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Buckling of post-tensioned composite beams

M.A. Bradford t

Department of Structural Engineering, The University of New South Wales, Kensington, Austratia

Abstract. A method for computing the elastic buckling prestressing force of a post-tensioned composite steel
—concrete tee-beam is presented. The method is based on a virtual work formulation, and incorporates the
restraint provided by the concrete slab to the buckling displacements of the steel beam. The distortional
buckling solutions are shown to be given by a quadratic equation. The application of the analysis to calculat-
ing buckling strengths is given, based on codified rules for beam-columns. Conclusions are then drawn on
the importance of distortional buckling when a post-tensioned composite beam is stressed during jacking.
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1. Introduction

Existing composite stecl-concrete tee-beams may have their strength and stiffness en-
hanced by the provision of a prestressing cable close to the bottom flange, as shown in Fig. 1.
Such structural systems, particularly for bridges, have become quite popular in the U.S. and in
Eastern Europe.
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If the limit state under sagging bending is first yield of the bottom flange, the introduction
of a prestressing force delays the onset of plastification. The additional load that may be car-
ried has been quantified by Bradford (1991a). Performing the stressing operation in the
absence of live loading may induce large compressive stresses in the bottom flange of the steel
beam, so that stability considerations are of consequence. '

Since the concrete slab restrains the top flange of the steel, lateral deflection and twist of
the bottom flange is prevented only by the stiffness of the web. Because of this, the buckling
mode must necessarily be lateral-distortional (Bradford and Trahair 1981), in which the web
distorts in cross—section. The possibility of instability of the bottom flange, as depicted in Fig.
2, was alluded to in an extensive study by the ASCE (1968) and in a recent book by Troitsky
(1990). In both cases, it was suggested that recourse be made to the approximate methods of
Bleich (1952).

Fig. 2 Lateral-Distortional Buckle

Although studies of lateral-distortional buckling have been relatively extensive (Bradford
1992), the problem of instability under prestress does not appear to have been fully
researched, apart from recent approximate studies by the author (Bradford 1991a, b). This
paper presents an accurate analysis of the elastic distortional buckling of a composite tee-
beam during jacking caused by a tendon of constant eccentricity. Conservatively, dead load is
ignored, and all stress in the steel section is assumed to be caused by the prestressing force P.
The elastic buckling load is used to calculate a strength, and recommendations are made re-
garding the influence of post-tensioning on the stability of the bottom flange of the steel
beam,



Buckling of post—tensioned composite beams 115

2. Buckling theory
2.1. Displacements

Figure 2 shows the buckling mode for the steel beam under prestress. The shear connection
restrains the top flange from deflection and twist, while the bottom flange, because of its rela-
tive stockiness, is assumed to twist and displace as a rigid body. Moreover, the flexural dis-
placements of the thin web are assumed to follow a cubic curve in cross-section.

Since the beam is subjected to uniform bending and compression during prestress, its buck-
ling eigenmode is a sine curve (Timoshenko and Gere 1961). Hence the displacements u, ¢ of
the bottom flange-web junction can be written in terms of the degrees of freedom (g, ¢.)" as

{Z}:{gl}smﬁ%{ (1)

where L is the length between attachment of the tendons and # is a positive integer represent-
ing the harmonic number.

The cubic variation of web flexural displacements z, which satisfies the end conditions of
restraint at y=0 is

o =% 0" } sin =7 (2)
where
7= (3)

and {a,, @) are polynomial coefficients.
By noting that u,=wu and 0u,/0y =—¢ at 7 =1, the polynomial coefficients may be express-
ed as

ad=l2 i lia g

or
[of=tc1]"] (5)
2.2. Virtual work formulation

Invoking the principle of virtual work (Hall and Kabaila 1986) produces
SUr+8U++8Uw—8W =0 (6)
where [/, is the strain energy stored due to flange flexure; U/, is the strain energy stored due

to flange twist; {J,, is the strain energy stored due to web plate flexure and twist; and W is the
work donc by the stresses induced by prestress during buckling. Expressions for the variations
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of these quantitics with respect to the degrees of freedom are derived subsequently.
2.3. Strain energies
The term {/,. in Eq. 6 may be written as
1 . Lo
Uy = E, f 'Y dz
1]

where primes denote differentiation with respect to z, and where

_EbY,
T~

Kl

Substituting Eq. 1 into Eq. 7 produces
| n'm'El, 0
SUp == 8q)" 21 {g}
- 0 0

where {¢g}={(q., ¢-)"
Similarly, the term {/; in Eq. 6 may be expressed as

Lo
Ur =5 G, f @y dz
where

. Gbt '
(’]f = 3f

and ;= the shear modulus of clasticity. Hence substituting Eq. | into Eq. 10 gives

| o0
(‘}(/,, =5 {(3(/}1 0 ”iﬂ“‘("]f {(/}

21.
Finally, the term {/, in Eq. 6 may be written as (Bradford 1988)
1 1 h .
l]u?ZTJ j {d‘}[ {E} (141/ dz
< 0 ]

where {e} -=the vector of infinitesimal buckling strams given by

o) (D e 0
S N R R P Yo

and {o"} is the vector of infinitesimal buckling stresses given by
{a"y (D]}

where the plane stress—bending property mateix [1] 1s (Cheung 1976)

(7

(8)

(9)

(10)

(1)

(13)

(14)
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1 » 0
kY, v 10
DY =302 [ (16)
00 15"

Hence substituting Eqs. 2, 14, 15 and 16 into Eq. 13 produces

o 1 E T T /‘?'wll kwlz -
- —_— C 17
oUw =5 21— ){ dq}" [C] [ b, sz} (C1 {4} (17)

where
_ 2L | 2o on'n'h | 4n'm(1—v) 18
T A T\ VA V7 5 (%)
o 2l oy o | 202 o

b = b = e 2 L Sl w
_ 6L  6un'm  n'm'h | 9nm(l—v) 20
I L 7y SR V') AU 77 5 (20)

2.4. Work done

The term W in Eq. 6 can be written as (Bradford 1988)

ow =3 o[ () (5 ) () (6 )+ (B2 () azan
where A is the area of the steel bcam and the flange vertical displacement v 1s
v =xd (22)

In calculating the stress o, it i1s assumed that the cccentric prestress causes tensile stresses
in the concrete, so that the effect of the latter in carrying load may be ignored. By denoting o ;
as the stress in the top flange of the steel, and by treating compressive stresses as positive, the
concrete slab will be subjected to tension when

P Pch
or =4 27, <0 (23)
producing the condition
21
<= A (24)

where A is the arca of the steel beam and 7, is its sccond moment of arca about the beam’s
centroid. Equation 24 is not particularly restrictive on ¢, as the prestressing strand tends to be
placed towards the bottom flange of the steel beam.

The second term in the integrand in Eg. 21 becomes
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Wbl op ]
d0 u du 1o |57 0
f fl)( 0z >( >(14(/A - 2 {Oq} \: 2({‘ 0 {(I}
while similgrly the third term becomes
0 0 ]
RING SIE A TR T P
247, |
where
_ P | Peh
05 =74 T 3L

Finally, nothing that ¢ in the web is given by
0 =07 +n(0p—07)

the first term in Eq. 21 becomes

S ol Be) ()= dwrer | | 1w

where

Buw11 :T

Bwi2 = Buz1 ~ YA

Bup2 — T

2.5. Buckling solution

(25)

(26)

(27

(28)

(29)

(30)

(31)

(32)

By noting that ¢, and 65 in Egs. 25, 26, and 30 to 32 are proportional to P, the virtual

work equation Eq. 6 becomes

{6q}" (Lk1—Flgl) (a} =0

(33)

where [£] and [g] are the stiffness and stability matrices of the beam respectively. Since the

variations {d¢} in Eq. 33 are arbitrary,
([k1=PLe]) {4} = {0}
so that for nontrivial buckling displacements {4},

| Le]=Plgll=0

(34)

(35)

Since [£] and [g] in Eq. 35 are of order two. the latter eigenproblem reduces to a quadratic
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in P. Although it is theorctically possible to obtain explicit expressions for 4;, and g;; in Eq.
35, the pre—and post—-multiplication by [C] in Eqgs. 17 and 29 is cumbersome, and was per-
formed by computer.

Once the terms in [£] and [¢] have been assembled, Eq. 35 reduces to

PZ(EII gzz‘-gﬁ) + P(zklzglz_kngz:‘—kzzgu) + (kllkzz—/?i%) =0 (36)

The quadratic in Eq. 36 was solved on a microcomputer to obtain the elastic critical pre-
stressing force P,,.

3. Design for strength

The Australian limit states structures code AS4100 (SA 1990) provides a useful means by
which the strength of a composite beam under prestress may be obtained. According to this
code, the limit state of out—of-plane buckling in the absence of load and capacity reduction
factors is

MgM,,I(l—NﬂC) (37)

where M is the applied moment, amplified according to the “P-8 effect™; N is the applied axi-
al force; M, is the bending strength incorporating out—of-plane buckling and N, is the col-
umn strength about the minor axis. It has been shown (Bradford 1991a) that the P-¢6 effect is
small for typical composite beams so that M can be taken as Pe and N as P, where P is the
applied prestressing force.

If the composite beam buckles elastically at P., which is the lowest root of Eq. 36, then ac-
cording to the AS4100 and the method of “design by buckling analysis” (Trahair and Bradford

1988)
1
2 7
My = o.s”(}%"e) + 3] . P]Z”e }Mp (38)
and
1
| 1+(+7) P, /Ny 1+(1+7") P, I Ny \2 P, \2
Nc‘{ 2 (( 2 J - %) }NY 9

where the imperfection parameter 7 is

”v/Pc,

7" = 0.00326 ( ~135) >0 (40)

in which M, is the plastic moment and Ny is the squash load of the steel beam.

If A represents the strength load factor under a given prestressing force P, then substituting
Eqs. 38 to 40 into Eq. 37 produces

AP(,»:M,,I(I—J—E)

N, (41)
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so that the strength load factor can be obtained from

/1 — M[).l‘ _
T Ple+ My /N (42)

Of course, the elastic critical prestressing force £, obtained from Eq. 36 must be used to cal-
culate M, and N,.
4. Elastic buckling loads

The elastic lateral-torsional buckling load B, of the prestressed beam treated as a beam—
column is the root of the cquation (Trahair and Bradford 1988)

Poi' ¢ _ _ [)()c _ &Q
roNLN, ( L=N, > ( =N, ) (43)
where
= (44)
:E]
Ny = (45)

is the Euler buckling load and

_ (}]> ( 7r3EIw>
Ne= AR (46)
is the torsional buckling load, in which the warping constant 7, is
L

Equation 36 was solved for the elastic critical prestressing force £, of the beams, and the
normalised buckling loads P.,/P,. are plotted in Figs. 3 and 4 as a function of the dimension-
less prestress eccentricity /4. In these figures, the lowest harmonic (» =1) was used. It can be
seen from Fig. 3 that for the more stocky flange (/2 =0.1) the distortional buckling load is ap-
proximately twice that considering the steel as an eccentrically loaded beam—column. This is
because the unrestrained beam—-column is allowed to twist during buckling, while the compos-
ite beam has the twist of its bottom flange restrained only by the flexibility of the web. For
the more slender flange in Fig. 4 (b//=0.2), the value of P, is approximately equal to P,.,
indicating that web distortion is less significant.

5. Buckling strength

As an example of application ol the buckling solution, a composite beam was considered 1o
be prestressed with two tendons at an cceentrictty ¢/ ol 0.4, The stress—strain curve for the
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typical 7-wire prestressing strand used 1s taken from Gilbert and Mickleborough (1990) and
shown in Fig. 5. The arca of cach strand 1s A, =100m m".
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Figure 6 shows the strength

strained length ratio L/4 of 5,

stress.
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load factor A, obtained from Eq. 42, as a function of the stress
in the prestressing strand for two different beam geometries. Curves are given for an unre-
10 and 15. It can be seen that the strength load factor A drops
well below unity when L/h=15, except for very low prestressing stresses. In order to avoid an
instability failure, it is thus necessary to place fairly stringent restrictions on the attachment of
the tendon to the steel section when the tendon 1s stressed up to the order of half of its proof
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6. Conclusions

Based on the principle of virtual work, a quadratic equation was derived to calculate the
elastic critical prestressing force to cause instability of a post-tensioned composite beam.
Although the solution may be presented explicitly, a computer was deployed to perform the
cumbersome numerical manipulations.

The method by which the procedure of “design by buckling analysis” may be used to pro-
duce a buckling strength from the elastic buckling solutions was presented. It was shown that
for a typical fabricated composite beam, the buckling load factor may drop below unity for
moderate strand stresses. Designers should therefore give consideration to the spacing of the
attachments of the tendon to the steel beam during the jacking operation.
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