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Modelling the dynamic response of railway track
to wheel/rail impact loading
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Abstract. This paper describes the formulation and application of a dynamic model for a conventional rail
track subjected to arbitary loading functions that simulate wheel/rail impact forces. The rail track is idealized
as a periodic elastically coupled beam system resting on a Winkler foundation. Modal parameters of the
track structure are first obtained from the natural vibration characteristics of the beam system, which is
discretized into a periodic assembly of a specially-constructed track element and a single beam element char-
acterized by their exact dynamic stiffness matrices. An equivalent frequency-dependent spring coefficient
representing the resilient, flexural and inertial characteristics of the rail support components is introduced to
reduce the degrees of freedom of the track element. The forced vibration equations of motion of the track
subjected to a series of loading functions are then formulated by using beam bending theories and are re-
duced to second order ordinary differential equations through the use of mode summation with non-propor-
tional modal damping. Numerical examples for the dynamic responses of a typical track are presented, and
the solutions resulting from different rail/tie beam theories are compared.
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1. Introduction

The structural configuration of a conventional railway track appears to be relatively simple:
two parallel rail beams resting on regularly spaced cross—track ties through elastic fastening
mechanisms and/or resilient pads. The dynamic analysis of the track system, however, is a
considerably difficult subject. Conventional studies of rail track dynamics simplified the inter-
connected track/beam system as merely a Bernoulli-Euler type beam(rail) on an elastic
(Winkler type) foundation, or BOEF (Kenney 1954, Fryba 1972, Kerr 1972, Patil 1988, Duffy
1990). Research on the vibration of periodic multi-span beams on discrete elastic supports,
which may be used to approximate rail track structures has been reported extensively in the
literature (Mead and Yaman 1991, Lewandowski 1991, Munjal and Heckl 1982). The use-
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fulness of these methods in dealing with general railway track dynamics is limited since they
usually consider simple regular loading patterns characterized by a point harmonic force. Dy-
namic forces on a conventional railway track caused by abnormal wheel/rail impacts due to,
for example, wheel flats, rail joints, etc., are usually highly impulsive with short durations and
high frequency components. Solutions that are of interest to a track engineer, such as dynamic
rail stresses/strains, rail seat forces, and stresses/strains in the ballast/subgrade, cannot be read-
ily obtained from these approaches. Furthermore, these methods do not consider the case
where a transverse member acts, through elastic coupling elements, as a flexural sub-compo-
nent supporting the beam, such as a cross—track tie (both the flexural and inertial effect) in the
rail track/beam system. The discrete nature of the rail support sub~components and the flexur-
al effects of the tie beams have been included in track modelling by only a limited number of
authors (Ono and Yamada 1989, Clark et al. 1982, Grassie and Cox 1984) where only the
Bernoulli-Euler theory may be used to describe the rail. The Timoshenko beam theory has
previously been used to describe the rail only when the track substructure components are
modelled as a continuous layer(s) of elastic foundation (Grassie 1984).

This paper presents an improved method to model the track/beam system where all the
track components are more realistically represented and the applied loading function can be
arbitrary. Both the Timoshenko beam theory and the Bernoulli-Euler (or simple) beam theory
can be used to describe the rail/tie structures as flexible beams while the rail is discretely cou-
pled to the ties. The physical modelling technique adopted herein follows a similar but modi-
fied procedure to that used by Clark et al. 1982, who represented the rail/tic members as Ber-
noulli-Euler type beams with proportional modal damping subjected to a single mass/spring
system as the excitation source. The excitation input considered in the present study, however,
consists of a single or a series of deterministic forcing functions representing dynamic wheel/
rail impact loads.

Although the track in reality is subjected to moving wheel loads, the use of a deterministic
stationary impact function as an excitation source to the track system nevertheless provides
valuable insight into the characteristics of rail track dynamic responses under wheel/rail im-
pact loading. For example, a wheel flat or a rail joint creates a distinct wheel/rail impact force
with a short duration which can be described by a given force-time relationship. It has partic-
ular application in evaluating existing static methods (AREA 1991) for analyzing track
responses under a pseudo—dynamic force (which is equal to the static wheel load multiplied by
an empirical dynamic factor). This has been demonstrated by the frequent use of drop—weight
tests where sharp impact force is produced by a weight falling on the rail to simulate wheel/
rail impact loads (Igwemezie et al. 1993, Scott and Charenko 1985, Dean et al. 1982, Cannon
and Sharpe 1981). The moving dynamic wheel/rail interaction problem belongs to a different
category of rail track dynamics and has been addressed elsewhere (Raymond and Cai 1993,
Cai and Raymond 1992).

2. Model description

The idealized rail track/beam system is illustrated in Fig. 1. The vertical dynamic track
model considers a conventional ballasted tic track where both the rail and the tie may be de-
scribed by either the Bernoulli-Euler beam theory, or the Timoshenko beam theory. The rail
beam is assumed to be periodically coupled at discrete points to the cross—track tie beams
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through the coupling spring/damper elements representing the resilience and damping of the
rail pads and rail-fastening mechanisms. In addition, an axial force in the rail beam is includ-
ed to simulate thermal forces. To consider concrete tie beams that have deeper shoulder sec-
tions, the tie beam can be non-uniform as shown in Fig. 1.b. The distributed spring/damper
constants beneath each tie represent the elasticity and damping effect of the track foundation
(ballast and subgrade). To account for uneven ballast/subgrade compaction efforts across the
track, the distributed stiffness/damping coefficient beneath the center portion of the tie beam
may be assumed to be different from (always lower than) that beneath the two end segments
of the tie.

v
Fit)
o 7 i

) === ! —————|_RAIL BEAM
| | L1, kG m,
TIE bty
£ TRACKBED
5 . oG WINKLER TYPE

(a) Longitudinal view

¥ RAIL BEAM

TIE BEAM:
I hAGy, my
k,.c, (TRACK BED)

(b) Transverse(CROSS~-TRACK) view

Fig. 1 Idealized Vertical Rail Track Vibration Model

3. Natural vibration analysis of track/beam system
3.1. Formulation of generalized track element

One distinct structural feature of a rail track is its periodic chain-type configuration. To
obtain solutions to the fundamental vibration characteristics of the track model shown in Fig.
1, a generalized track element, as illustrated in Fig. 2.a, is devised. It is an assembly of a rail
span and the two corresponding substructure units that include the rail/tie contact stiffness ele-
ments (rail pads+rail fastening units), two adjacent tic beams, and the two arrays of track
foundation springs beneath the ties. To reduce the degrees of freedom involved in the track el-
ement, the resilient, flexural, and inertial effects of the substructure components are represent-
ed by an equivalent spring stiffness at each end of the rail span, as seen in Fig. 2.b. Thus, the
generalized track element is simplified to a uniform rail beam segment supported at the two
ends by two identical general spring coefficients K,. The equivalent spring coefficient depends
on the elastic and inertial characteristics of the rail support components, as well as the vibra-
tion frequency, 2, of the entire track. Its expression is given as follows:
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where %, is'the rail/tic contact stiffness; z, is the #‘* mode of the tie as an individual free
beam on an elastic foundation; d, is the length of tie outside the track gauge;, w, is the un-
damped natural frequency of the individual free tie and; M,, is the corresponding generalized
modal mass. The summation term in the denominator of the above relationship is in terms of
either only symmetrical modes, or only asymmetrical modes. Eqn. (1) is derived (The proce-
dure is omitted here) by applying the method of modal analysis to a rail substructure unit (see
Fig. 2). This expression applies whether the tie is described by the Bernoulli~Euler theory, or
by the Timoshenko theory. Note that system damping is ignored for the mnatural vibration
analysis.
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Fig. 2 Formulation of Generalized Track Element

Combining the above defined spring coefficient with the exact dynamic stiffness matrix
(EDSM) of the rail span, the dynamic stiffness matrix of the generalized track element is for-
mulated:

kll+ke klz kl:x ku
kZI kzz kZ‘J n kz4
k:ﬂ k:xz k:s:x+Ke k:;4 (2)
ku ku k“ k’44

[K, 1=

Each element 4;; is a transcendental function of the undamped frequency £2 of the track. The
expressions of k;; are well documented in the literature for both the Bernoulli-Euler beam
(Paz 1985) and the Timoshenko beam (Chen 1987, Capron and Williams 1988).

Thus, the entire track structure is idealized to a continuous assembly of the generalized
track clement and the adjacent single rail span element (Fig. 2.c) in a periodic manner.
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3.2. Determination of natural frequencies and nodal displacements

The natural frequencies and vibrational modes of the track are determined by formulating
its overall dynamic stiffness matrix. The system characteristic eigenfunction of the track then
becomes:

| Kp (2)| =0 3)

where [K (2)] represents the global dynamic stiffness matrix, which is an assembly of the dy-
namic stiffness matrices of the generalized track elements (Fig. 2.b) and the single beam ele-
ments (Fig. 2.c). Obviously, only a limited extension of the track can be taken when formulat-
ing the global matrix [K; (£2)]. The solution procedure of Eqn. (3) follows an algorithm simi-
lar to that developed by Wittrick and Williams (1971) and Williams and Kennedy (1988).

The n'” solution, 2, of Eqn. (3) is now substituted into the following singular equation:

[Kr (2] {dre} =0 4)

to obtain the eigenvector of the %'” mode, i.e., {drn}=[Win, @ 1ps Wan, @op.*s Wan, Onnl’,
where subscript NV is the total number of ties accounted for in formulating [K({2)}. The non-
trivial solution of Eqn. (4) is achieved by using the Gaussian elimination method (with maxi-
mum pivoting), with the assignment of unity rotation angle to any arbitrary node (except the
two end nodes and the center node).

3.3. Natural modes of rail

Once the /*” subvector of {dga}, i.e., {drnti =[Wins @ins Wisiin, @ivrnl’, is determined,
the mode shape function of the ‘" rail span is obtained by solving the following ordinary dif-
ferential equations that govern the natural vibration of the /" rail beam segment, with {Jg,);
=[Wins @ins Wis1.ns Piv1..]" applied as the boundary condition at the two end nodes.

If the rail is described by the Bernoulli-Euler beam theory:

(4) Pa 7 mT“Qé —_
W@+ i )W —( 25 )W @ = 0 (5)
If the rail is described by the Timoshenko beam theory:
W)+ (L2 ) W, (@)= 0, 1) = 0 (6.2)
14 r rz'Q;fl - AGT +PZZ AG,- ’
R )0+ (Sp = ) Wit = 0 (6.b)

where W, (x), @ ,(x) are the »'* modal deflection and rotation angle of the rail; EJ, is the flex-
ural rigidity; « AG, is the shear rigidity (where % is the Timoshenko shear coefficient), e, is
the mass per unit length of rail; », is the radius of gyration of the rail beam cross—section and;
P, is the axial force existing in the rail. Solutions of the modal shape functions, W, (x) and @,,
(x), from the above equations have been given by Chen (1987).
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3.4. Natural modes of tie

Having determined from Eqn. (4) the nodal deflection of the rail, W,,,, atop the *” tie, the
corresponding rail/tie contact force (or rail seat force), f;,(f), may be expressed as:

Finlt) = Kon Wip 0?9 (7)

where K,, is the equivalent frequency-dependent spring coefficient corresponding to the # "
mode of the track. This force is then applied on the substructure unit to obtain the tie mode
shape function:

V' 22u(t) 2ld,)
zn(?/) Ken Wzn mé-'l Mm(win—Qi) (83)

Y‘ 28 m(¥)2m(d ;)
zn(y) Ken Wzn mél Mm((‘)in—-gil) (8b)

where Z;,(y), ¥;,(y) are the n'" modal deflection and rotation angle of the 7 tie in the track;
zn(y), Bnm(y) are the deflection and rotation angle of the m'" mode of the tie as an individual
free beam on an elastic foundation; M, is the generalized mass of the m ‘" free tie mode and;
wn is the corresponding m'* circular frequency. Eqn. (8) applies to both the Bernoulli-Euler
beam and the Timoshenko beam.

4. Forced vibration of track/beam system
4.1. General equations of motion

Fig. 3 shows the segregated force diagram of the track/beam system model. The rail is load-
ed by a series of forcing functions represented by, P,(¢), /=1,2,3,---,/, and the counteracting
rail/tie contact forces, f; (¢)=1,2,3,---,N. The forces acting on a tie includes the two rail/tie in-
teractive forces at the two rail seats and the distributed foundation reaction force £ 2(y,t) per
unit length of tie. Applying the Timoshenko beam theory to both the rail and the tie beams,
the equations of motion for the track/beam system are derived:

1. For the rail,

N J

7 104G [ o= |} o HGEL < = ) f03 =it ) PAOE—) 0.)
i=1 J=1
gl S8 4G, | plany -2 ) P by = 0 (9.b)

where w(x, 1), ¢(x, t) represent the rail deflection and rotation angle; f;(t), P;(t) represent
the rail/tie interactive force and the forcing function on the rail; [, is the tie spacing; x; is the
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x coordinate at which B (¢) is applied; and & (x) is the Dirac delta function. For other denota-
tions see Eqgn. (6).
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Fig. 3 Schematic Force Diagram of Rail/Tie Beam System

2. For the /"" tie

DL 4G, | )= LD g S0 o 2D g oy
= fi(OLo(w—d,)+o(y—d+d,)] (10.a)
oi(y.t) 0z;(y.t) . 0°:(y.t)
2 [EJ, S }*KAG,[%( - ] —mer, TEE) — o (10.b)

where z:(y.t), ¢:(y.t) represent the deflection and rotation angle of the 7" tie; £, ¢ are the dis-
tributed foundation stiffness and damping; EI,, ¥ AG, are the flexural rigidity and the shear ri-
gidity of the tie beam, respectively; m, is the mass per unit length of tie; »; is the radius of gy-
ration of the tic beam; ¢ is the total length of the tie; and &, is the length of tie outside the
track gauge. The equations of motion of the track are simpler when the Bernoulli-Euler beam
theory is used and are omitted herein.

The compatibility condition for the above rail and tie equations of motion is achieved
through the rail/tie interactive force:

filt) = ko lwlilp, Y—2d;, D)+ cp Liv(iln )= 2(d,, 1)) (11)

where 4, and ¢, are the stiffness and damping coefficients of the rail /tie contact spring cle-
ment.

4.2. Modal solutions

The solutions to the above partial differential equations of motion are expressed by the fol-
lowing modal transformation:
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0@ )= Y W@ Qal. ble )= Y 0. 0Qu0) (12.2)
n=1 n=1

200 = Y Zu@Q. he D= ) Va0 (12.6)
n=1 n=1

Substituting Eqn. (12.a) into Eqn. (9), and Eqn. (12.b) into Eqn. (10), and performing an
integration procedure over the track length / for the rail, and over the tie length & for all the N
ties in the model, results in the following relationship for the modal time coefficient €, (¢):

K

G+ Y 260 2,20 + Q1A =T, 0= 123K (1Y)
k=1

where K= number of modal terms truncated in Eqn. (12); Q,= angular frequency of the n'*
mode of the track; &,,=coupled modal damping ratio (mode » and k); and 7.{t)=generalized
modal force of the »*”* mode.

The damping term &,,, is defined by:

Cy
S = ap (14)

where M, is the generalized modal mass of half the track/beam system (divided from the lon-
gitudinal centerline of the track) and is found from the orthogonality relationship between the
mode shape functions of the rail and tie beams:

N D
[ OV W s 2)+750 1) @)t Y, [ Lm0 Zin0) 71t Vi (01
i=1
Y (m=n)
M, (m=n) (15)

C, in Eqn. (14) is the coupled, or non-proportional, modal damping coefficient which can
be calculated from:

N

) v d/2
Cu = LJ Cp [Wn(ilﬂ)—zin(dr)][wk(Z./ﬂ)—Zik(dr)]_*_ J. 0 CsZz'n(.U)Zik(!/)dZ/ (16)
i=1

The generalized modal force 7.(t) of Eqn. (13) is expressed by the following equation:

J
Tult) = 3= ) Wala)PA0) (a7

J

Eqn. (13) can be rewritten in the following standard matrix form by letting Qu)=Q,()
and QnZ(t):Qn(t):

{Qm(t)l_[____[_q_] ______ o Ha)m(f)}+

Qut) |~ L —L247] Qnall)

0
- l
fn(f) } ( 8)
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where [£2,7] and [2,] are diagonal matrices of size K with the diagonal elements being £2,°
and -Qn(n = 152339”'aK)s reSpeCtiV(ily; in([):[Qll(f)* QZl(t)v T QKl(t)]Ia an(t):[le(i), Q22
(t), -, Qro)] s and F,(1)=[F1@t), f2t), -+, Fx(®)]"; The damping matrix [£,,] is a full matrix:

511 512 51(1
— 521 522 51{2
L] coo : (19)
51{1 51{2 EKK

where &, 1s determined from Eqgn. (14). Thus, knowing the modal parameters of the track/
beam system and the applied forcing functions, Eqn. (18) can be solved by any appropriate
numerical routine. In this study, the 4-th order Runge-Kutta method with both fixed and
adaptive time step is implemented. The forcing function £ (¢) needs to be provided at discrete
time intervals if no specific form of force-time relationship is given.

5. Example application of model to a typical track

As a numerical example to demonstrate the application of the vertical dynamic track
model, the dynamic responses of a typical concrete-tie track subjected to a single wheel/rail
impact force are presented herein. The forcing function is represented by a triangular force—
time history (300 kN in magnitude and 2 ms in duration) shown in Fig. 4a, which is an ap-
proximate representation of an isolated wheel force impulse shown in Fig. 4b, measured under
a wheeclflat striking the rail. The parameters used for the track are given in Table 1.
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Fig. 4 Impact Force History
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Table 1 Track Parameters

Rail and other track parameters

Tic Parameters

Elastic modulus Ir, = 207G N/
Poisson’s ratio = 0.2%

Timoshenko shear coeft. = 0.34
Cross-sectional area = 7.17 < 10 “m*
Second moment of area = 23.5x 10 "m’
Radius of gyration = 57.2x 10 “m
Bending rigidity 7, = 4.86 M Nm*
Shear rigidity kAG, = 197.2MN

Unit mass m, = 56.3kg/m

Rail pad stiffness k£, = 280M N/m
Rail pad damping ¢, = 63000Nsm '
Track bed stiffness &k, = 144MN/m/m
Track bed damping ¢y = 65600Nsm *
Axial force P, = 0

Elastic modulus /2, = 70GN/m*
Poisson’s ratio = 0.30
Timoshenko shear coeft. = 0.833
Tie spacing = 0.7m

Tie length = 2.50m

Tie width = 0.25m

Depth of mid section = 0.14m
Depth of shoulder section = 0.21m
Rail gauge length = 1.50m

Tie end to rail seat = 0.50m

The frequencies obtained from Eqgn. (3) for the case of Timoshenko type rail and tie, with
different number of ties are listed in Table 2 for a variety of selected natural modes. It is seen
that when the number of ties reaches 20, the variation in the natural frequency of the track be-
comes insignificant. All further calculations are then performed using a 25-tie length track
model. The use of a finite extension model to solve both dynamic and static loading problems
or rail tracks has also been reported by others (Nielsen and Abrahamsson 1992, Clark et al.
1982, Newton and Clark 1979/E1-Ghazaly et al. 1991).

Table 2 Frequencies (Hz) of Selected Modes Obtained with Different Number of Ties

(Timoshenko Rail and Tie Beams)

Mode No.

No. of Ties 1 10 30 50 70
5 161.3 250.8 767.3

10 158.6 222.4 551.4 1100.

15 158.4 186.5 442.0 865.1 1155.
18 158.4 182.9 260.2 534.6 902.2
20 158.3 176.1 251.5 446.8 789.6
25 158.3 176.0 250.0 443.4 783.2
30 158.3 1%6.0 249.2 440.3 780.5

5.1. Deflection and acceleration responses of rail

Fig. 5a and 5b show the deflection and acceleration responses of the rail at different loca-
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tions in relation to the impact force. The corresponding static rail deflections calculated ac-
cording to the AREA recommended procedure are also given in Fig. 5a using a peak impact
force of 300 kN. It is seen that the static deflection of the rail calculated in such a way is gen-
erally larger than the peak dynamic deflection. For the acceleration response of the rail, the
peak acceleration at each midspan position is greater than those above the two neighboring
ties. This pattern of acceleration response shows the effect of considering the rail substructure
system as discrete supports.
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Fig. 5 Time Histories of Rail Deflection and Acceleration Response along the Track
5.2. Normal and shear stress/strain responses of rail

The time histories of the dynamic normal stress/strain at the top of the rail head, and the
shear stress/strain along the rail neutral axis, are shown in Fig. 6a and 6b, respectively. The
normal stress/strain is dominantly compressive under the impact point within the 2 ms dura-
tion of impact. Tensile stress/strain starts to become more prominent from the second span.
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In fact the maximum dynamic peak tensile response occurs within the second span, and does
not decrease noticeably until the third span from the impact. One implication from this dy-
namic behavior is that, if there exists a transverse defect in the rail head, such as an internal
crack, the critical condition (for brittle rail breakage) occurs when the impact force is some
distance away from the defect.

A comparison between the dynamic peak stresses and the static results (numerical values)
in Fig. 6a shows that the largest difference occurs at the first midspan from the impact, loca-
tion (3), where tensile stress dominates. At this point the dynamic stress is over 70% higher
than the static stress. The maximum static tensile stress occurs at location (4) above the sec-
ond tie from the impact. This maximum static stress is still over 40% lower than the peak dy-
namic stress at location (3). Such a marked difference in the predicted dynamic and static ten-
sile stress responses has significant implications for the evaluation of the rail’s susceptibility to
wheel impact when there exist internal transverse defects in the rail head. Clearly, the static
analysis will considerably underestimate the destructive tensile stresses caused by a wheel im-
pact.
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Fig. 7 Time Histories of Rail Seat Force and Ballast Pressure Response along the Track

Unlike the normal stress/strain response, that is calculated at the top of the rail head, the
dynamic shear response (Fig. 6b) is obtained at the neutral axis of rail cross—sections close to
the tie edges. Comparing the shear response and the normal response, it is seen that the peak
shear stress of the first cross—section is nearly 50% of the normal stress at the midspan impact
point. The corresponding shear and normal strains at other locations along the rail are also
very significant as compared to the normal stress/strain responses. This indicates that dynamic
shear stresses cannot be neglected in calculating track responses under impact loading, as is
the casc under static conditions.

5.3. Rail seat force and ballast pressure responses
The rail seat force and ballast pressure responses as shown in Fig. 7 illustrate a rapid de-

crease in the rail/tie interaction away from the impact position. The rail seat force immediate-
ly below the impact s 55% of the peak magnitude (300 kN) of the applied triangular forcing
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function. The rail seat force on the tie adjacent the impact position is approximately 25% of
the impact peak, and that on the next tie is less than 10% of the impact peak. As shown in
Fig. 7a, the static analysis using the AREA recommended procedure results in very close rail
seat forces to the dynamic predictions for the first two ties. The ballast pressure responses
(The track foundation spring is assumed to be capable of taking tension) in Fig. 7b show the
same trend of variation as the rail seat forces. But the dynamic magnitude is smaller than the
static result.

5.4. Rail/tie deflected shapes and spatial distributions of dynamic stresses/strains

For the same triangular impact, the deflected shapes of the rail at different time incre-
ments and the corresponding normal stress variations at the top of the rail head are shown in
Fig. 8a and Fig. 8b, respectively. The static results under the pseudo—-dynamic load (300 kN)
are also shown. It is interesting to observe that rail rebounding immediately below the impact
point starts occurring at approximately 1.5 ms which is before the duration of the impact forc-
ing function. The travelling deflection wave is clearly demonstrated by the deflected shapes of
the rail at 1.5 and 2 ms. It is seen that the rail portion within the first tie is rebounding, while
the rail beyond the first tie is still deflecting downward.
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The variations pattern of rail head stresses at different time intervals shown in Fig. 8b
facilitates Fig. 6a in identifying the region of compressive and tensile stresses along the rail
head (or rail base). From the stress wave curves at 1.0, 1.5 and 2.0 ms it can be seen that
dominantly tensile stresses occur within a region from the first to the third tie away from the
impact point. Of course the maximum compressive stress occurs directly under the impact
load. Beyond the third tie, the rail head stresses, both compressive and tensile, die away rapid-
ly due to both the system stiffness and damping effect of the track.

The deflection and the top-fiber normal stress distribution curves of the tie at different
time intervals are shown in Fig. 9a and Fig. 9b. The corresponding static curves are also
given. Two values of the elastic modulus of the tie are used for the static analysis, one is the
“dynamic” value of 70 GN/m* as listed in Table 1, the other is the static value of 35 GN/m".
The plots indicate that the magnitude of the tie’s elastic modulus does not have any signifi-
cant effect on the static deflection of the tie. Its effect on the static normal stress of the tie
within the rail seat region is also negligible. Appreciable effect on the static stress distribution
occurs within the tie center region. As expected, compressive stresses dominate the rail seat
area, and tensile stresses dominate the tie center arca. The reverse is true for stress responses
along the bottom fiber of the tie beam.
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It is observed that the vertical movement of the tie involves both rigid body motion and
transverse flexure, with the former being dominant (Fig. 9a). The degree of bending increases
as the tie moves down, as illustrated by the deflection curves at 0.5, 1.0 and 1.5 ms, and the
corresponding bending stress distributions (Fig. 9b). The degree of bending decreases as the tie
moves further down until it reaches the maximum deflection at 2.0 ms. Less bending compo-
nent is seen during the rebounding.

5.5. Comparison between solutions with Timoshenko and Bernoulli-Euler beam theories

In the previous examples, the Timoshenko beam theory is chosen to represent the rail/tie
beams. To demonstrate how the rotatory inertia and shear distortion of the rail/tie beams con-
sidered in the Timoshenko beam theory affect the dynamic behavior of the track, representa-
tive solutions of track responses under the impact point are obtained with the Bernoulli-Euler
theory being applied to describe the rail and tie beams. The results are compared with the cor-
responding solutions when the Timoshenko theory is used. Space limitations do not permit
full diagrammatic comparisons, however, the following general findings are made.

Except for the tie deflection, the above—tie normal stress/strain of the rail, and the ballast
pressure responses, there exist appreciable differences between the two sets of solutions. The
differences are most apparent within the duration of the impact forcing function, especially at
the peak responses. It is always the use of the Timoshenko theory that yields higher magni-
tudes of the calculated responses. This clearly indicates that the rotatory inertia and the shear
distortion considered in the Timoshenko beam theory are significant factors affecting the dy-
namic behaviors of the track/beam system under sharp impact loading and should not be ne-
glected in studying rail track dynamics. The use of the Bernoulli-Euler theory to describe the
rail and tie beams may underestimate the effects of wheel/rail impact loading.

6. Conclusion

A vertical dynamic rail track model that is capable of predicting dynamic track responses
to any arbitrary loading function has been presented. The solution to the track dynamic
responses has been made possible by the formulation of a generalized track element and the
innovative concept of an equivalent frequency dependent spring coefficient superseding the
general effects of the track substructure system. Dynamic solutions that are of particular inter-
est to the track engineer, such as rail/tie deflections, stresses/strains, accelerations, rail seat
forces, and ballast pressures caused by a given wheel/rail impact force history, can be readily
obtained. By using a deterministic stationary impact function as an excitation source to the
track system, valuable insight into the characteristics of rail track dynamic responses can be
gained (The interpretation of a large scale drop—weight test by Igwemezie et al. 1993, using
the presented model is currently under way; Other reported drop-weight test data is also being
compiled to calibrate the model). Existing pseudo-static approaches (AREA 1991) to analyz-
ing track responses under wheel/rail loads can also be evaluated.

Through a numerical example, the following fundamental characteristics of track responses
are observed:

(1) The static analysis using a load equivalent to the peak of a dynamic forcing function
results in conservative results for the rail/tic deflection and normal stress/strain responses
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under the load point. But the static analysis considerably underestimates the tensile stresses in
the rail head some distance away from the impact point (The same is true for compressive
stresses in the rail base).

(2) The shear stresses and strains in the rail are considerably lower from the static analysis
than from the dynamic analysis. The shear behavior of the rail should not be ignored in any
dynamic analysis of the track.

(3) For this set of particular track parameters (Table 1), the static analysis results in rail seat
forces that are very close to the predicted dynamic rail seat forces at the peak, but gives higher
ballast pressure than the dynamic analysis.

(4) The vertical movement of the tie under impact comprises two components, the rigid body
motion and the transverse bending. Within the top fiber of the tie beam, compressive stress
dominates in the rail seat area while tensile stress dominates in the tie center region (The re-
verse is true for the stresses/strains within the bottom fiber of the tie beam).

(5) The rotatory inertia and the shear distortion considered in the Timoshenko beam theory
are significant factors affecting the dynamic behavior of the track/beam system under impact
loading and should not be neglected in studying rail track dynamics. The use of the Bernoulli-
Euler theory to describe the rail/tie beams may considerably underestimate the effects of
wheel/rail impact loading.
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