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Determination of the Vlasov foundation parameters
−quadratic variation of elasticity modulus−

using FE analysis
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Abstract. The objective of this research was to determine the Vlasov soil parameters for quadratically
varying elasticity modulus Es(z) of the compressible soil continuum and discuss the interaction affect
between two close plates. Interaction problem carried on for uniformly distributed load carrying plates.
Plate region was simulated by Kirchhoff plate theory based (mixed or displacement type) 2D elements
and the foundation continuum was simulated by displacement type 2D elements. At the contact region,
plate and foundation elements were geometrically coupled with each other. In this study the necessary
formulas for the Vlasov parameters were derived when Young’s modulus of the soil continuum was
varying as a quadratic function of z-coordinate through the depth of the foundation. In the examples, first
the elements and the iterative FE algorithm was verified and later the results of quadratic variation of
Es(z) were compared with the previous examples in order to discuss the general behavior. As a final
example two plates close to each other resting on elastic foundation were handled to see their interaction
influences on the Vlasov foundation parameters. Original examples were solved using both mixed and
displacement type plate elements in order to confirm the results.
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1. Introduction

The analysis of plates on elastic foundation using finite element method is videly used for the
analysis of mat foundation Cheung (1978), rigid pavements, etc. The mechanical modeling of
structure-foundation interaction problem is mathematically quite complex phenomenon and the
response of the subgrade is governed by many factors. The first simplest mechanical model
developed by Winkler (1867) which was originally developed for the analysis of railroad tracks.
This model was also referred to as the one-parametric model. The first difficulty met in the Winkler
foundation was the necessity of determining the modulus of subgrade reaction k. Some pioneering
attempts were made to developed empirical relations for determining the value of k such as Biot
(1937), Vesic (1961, 1973). Second difficulty was the inconsistent behavior of the Winkler
formulation due to the discontinuity of displacements on the boundary of the uniformly loaded area
surface since the model was unable to consider the influence of surface displacements which are
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continuing beyond the load region. To overcome this inconsistency some researchers used
Boussinesq equations by assuming the soil as a semi-infinite isotropic-homogeneous medium and
some others used various two parametric models such as Filonenko-Borodich (1940), Hetényi
(1946, 1950), Pasternak (1954), Kerr (1964), Vlasov and Leont’ev (1966). The first parameter can
be treated as subgrade reaction and the definition of the second parameter gains the major
importance. Vlasov and Leont’ev (1966) proposed a variational method based on an assumed
displacement variation with depth in the soil continuum and the soil parameters were found as a
function of foundation material constants. A well-documented literature survey on the field of
beams resting on elastic foundation has been given by Kerr (1964) and Scott (1981). 

Vlasov and Leont’ev (1966) postulated a two-parameter model, using a theoretical approach to
represent the soil continuum in order to overcome the difficulty in determining values of k for soil
as well as the inconsistent behavior of the Winkler model. Their model considered the neglected
shear strain energy and subsequent shear forces on the plate edges due to the soil displacement.
Although the model seemed to be eliminating the need to determine experimentally or empirically
the values of k, or the shear (second) parameter, which makes the consideration of plate-foundation
shear affect. The disadvantage of this model was the introduced parameter γ, whose value must be
determined, and no mechanism was provided for computing its value. This parameter was named as
mode shape parameter and used to define the decay of the vertical displacement, by means of the
mode shape function φ(z), in the subsoil (see Fig. 1). Exact solutions of this model are rather
complex and no mechanism was given for computation of the γ parameter (Harr et al. 1969,
Kameswara-Rao et al. 1971). The relation between the surface displacements and the γ parameter
was obtained experimentally by Jones and Xenophontos (1977) but no numerical value was given
for γ, Nogami and Lam (1987) developed another two parametric model for slab on elastic
foundation, which was limited to plane strain conditions. Finally, Vallabhan and Das (1988)
proposed an iterative algorithm for determining γ numerically. The aim was to make the two Vlasov
parameters (C1, C2) and the γ parameter to be independent from each other and unique for a given
beam/slab-elastic foundation interaction. Analytical studies on the field of two-parameter models are

Fig. 1 Plate and foundation continuum
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limited due to the complexity of the mathematical formulation and for that reason various numerical
methods were preferred. In the literature FE and finite difference studies for determining the Vlasov
soil parameters, when Young’s modulus of soil was constant (Vallabhan et al. 1991, Straughan
1990, Dalo lu 1992, Çelik and Saygun 1999) and linearly varying (Dalo lu 1992), exist. Using the
flexibility method Aydo an et al. (1995) considered the variation of foundation elasticity modulus
as an exponential function of compressible soil thickness. Besides rectangular/square plates, circular
plates-Vlasov foundation interaction studies based on numerical methods exist in the literature, such
as, Vallabhan and Das (1991), Buczkowski and Torbacki (2001), Saygun and Çelik (2003).

A constant value for the soil modulus of elasticity (Es) through the depth of the foundation is
quite a special case. For that reason, in this study a quadratic function of z-coordinate through the
foundation depth was considered and the necessary Vlasov soil parameters were derived. Vlasov
parameters for elasticity modulus of foundation being constant or linearly varying along the depth of
the soil exists in the literature (Straughan 1990, Dalo lu 1992, Çelik and Saygun 1999). To verify
the finite elements and iterative algorithm proposed by Vallabhan et al. (1991) first these problems
were solved and quite satisfactory results were obtained. Results of Es(z) varying as a quadratic
function of z-coordinate were quite reasonable when compared with the results and Es(z) was a
linear function of z. For confirmation of results of the original problem two different plate elements
were used, one was mixed (MFE) the other one was displacement type Çelik and Saygun (1999)
(DFE1). Both of the elements were 16 DOF. Explicit form of the plate functional required for the
MFE formulation exist in Omurtag et al. (1997), when the terms containing the Pasternak
foundation parameters were excluded. Formulation of DFE1 was given by Çelik and Saygun (1999).
As an original example, two plates close to each other resting on elastic foundation were handled to
see their interaction influences on the Vlasov foundation parameters. Investigation was carried on
for weak, semi-stiff and stiff elastic foundations and results were given in tabular form. For this
purpose, an extended soil surface around the plate (Ωs/Ωp) was considered as well as those under
the plate (Ωp) as shown in Fig. 2. 

go go

go

go

Fig. 2 Finite element simulation, (a) 2D plate and foundation elements, (b) 2D finite element simulation of a
plate resting on an elastic foundation continuum
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2. Field equations and functionals

2.1 Kirchhoff plate

For the sake of simplicity, field equations used for mixed finite elements formulation may be
written in the operator form,

(1)

where  is the equilibrium operator, =
 is the kinematic operator,  is the kinematic relation, u3 is the vertical

displacement vector,  is the moment vector, f3 is the vertical load vector (see
Fig. 3) and Cf is the compliance matrix of a isotropic plate (see Do ruo lu and Omurtag 2000). 

2.2 Vlasov foundation

The displacement vector in the soil continuum is . The lateral displacements
 (α = 1, 2 or x, y) may be neglected and the vertical displacement in the soil

continuum was assumed to be , where u3(x, y) was the deflection of the
soil surface and φ(z) was the mode shape function (see Fig. 1) defining the variation of the vertical
displacement  in the soil continuum such that . The thickness of
the elastic foundation layer (compressible layer thickness) H was supposed to be known. The
interaction pressure in the domain of the plate, between the plate and the soil surface at z = 0 is,

(2)

where, the two parameters of the Vlasov foundation are,

(3)

where Es is the elasticity modulus of soil, υs is the Poisson’s ratio of soil,  is the
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Fig. 3 Positive directions of the components for u3, Mx, My, Mxy and f3 on the plate
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shear modulus and the mode function and the mode shape parameter (γ ) are,

(4)

(5)

respectively. If the elasticity modulus of the foundation Es was constant through the thickness of the
soil continuum (see Fig. 4) the necessary Vlasov parameters exist in Vallabhan et al. (1991). If the
elasticity modulus of the foundation was varying linearly through the thickness of the soil
continuum (see Fig. 4), such that  and , elasticity modulus
function became  and the Vlasov parameters were given by Vallabhan and
Dalo lu (1999). 

In this study, a quadratic variation of elasticity modulus through the depth of the compressible soil
continuum was considered in the form, 

(6)

and in this case the Vlasov parameters given by Eqs. (3), yielded,

(7)

by means of Eqs. (3), (4) and (6).
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Fig. 4 Elasticity modulus of foundation Es(z) through the thickness of the soil continuum, (a) constant,
(b) linear variation, (c) quadratic variation
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2.3 Functionals

Functional for MFE the Kirchhoff plate in operator form was,

(8)

where , , ,  and
explicit form of (8) exist in Omurtag et al. (1997) if the terms containing the Pasternak foundation
parameters were excluded. On the common domain between the plate (Ωp) and the foundation
surface, the vertical equilibrium condition  must be satisfied, by means of the
surface pressure given by (2). Outside the plate domain  the governing foundation field
equation is . The functional for the soil continuum was,

(9)

where , , , terms with hat refer to prescribed boundary conditions
and  are dynamic and geometric boundary conditions, respectively. Functionals
(8) and (9) were derived by using Gâteaux differential and potential operator requirements (Oden
and Reddy 1976) in order to get the appropriate boundary condition terms as stated in Omurtag et
al. (1997)  and Aköz et al. (1991).

3. Finite element procedure

In this study, the deflections of the soil surface around the plate were considered as well as those
under the plate and for this purpose a limited soil region around the periphery of the plate was
considered. Hence, 2D quadrilateral plate and foundation elements were generated independently
(see Fig. 2a) and system was constituted as shown in Fig. (2b). The Kirchhoff plate elements had 16
DOF. The nodal unknowns of MFE were u3 and σf . The nodal unknowns of DFE1 (Çelik and
Saygun 1999) were u3, u3, x, u3, y and u3, xy. The soil element had 4 DOF and the nodal unknown was
u3. At the common mesh, plate and foundation elements were geometrically coupled at the nodes
only with vertical displacements. Details of the displacement type finite element DFE1 used for
verification of the original problem were given by Çelik and Saygun (1999). 

The iterative procedure used in this study for calculating the foundation parameters was as stated
by Vallabhan et al. (1991). Initially, assuming (1)γ = 1, was used in calculating the initial Vlasov
parameters (1)C1, 

(1)C2 by means of (7). Using these data the soil surface deflection (1)u3 was
determined as a first iteration step. The result (1)u3 was used in (5) and a new mode shape parameter
(2)γ was calculated. The iteration procedure was continued in this manner until the difference
between the two successive values  was less than a small-prescribed value (say ε =
0.001) and the results of the  iteration  were used as the final values. 
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4. Numerical examples

In the rest of the text, results of this study were based on mixed and displacement plate elements
MFE and DFE1, respectively. 

Example 1: Constant Es along the depth of the soil continuum

This problem was solved by Straughan (1990) and Dalo lu (1992) using FDM and DFE methods,
respectively. The homogenous isotropic material constants for the plate and foundation were
E = 20.685 GPa, ν = 0.2 and Es = 6.894 MPa, νs = 0.25, respectively. Due to the double symmetry, a

go

Fig. 5 Quarter of the plate-foundation interaction problem solved in Example 1 and 2. (a) Point load case at
the center of the plate, (b) Uniformly distributed load case

Fig. 6 Convergence of γ, C1, C2 compared with Straughan (1990)
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quarter of the whole system domain was analyzed, where the dimensions were ax = 4.572 m,
ay = 6.096 m and bx = by = 9.144 m (see Fig. 5). Thickness of the plate and the soil stratum were
h = 0.1524 m and H = 6.096 m, respectively. Straughan (1990) and Dalo lu (1992) solved this
example under two different load cases were; a point load P = 133.34 kN at the center of the plate
and uniformly distributed load q = 23.94 kN/m2 all over the plate. A monotonic convergence with
respect to Straughan (1990) was observed for parameters γ, C1, C2, via MFE plate elements, as
given in Fig. 6. Results of this research were compared by Straughan (1990) and Dalo lu (1992) in
Table 1 and they were quite satisfactory, except the bending moment results on the midpoint of the
plate for the point load case. This is natural, since the bending moment results of FDM and DFE
method give average values on an element, whereas, MFE gives nodal values. The bending moment
diagram (My) along x-(symmetry) axis was as shown in Fig. 7. 

go

go

Table 1 Comparison of the results obtained in Example 1, for the singular (P) and distributed load (q) cases,
by other researches. C1 [kN/m3], C2 [kN/m] are the two foundation parameters, γ is the mode shape
parameter and Mx [kNm/m] is the bending moment at the center of the plate. FDM: Straughan (1990),
DFE2: Dalo lu(1992), MFE and DFE1: this study

Load Researches C1 [kN/m3] C2 [kN/m] γ Mx [kNm/m]

P

FDM 1557 1954 1.8401 -
DFE2 1557 1954 1.8400 21.13
DFE1 1551 1968 1.8210 34.63
MFE 1552 1965 1.8255 72.15

q

FDM 1374 2527 0.9017 -
DFE2 1373 2536 0.8845 3.46
DFE1 1376 2520 0.9203 3.61
MFE 1377 2537 0.9007 3.69

g
o

Fig. 7 Bending moment diagram along x axis of the plate solved in example 1 for point load case and H =
15.24 m
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Through the analysis it was observed that, if all the material properties (E, υ, Es, υs) and the
physical dimensions (a, h, H) of the plate were kept constant, the foundation parameters were not a
function of the intensity of the plate load (uniformly distributed or a point load). Hence application
of unit loading was enough if the foundation parameters were the only point in question. However if
the deflections and bending moment results of the plate were required, one needs to apply the loads
with their actual intensity.

Example 2: Es(z) is a linear and quadratic function of z-coordinate along the depth of the
soil continuum

In this problem, variation of Young’s modulus of foundation was linear and quadratic function of
the depth of the soil stratum (see Fig. 4). Elasticity modulus of the foundation at the top and bottom

Table 2 Comparison of the two foundation parameters C1 [kN/m3], C2 [kN/m] and the mode shape parameter
γ results obtained in Ex. 2, for the singular (P) and distributed load (q) cases. DFE2: Dalo lu (1992),
MFE: this study, %difi = (DFEi

2 − MFEi) × 100/MFEi, where i = C1, C2, γ

Es(z) E2/E1 Load Researches C1 %difC1 C2 %difC2 γ %difγ

constant 1
P

DFE2 1247
−0.06

2330
−0.57

2.5709
0.36

MFE 1248 2343 2.5617

q
DFE2 937

−0.05
3574

0.28
1.1538

−1.88
MFE 938 3564 1.1755

Linear

3

P

DFE2 1845
0.02

2845
−0.99

2.8370
0.70

MFE 1845 2873 2.8172

5
DFE2 2398

−0.01
3287

−1.24
3.0274

0.81
MFE 2398 3328 3.0028

10
DFE2 3697

−0.10
4211

−1.52
3.3669

0.89
MFE 3700 4275 3.3371

Quadratic
3

P MFE
1494

-
2490 - 2.6855

-5 1713 2628 2.7806
10 2193 2940 2.9601

Linear

1

q

DFE2 937
−0.05

3575
0.28

1.1538 −1.88
MFE 938 3565 1.1757

3
DFE2 1682

0.31
5126

0.43
1.2105 −1.90

MFE 1676 5104 1.2335

5
DFE2 2413

0.47
6670

0.51
1.2364 −1.92

MFE 2402 6636 1.2601

10
DFE2 4224

0.65
10520

0.63
1.2658 −1.95

MFE 4196 10453 1.2905

Quadratic
3

q MFE
1382

-
4109

-
1.2365

-5 1808 4653 1.2729
10 2844 6009 1.3233

g
o
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of the soil continuum was  and , respectively, and analysis was
carried out for three values of the E2/E1 ratio such as 3, 5 and 10. The other material constants for
the plate and foundation were, E = 20.685 GPa, ν = 0.2 and νs = 0.25. A quarter of the whole system
domain was analyzed and the dimensions were ax = 4.572 m, ay = 6.096 m and bx = by = 9.144 m
(see Fig. 5). Thickness of the plate and the soil stratum were h = 0.1524 m and H = 9.144 m,
respectively. Since the only interest was to investigate the foundation parameters, unit loading
(P = 1 kN or q = 1 kN/m2) was applied on the plate. Numerical results given in Table 2 were
obtained from MFE and DFE1 (the finite element program developed by Çelik and Saygun 1999).
Dalo lu (1992) was used for the comparison of the two foundation parameters and the mode shape
parameter results when Es(z) was linear. Referring to the % differences between the two researches
one can deduce that results were quite satisfactory. Depending to the E2/E1 ratio, variation of the
parameters C1 and C2 for uniformly distributed and singular load cases were given in Fig. 8 and Fig. 9,
respectively. For a constant E2/E1 ratio, decrease of the soil parameters in the case of quadratically
varying Es(z) compared to the linearly varying Es(z) was due to the behavior of the quadratic
function of Es(z). 

Example 3: Interaction between two close plates-I

Due to interaction between two close plates and the foundation, a variation on the foundation
parameters was expected with some limitations and in this example it was investigated. Since
foundations parameters were functions of soil material constants, load type and rigidity of the plate,
a large amount of parameters needed to be investigated. First of all, three different foundation types,
medium or hard clay, loose or dense sand and gravel, shale, were selected. Soil material constants

E1 Es z 0=
6.912 MPa= = E2 Es z H=

=

go

Fig. 8 Soil parameters due to Es(z) varying as a
linear or quadratic function of z-coordinate
through the foundation continuum when
plate is loaded by a point load and E2/E1 =
1, 3, 5, 10

Fig. 9 Soil parameters due to Es(z) varying as a
linear or quadratic function of z-coordinate
through the foundation continuum when
plate is loaded by a uniformly distributed
load and E2/E1 = 1, 3, 5, 10



Determination of the Vlasov foundation parameters 629

were collected from Bowles (1988), such that;
Medium clay Es = 15: 50 MPa υs = 0.45
Hard clay Es = 50: 100 MPa υs = 0.45
Sand and gravel Es = 50: 200 MPa υs = 0.25
Shale Es = 250: 750 MPa υs = 0.20

Es = 2500: 5000 MPa υs = 0.20

Since the only interest was to investigate the foundation parameters, uniformly distributed unit
loading q = 1 kN/m2 was applied on the square plate. In this example singular loading at the mid-
span of the plate disregarded, since, results were not sensitive to the extent of the limited soil region
around the periphery of the plate region because calculation considerable gradients of surface
deflection of the soil continuum took place only close to the point load. Plate material constants
were E = 21 GPa and υ = 0.15. Span of a single plate was a = 10 m and thickness was h/a = 0.01,
0.02. Plate thickness was changed just to see its influence on the parameters. Three different depth

Table 3 Single square plate (h/a = 0.01) results for Ex. 3. Es is constant through the soil stratum. DFE1: Çelik
and Saygun (1999), MFE: Mixed FE formulation in this study

H [m] Es [GPa] υs

γ C1 [kN/m3] C2 [kN/m]

MFE DFE1 MFE DFE1 MFE DFE1

5

15 0.45 0.5387 0.5386 11400 11400 4150 4150
50 0.45 0.5467 0.5469 38002 38002 13819 13829

100 0.45 0.5498 0.5502 76007 76008 27626 27624
50 0.25 0.8325 0.8266 12113 12110 15266 15284

200 0.25 0.8358 0.8299 48460 48446 61020 61096
250 0.20 0.8695 0.8612 56170 56149 78913 79048
750 0.20 0.8703 0.8620 168516 168451 236703 237108

2500 0.20 0.8705 0.8627 561727 561523 788966 790244
5000 0.20 0.8706 0.8630 1123458 1123064 1577913 1580373

20

15 0.45 1.3700 1.3607 3006 3002 13850 13886
50 0.45 1.3742 1.3728 10011 10023 46131 46253

100 0.45 1.3734 1.3638 20047 20022 92243 92491
50 0.25 2.1589 2.1440 3709 3695 42095 42293

200 0.25 2.1605 2.1450 14841 14784 168293 169115
250 0.20 2.2573 2.2098 17607 17393 212524 215740
750 0.20 2.2576 2.2104 52825 52187 637507 647095

2500 0.20 2.2578 2.2113 176089 173994 2124946 2156401
5000 0.20 2.2578 2.1170 352179 348028 4249859 4312210

40

15 0.45 2.2275 2.1800 1789 1768 21306 21628
50 0.45 2.2305 2.1831 5969 5897 70952 72023

250 0.20 4.1091 4.0079 14339 14000 252512 258697
750 0.20 4.1098 4.0099 43023 42018 757424 775713

2500 0.20 4.1100 4.0120 143417 140131 2524613 2584389
5000 0.20 4.1100 4.0128 286837 280310 5049170 5167890
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Table 4 Single plate results (h/a = 0.02) for Ex. 3. Es is constant through the soil stratum. DFE1: Çelik and
Saygun (1999), MFE: Mixed FE formulation in this study

H [m] Es [GPa] υs

γ C1 [kN/m3] C2 [kN/m]

MFE DFE1 MFE DFE1 MFE DFE1

5

15 0.45 0.5263 0.5256 11398 11398 4157 4158
50 0.45 0.5319 0.5315 37995 37995 13847 13848

100 0.45 0.5373 0.5371 75995 75995 27674 27674
50 0.25 0.8186 0.8122 12106 12103 15309 15328

200 0.25 0.8292 0.8232 48444 48432 61105 61178
250 0.20 0.8641 0.8558 56156 56135 79001 79136
750 0.20 0.8680 0.8597 168498 168434 236815 237218

2500 0.20 0.8697 0.8614 561707 561489 789094 790458
5000 0.20 0.8702 0.8620 1123437 1123007 1578046 1580730

20

15 0.45 1.3537 1.3430 2999 2995 13913 13954
50 0.45 1.3656 1.3557 10013 10000 46224 46351

100 0.45 1.3693 1.3597 20036 20011 92351 92598
50 0.25 2.1465 2.1393 3697 3683 42259 42464

200 0.25 2.1568 2.1417 14827 14771 168489 169298
250 0.20 2.2542 2.2064 17593 17378 212735 215970
750 0.20 2.2565 2.2086 52801 52163 637731 647466

2500 0.20 2.2574 2.2097 176073 173926 2125176 2157451
5000 0.20 2.2576 2.2104 352164 347914 4250090 4313960

40

15 0.45 2.2051 2.1568 1779 1758 21457 21787
50 0.45 2.2221 2.1747 5956 5885 71140 72214

250 0.20 4.1029 4.0015 14318 13978 252883 259202
750 0.20 4.1076 4.0056 43001 41975 757811 776520

2500 0.20 4.1093 4.0081 143395 14000 2525009 2586847
5000 0.20 4.1097 4.0096 286815 280098 5049567 5171845

of soil stratum H = 5 m, 20 m, 40 m were used. For comparison first we need the single plate
results. For this purpose, foundation parameters given in Table 3 and Table 4 are for Es = constant
and in Table 5 and Table 6 are for Es(z) varying linearly and quadratically.  and

 were the elasticity modulus of the foundation at the top and bottom of the soil
continuum, respectively. From these tables it was observed that, within the limits of thin plate theory
changing the thickness from h/a = 0.01 to h/a = 0.02 made immaterial influence on the soil
parameters. Hence interaction between two plates were solved only for h/a = 0.01. Distance between
the two close square plates was c = αH (see Fig. 10a) where α = 0.1, 0.5 and 1. It was observed
that, as , interaction on the deflections of foundation surface between the two plates becomes
negligible. This judgment was verified when the results of Table 3 and Table 7, Table 5 and Table 8
were compared with each other. This conclusion was valid for both constant elasticity modulus and
varying elasticity modulus of soil continuum. The necessity of using foundation elements between

E1 Es z 0=
=

E2 Es z H=
=

c H→
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Table 5 Single plate results (h/a = 0.01) for Ex. 3. Es(z) is varying linearly and quadratically. L: Linear, Q:
Quadratic. DFE1: Çelik and Saygun (1999), MFE: Mixed FE formulation in this study

H [m] Es(z) [GPa] variation υs
γ C1 [kN/m3] C2 [kN/m]

MFE DFE1 MFE DFE1 MFE DFE1

5

E1=15, E2=50
L

0.45
0.5738 0.5740 24000 23998 6487 6487

Q 0.5769 0.5770 19609 19609 5058 5058

E1=50, E2=100
L

0.45
0.5665 0.5669 56026 56025 17153 17152

Q 0.5667 0.5671 49762 49761 15112 15114

E1=50, E2=200
L

0.25
0.8825 0.8804 28127 28134 25880 25894

Q 0.8910 0.8893 22211 22217 19252 19260

E1=250, E2=750
L

0.20
0.9097 0.9057 105294 105332 115310 115428

Q 0.9146 0.9109 87089 87121 92504 92587

E1=2500, E2=5000
L

0.20
0.8954 0.8907 808342 808495 971052 972125

Q 0.8963 0.8916 717463 717603 856924 857837

20

E1=15, E2=50
L

0.45
1.4316 1.4203 5565 5568 20583 20664

Q 1.4382 1.4270 4485 4489 16156 16217

E1=50, E2=100
L

0.45
1.4073 1.3969 13715 13711 55756 55938

Q 1.4076 1.3972 12176 12172 49417 49575

E1=50, E2=200
L

0.25
2.2370 2.2224 6559 6553 64042 64415

Q 2.2459 2.2314 5060 5056 48549 48813

E1=250, E2=750
L

0.20
2.3161 2.3010 26303 26258 285033 286654

Q 2.3189 2.3037 21654 21624 233492 234760

E1=2500, E2=5000
L

0.20
2.2937 2.2790 220060 219511 2487703 2500560

Q 2.2925 2.2777 196769 196240 2229379 2240510

40

E1=15, E2=50
L

0.45
2.2938 2.2463 2832 2819 29826 30376

Q 2.2979 2.2504 2277 2266 23784 24200

E1=250, E2=750
L

0.20
4.1216 4.0204 17915 17586 311996 321022

Q 4.1209 4.0200 15259 14948 265911 273011

E1=2500, E2=5000
L

0.20
4.1169 4.0190 161324 158087 2822233 2895796

Q 4.1161 4.0181 148034 144878 2591652 2656015

the plates comes out in the case of interaction between plates. When foundation was weak, the
interaction between two close plates became immaterial if  where as in the case of stiff
foundation this condition was satisfied if . The numerical results of this study were also
verified by the DFE1. Deformation of the foundation surface for a typical problem for the case
0 < c < H was given in Fig. 10(b), considering the symmetry of the system with respect to x-axis. In
the analysis, as a first iteration step γ was assumed to be 1, and for weak foundations number of
iteration steps were between 3 and 5. However in the case of stiff foundations number of iteration
steps were 10:12. 

c 1
2
---H>

c H≈
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5. Conclusions

In this study, soil continuum was simulated by displacement type 2D foundation elements and
plate is simulated by 2D mixed elements and all the results were verified by 2D displacement type
plate elements. Vlasov foundation parameters were functions of loading condition, compressible soil
thickness, elastic material constants and mode shape parameter. Due to the character of the
formulation, mode shape parameter was a function of the soil-surface deformation. Since the soil-
surface deformation was not known at the beginning, a value is estimated for the mode shape

Table 6 Single plate results (h/a = 0.02) for Ex. 3. Es(z) is varying linearly and quadratically. L: Linear, Q:
Quadratic. DFE1: Çelik and Saygun (1999), MFE: Mixed FE formulation in this study

H [m] Es(z) [GPa] variation υs

γ C1 [kN/m3] C2 [kN/m]

MFE DFE1 MFE DFE1 MFE DFE1

5

E1=15, E2=50
L

0.45
0.5586 0.5579 24029 24030 6504 6504

Q 0.5633 0.5625 19635 19637 5070 5070.2

E1=50, E2=100
L

0.45
0.5511 0.5508 56066 56066 17194 17195

Q 0.5510 0.5506 49800 49801 15148 15149

E1=50, E2=200
L

0.25
0.8689 0.8664 28172 28181 25970 25987

Q 0.8749 0.8728 22262 22269 19329 19339

E1=250, E2=750
L

0.20
0.9047 0.9007 105341 105378 115455 115572

Q 0.9086 0.9049 87142 87174 92640 92723

E1=2500, E2=5000
L

0.20
0.8947 0.8893 808366 808541 971220 972444

Q 0.8955 0.8902 717488 717647 857086 858117

20

E1=15, E2=50
L

0.45
1.4180 1.4030 5568 5574 20680 20786

Q 1.4224 1.4098 4490 4494 16241 16309

E1=50, E2=100
L

0.45
1.4007 1.3901 13712 13709 55871 56058

Q 1.4004 1.3898 12173 12170 49525 49686

E1=50, E2=200
L

0.25
2.2285 2.2143 6556 6550 64260 64623

Q 2.2352 2.2207 5057 5053 48744 49010

E1=250, E2=750
L

0.20
2.3137 2.2988 26296 26252 285286 286900

Q 2.3160 2.3010 21647 21607 233727 234991

E1=2500, E2=5000
L

0.20
2.2934 2.2774 220049 219449 2487957 2502023

Q 2.2922 2.2761 196758 196180 2229622 2241780

40

E1=15, E2=50
L

0.45
2.2771 2.2287 2827 2815 30018 30583

Q 2.2780 2.2293 2273 2262 23956 24385

E1=250, E2=750
L

0.20
4.1166 4.0148 17899 17567 312432 321536

Q 4.1150 4.0137 15241 14929 266312 273463

E1=2500, E2=5000
L

0.20
4.1163 4.0154 161305 157968 2822665 2898564

Q 4.1155 4.0144 148013 144756 2592064 2658570
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parameter and an iterative algorithm was followed through the analysis until it converged to a value.
From the results of the first two examples, it was deduced that MFE was quite satisfactory in the
sense of engineering precision and convergence was in a monotonic way. In this research it was
observed that, if all the material properties (E, υ, Es, υs) and the physical dimensions (a, h, H) of
the plate were kept constant, the foundation parameters were not a function of the intensity of the
plate load (uniformly distributed or a point load). Only type of loading is important such as point or
uniformly distributed. Hence unit loading is enough for the analysis if only the foundation
parameters were the point in question. Extent of the limited soil region around the periphery of the
plate region was recommended to be proportional to the thickness of the compressible layer
thickness H of the soil stratum. When there are two or more plates close to each other and if the
distance c between them is less than H, one might expect an interaction on the deformed foundation

Table 7 Interaction of two square plates (h/a = 0.01, c = αH),  for Ex. 3. Es is constant through the soil
stratum. DFE1: Çelik and Saygun (1999), MFE: Mixed FE formulation in this study

H
 [m]

Es
[GPa] υs

γ C1 [kN/m3] C2 [kN/m]

MFE DFE1 MFE DFE1 MFE DFE1

α = 0.1 α = 0.5 α = 0.1 α = 0.5 α = 0.1 α = 0.5 α = 0.1 α = 0.5 α = 0.1 α = 0.5 α = 0.1 α = 0.5

5

15 0.45 0.4673 0.5219 0.4638 0.5241 11391 11397 11391 11397 4189 4160 4190 4159

50 0.45 0.4748 0.5303 0.4691 0.5384 37972 37994 37970 37998 13950 13850 13959 13835

100 0.45 0.4776 0.5334 0.4713 0.5395 75946 75992 75942 75997 27889 27688 27910 27665

50 0.25 0.7049 0.7645 0.7033 0.7643 12060 12082 12060 12082 15636 15468 15640 15469

200 0.25 0.7075 0.7675 0.7041 0.7652 48244 48332 48239 48328 62515 61839 62553 61866

250 0.20 0.7343 0.7942 0.7294 0.7892 55880 55993 55871 55983 81014 80111 81099 80189

750 0.20 0.7348 0.7945 0.7289 0.7897 167644 167981 167614 167951 243016 240320 243276 240541

2500 0.20 0.7350 0.7948 0.7292 0.7901 558817 559941 558719 559843 8100230 801025 810878 801754

5000 0.20 0.7351 0.7949 0.7293 0.7902 1117635111988411174401119690 1620032 1602032 1621738 1603480

20

15 0.45 1.1219 1.3330 1.1486 1.3294 2925 2991 2932 2990 14793 13993 14694 14007

50 0.45 1.1237 1.3359 1.1479 1.3296 9751 9975 9772 9967 49287 46607 48988 46688

100 0.45 1.1242 1.3366 1.1483 1.3300 19503 19952 19545 19935 98563 93195 97968 93366

50 0.25 1.6439 1.9362 1.7901 2.0602 3310 3516 3406 3620 49434 45162 47269 43429

200 0.25 1.6447 1.9378 1.7907 2.0611 13243 14069 13626 14482 197689 180557 189041 173671

250 0.20 1.6943 2.0013 1.7464 1.9946 15471 16524 15630 16498 253559 230443 249547 230929

750 0.20 1.6944 2.0016 1.7467 1.9949 46415 49576 46892 49497 760641 691265 748557 692730

2500 0.20 1.6945 2.0017 1.7468 1.9950 154717 165256 156309 164998 2535430 2304137 2495100 2308978

5000 0.20 1.6945 2.0018 1.7468 1.9952 309434 330513 312621 330005 5070841 4608240 4990125 4617775

H Es υs α = 0.5 α = 1 α = 0.5 α = 1 α = 0.5 α = 1 α = 0.5 α = 1 α = 0.5 α = 1 α = 0.5 α = 1

40

15 0.45 2.1863 2.2276 2.1478 2.1830 1771 1789 1754 1769 21585 21305 21850 21608

50 0.45 2.1893 2.2306 2.1492 2.1839 5907 5969 5847 5899 71881 70949 72800 72004

250 0.20 3.8856 4.1026 3.7690 4.0010 13591 14317 13206 13976 266554 252906 274452 259129

750 0.20 3.8863 4.1032 3.7698 4.0018 40781 42957 39625 41937 799525 758602 823195 777238

2500 0.20 3.8865 4.1034 3.7703 4.0022 135945 143196 132101 139800 2664925 2528538 2743620 2590577

5000 0.20 3.8865 4.1035 3.7704 4.0022 271894 286396 264211 279604 5329782 5057018 5487056 5181091
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surface. This distance mainly depends on the material properties of the foundation and loading
condition. If plate was uniformly loaded and soil was weak, an interaction was observed when 0 < c
< (: ) and in the case of stiff foundation this distance was 0 < c < (:H). To solve such problems,
consideration of foundation elements around the extended region and between the plate elements
gave quite satisfactory results.

1
2
---H

Table 8 Interaction of two square plates (h/a = 0.01, c = αH) for Ex. 3. Es(z) is varying linearly and
quadratically. L: Linear, Q: Quadratic. DFE1: Çelik and Saygun (1999), MFE: Mixed FE formulation
in this study

H
 [m]

Es

[GPa]
varia-
tion

υs

γ C1 [kN/m3] C2 [kN/m]

MFE DFE1 MFE DFE1 MFE DFE1

α = 0.1 α = 0.5 α = 0.1 α = 0.5 α = 0.1 α = 0.5 α = 0.1 α = 0.5 α = 0.1 α = 0.5 α = 0.1 α = 0.5

5

E1=15, 
E2=50

L
0.45

0.5011 0.5614 0.4952 0.5761 24142 24023 24153 23993 6564 6501 6570 6484

Q 0.5041 0.5650 0.4988 0.5815 19744 19632 19754 19600 5117 5068 5121 5054

E1=50, 
E2=100

L
0.45

0.4938 0.5525 0.4867 0.5614 56210 56062 56227 56039 17340 17190 17357 17167

Q 0.4941 0.5528 0.4871 0.5623 49934 49796 49950 49773 15273 15144 15287 15123

E1=50, 
E2=200

L
0.25

0.7531 0.8240 0.7552 0.8270 28553 28321 28546 28311 26702 26261 26689 26242

Q 0.7617 0.8344 0.7653 0.8391 22615 22389 22604 22375 19848 19520 19832 19498

E1=250, 
E2=750

L
0.20

0.7732 0.8423 0.7719 0.8416 106575 105924 106587 105930 119100 117229 119135 117248

Q 0.7781 0.8482 0.7774 0.8481 88297 87674 88304 87676 95452 93973 95468 93976

E1=2500, 
E2=5000

L
0.20

0.7592 0.8250 0.7565 0.8229 813152 810736 813255 8108111000559 986684 1001117 987139

Q 0.7602 0.8262 0.7576 0.8242 721909 719666 722000 719731 882230 870291 882639 870660

20

E1=15, 
E2=50

L
0.45

1.1824 1.4056 1.2161 1.4001 5663 5573 5647 5574 22334 20768 22101 20806

Q 1.1901 1.4134 1.2245 1.4078 4581 4493 4565 4495 17474 16289 17294 16320

E1=50, 
E2=100

L
0.45

1.1576 1.3769 1.1868 1.3698 13697 13690 13692 13703 60073 56287 59579 56413

Q 1.1585 1.3774 1.1874 1.3703 12155 13705 12151 12166 53116 49871 52694 49978

E1=50, 
E2=200

L
0.25

1.7558 2.0565 1.7843 2.0488 6512 6510 6508 6509 77400 68805 76556 69015

Q 1.7712 2.0711 1.7983 2.0631 5041 5025 5035 5024 58002 51853 57427 52010

E1=250, 
E2=750

L
0.20

1.7887 2.0987 1.8262 2.0907 25338 25756 25365 25740 347465 309420 342691 310361

Q 1.7958 2.1032 1.8320 2.0960 20805 21167 20826 21154 281495 252260 277923 252920

E1=2500, 
E2=5000

L
0.20

1.7542 2.0617
1.7959 2.0542

204864 212231
205652 212010

3004233
269935

1
2961502 2706464

Q
1.7539 2.0605

1.7956 2.0530
182100 189256

182958 189044
2673149

241171
7

2636508 2417822

H Es
varia-
tion

υs α = 0.5 α = 1 α = 0.5 α = 1 α = 0.5 α = 1 α = 0.5 α = 1 α = 0.5 α = 1 α = 0.5 α = 1

40

E1=15, 
E2=50

L
0.45

2.2627 2.2943 2.2248 2.2488 2824 2832 2814 2820 30185 29821 30629 30346

Q 2.2676 2.2983 2.2308 2.2535 2270 2277 2262 2267 24047 23780 24372 24171

E1=250, 
E2=750

L
0.20

3.9066 4.1136 3.7944 4.0139 17219 17889 16863 17565 331742 312686 342930 321616

Q 3.9056 4.1129 3.7933 4.0129 14599 15234 14263 14926 281503 266457 290318 273521

E1=2500, 
E2=5000

L

0.20
3.8975 4.1086

3.7846 4.0094
154107 161049

150447 157772
2991948

282833
4

3086590 2903157

Q
3.8961 4.1078

3.7830 4.0085
140986 147764

137423 144572
2740422

259701
7

2823121 2662460
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Notation

a, c : plate span and the distance between two close plates, respectively
C1, C2 : the two Vlasov foundation parameters
Cf : compliance matrix

: equilibrium and kinematic operators, respectively
E, Es : elasticity modulus of plate and soil, respectively
E1, E2 : elasticity modulus of the foundation at the top and bottom of the soil continuum,

respectively
f3, P, q : vertical load, singular and distributed vertical loads on plate, respectively
h, H : thickness of the plate and compressible layer thickness of the soil, respectively
Is : functional of the Vlasov foundation
k : modulus of subgrade reaction
Mx, My, Mxy : bending moments with respect to x and y axis and torsional moment, respectively
p3(x, y) : vertical surface pressure on foundation
u3(x, y) : vertical displacement on the middle surface of the plate and on top of the soil

continuum, respectively
: vertical displacement in the soil continuum

εf : deformation vector
φ(z), γ : mode shape function and mode shape parameter, respectively
υ, υs : Poisson’s ratio of plate and foundation, respectively
Ω, Ωx, Ωy : rotation vector and components of rotation with respect to x and y axis, respectively
Ω, Ωp, Ωs : domain, plate domain and foundation domain, respectively
σf : moment vector

g
o

Df
e Df

k,

u3 x y z, ,( )
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Symbollic representation

[..., ...], <..., ...> : inner products for representing the domain and the boundary terms, respectively
[..., ...]σ , <..., ...>ε : dynamic and geometric boundary conditions, respectively
(...)^ : prescribed boundary condition term
(n)(...) : nth iteration
(...),α , (...)αβ : partial differentiations  and 

Abbreviations

DOF : degrees of freedom
FE, DFE, FDM, MFE : finite elements, displacement type finite elements, finite difference method and mixed 

finite elements, respectively
2D : two dimensional

∂ …( ) ∂α⁄ ∂2 …( ) ∂α∂β( )⁄




