saddle sheli
model. The obvious reason is that the proportion of the number of cracked elements in the
saddle shell model is much greater than that for the cooling tower model (Min and Gupta
1992),

7. Conclusion

A vector algorithm for calculating the stiffness matrices of uncracked and cracked rein-
forced concrete shell elements is presented. The algorithm is based on establishing vector
lengths equal to the number of elements assuming that all the elements are uncracked. The
stiffness matrices of the cracked elements are calculated separately. The computational effi-
ciency of the proposed algorithm is assessed on a Cray Y-MP supercomputer and shows scalar
~to—vector speedup of 1.7 to 7.6 on three moderate sized inelastic problems. As the number of
elements increases and the number of cracked elements decreases, the speedup increases.
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