
Structural Engineering and Mechanics, Vol. 19, No. 5 (2005) 567-580 567

Size effect in concrete blocks under local pressure
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Abstract. Numerous tests on concrete structure members under local pressure demonstrated that the
compressive strength of concrete at the loaded surface is increased by the confinement effect provided by
the enveloping concrete. Even though most design codes propose specific criteria for preventing bearing
failure, they do not take into consideration size effect which is an important phenomenon in the fracture
mechanics of concrete/reinforced concrete. In this paper, six series of square prism concrete blocks with
three different depths (size range = 1:4) and two different height/depth ratios of 2 and 3 are tested under
concentrated load. Ultimate loads obtained from the test results are analysed by means of the modified
size effect law (MSEL). Then, a prediction formula, which considers effect of both depth and height on
size effect, is proposed. The developed formula is compared with experimental data existing in the
literature. It is concluded that the observed size effect is in good agreement with the MSEL.
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1. Introduction

Concrete bearing strength determination is necessary for the design of concrete/reinforced
concrete members such as steel base plates of stanchions over concrete footings, building columns
on concrete pedestals, bridge bearing on concrete piers, anchorages in post-tensioned concrete
beams, concrete hinges and foundations of hydraulic structures. Most design codes (ACI-318 2002,
EC2 1992, EC3 1992, TS500 1984) have used the square-root formula by Hawkins (1968), which
does not account for size effect, for determining bearing capacity of concrete. However, it is well
known that strength of concrete structures generally tends to decrease with increasing structure size.
Size effect in concrete/reinforced concrete structures can be well explained by fracture mechanics.

The experimental investigations on fracture mechanics of cementitious materials until 1970s
indicated that classical linear elastic fracture mechanics (LEFM) is invalid for quasi-brittle materials
such as concrete. This inapplicability of LEFM is due to existence of an inelastic zone with large
scale and full cracks in front of the main crack tip in concrete. This so-called fracture process zone
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(FPZ) is ignored by LEFM. Consequently, several investigators have developed non-linear fracture
mechanics approaches to describe failure of concrete structures. Deterministic size effect laws
among these non-linear approaches, for instance Size Effect Law (SEL) by Bazant (1984) and
Modified Size Effect Law by Kim and Eo (1990), suggest that size effect on strength is primarily
related to a relatively large FPZ in concrete. One of the main requirements in these laws is the need
to test samples, which are geometrically similar and made of the same material, and which must
provide a minimum size range = 1:4. In practice, the effect of specimen size on strength of concrete
has been investigated by means of SEL for specimens of Modes I-III (Bazant and Pfeiffer 1987,
Bazant and ener 1987, Bazant and Prat 1988), while various attempts to apply MSEL to the
compression-loaded specimens have been reported in the literature (Kim and Eo 1990, Kim et al.
1999, 2000, 2001). 

The size effect in bearing strength of concrete was first investigated by Niyogi (1974) for cube
specimens, experimentally. Ahmed et al. (1998) studied size effect on the square concrete blocks
with height/depth ratio of 1.5 and loaded over a limited area, both theoretically and experimentally.
Nevertheless, size range of specimens used in the above two investigations is not accurate for
applying the deterministic size effect approaches. Ince and Arici (2004) first presented a
deterministic approach derived from the experimental results on size effect in bearing strength of
concrete cube specimens with size range=1:4. 

In this study, six series of geometrically similar concrete square prism specimens of different size
(size range 1:4) are tested by concentric bearing loading. The maximum loads obtained from the test
results are analysed by using MSEL, and an approximate formula based on MSEL predicting
bearing strength of concrete is developed. Such a formula indicates a good agreement with 34
existing test data in the literature (Hawkins 1968, Niyogi 1973, Ahmed et al. 1998).

2. Bearing strength of concrete

Experiments on concrete structural members under local pressure indicated that the compressive
strength of concrete at the bearing area is increased by the confinement effect provided by the
enveloping concrete. Failure of the member leads to a splitting crack directly under the localized
load due to the transverse tensile stresses, as is shown in Fig. 1(a). Previous investigators found that
bearing resistance of concrete is highly affected by the loaded area, cross-section of the loaded
member, size of specimen, height of specimen, loading conditions and the compressive strength of
concrete.

The bearing strength in construction materials was first investigated by Bauschinger (1876). For
bearing strength, he proposed the well-known cube-root formula, which is based on a limited number
of tests on sandstone cubes and, unfortunately, gives us incorrect results for concrete. Meyerhof
(1953) and Shelson (1957) emphasized that failures of concrete subjected to concentrated loading are
similar to those observed in triaxial compression test. To explain bearing failure in concrete block, Au
and Baird (1960) developed a theory on the formation of an inverted pyramid under the loading plate.
They assumed that the downward penetration of the inverted pyramid prior to failure would cause
horizontal pressures. The resultant of these pressures was assumed to produce combined tension and
bending in the concrete block. Failure would then occur when the maximum tensile stress at the top
of the block exceeds the tensile strength of the concrete. Although this theory can be realistic for
crack initiation, it does not seem reasonable at the final failure (Hawkins 1960).
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Hawkins (1968) proposed a realistic approach on the bearing strength of concrete by performing
tests on concrete blocks supported on a stiff support and loaded through a rigid plate. He observed
that, as the load is gradually increased, the first crack labelled 1 in Fig. 1(b) occurs in the vertical
direction inside the block. When the maximum load is reached, a conical wedge labelled 2 in Fig. 1(b)
punches out from beneath the bearing plate, and the radial cracks labelled 3 in Fig. 1(c) emerge on
the loading surface. Typically, four radial cracks occur as indicated in Fig. 1(c). However, there also
exist cases with more cracks. Moreover, experiments have revealed that the apex angle, θ, of the
pyramid in Fig. 1(b) approximately varies from 38 to 70 deg (Hawkins 1960, Shelson 1957, Au and
Baird 1960, Hawkins 1968).

Niyogi (1973, 1974) investigated the effect of some factors, such as specimen geometry, nature of
support, eccentricity, mix properties, strength of concrete and specimen size, on the bearing
resistance of concrete. Ahmed et al. (1998) performed experiments on square concrete blocks with a
height/depth ratio of 1.5 and two different depth values (200, 400 mm). It was concluded that the
ratio of bearing capacity of large to small concrete blocks can approximately be scaled to 1/S1/4,
where S is the scale factor. Ince and Arici (2004) tested 54 cube specimens with size range = 1:4
under concentrated load, and proposed an approximate formula, based on the extended size effect
law (Bazant 2002), for estimating bearing strength of concrete cubes. 

In practice, two solutions are used to prevent failure of bearing in concrete/reinforced concrete/
pre-stressed concrete structures. These are: (1) placing reinforcement in the tension zone; (2)
limiting the bearing stresses in order to prevent the internal cracking (MacGregor 1992). However,
the existing design codes generally prefer the second approach. This provides the following square-
root formula by Hawkins:

(1)

where q, Pu and fc'  refer to the bearing strength, the failure load and the compressive strength of
concrete, respectively. A1 is the bearing area and Ac is called the effective area. It is assumed that
load P spreads out into the concrete block at a slope of 2 horizontal to 1 vertical to the level at
which spreading first reaches the edge of the block. The area Ac is calculated at this level, as is
clearly described in Fig. 2.

q
Pu

A1

----- fc′ R= = , R
Ac

A1

-----=

Fig. 1 Failure mechanism in bearing test (a) occurrence of bearing stress, (b) vertical cracking, (c) final failure
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ACI-318 (2002) and TS500 (1984) limit the bearing strength of concrete according to ,
while the bearing capacity of concrete is restricted to 3.3 times of the compressive strength of
concrete by EC2 (1992) and EC3 (1992). Nevertheless, these bounds are often on the side of
extreme safety for high R ratios, as is shown in Fig. 3. In this figure, test results of some
investigators (only specimens with the ratio of height/depth >1 are considered in this study), Eq. (1)
and the lower bound of design codes are illustrated, comparatively in the  against  diagram.
The geometric and material properties and loading conditions for the test specimens in Fig. 3 are
reported in Table 1. Note that the cubic strength fc [MPa] values have been converted to the
cylindrical strength  in Table 1, according to the following expression by Neville (1995):

(2)

q 2fc′≤

q fc′⁄ R

fc′

fc′ 0.76 0.2log
fc

19.58
------------- 

 + fc=

Fig. 2 Definition of A1 and Ac areas

Fig. 3 Comparison of Hawkins and design codes approaches with existing test data
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3. Size effect in concrete fracture

Numerous experiments on geometrically similar concrete/reinforced concrete specimens of
different sizes revealed that the nominal strength tends to decrease with increasing their sizes. This
is called size effect in fracture mechanics of concrete/reinforced concrete. Size effect cannot be
explained by classical continuum theories like elasticity and plasticity, which have been widely used
by the existing design codes for concrete structures. As specimen size increases, the strength is
expected to decrease due to the probability of presence of flaws. 

Historically, the fact that the strength of brittle materials is affected by the presence of
imperfections was first suggested by Griffith (1920). Due to his conclusion, it can be expected that
the value of the ultimate strength will depend upon the size of specimens. Subsequently, Weibull
(1939) proposed the weakest-link theory based on a statistical approach which predicts a decreasing
in material strength with increasing specimen volume. The theory has been used for estimating
safety factors of materials. In the early 1980s, it was realized that neither LEFM nor Weibull’s
approach were adequate for predicting size effect in cementitious materials (Walsh 1972, Bazant
1991). For this reason, several investigators have developed deterministic size effect theories based
on non-linear fracture mechanics.

Besides the statistical based size effect, the second size effect referred to as the fracture-type size
effect in concrete fracture has been described by Bazant (1984). This is referred to as the size effect
law (SEL). Bazant derived SEL, by considering the energy balance at crack propagation, and
dimensional analysis of geometrically similar specimens.

The so-called SEL is expressed as

(3)

in which σN presents the nominal strength at failure. Such a strength is expressed as σN = cnPu/td,
where d is characteristic dimension of the specimen, chosen to coincide with the specimen depth, t
is the specimen thickness, and cn is a constant depending on the load type. σ0 is referred to as the
strength parameter and B and d0 are empirical constants which can be determined by curve fitting to
the test results of geometrically similar specimens. This is an approach which expresses the size
effect in concrete specimens based on fracture mechanics. SEL has been derived based on the

σN Bσ0 1
d
d0

-----+
1 2⁄–

=

Table 1 The investigations on bearing strength of concrete blocks in the literature

Ref. n R
fc'

[MPa]
dmax 

[mm]
d

 [mm] h/d Cross 
section

Loading
plate

Loading 
case

Hawkins (1968) 6 1.8-36 11.3-33.5 1.5  101.6,
152.4 2 circular circular concentric

Niyogi (1973) 80 2.67-64 19.7-25.8* 12.7 203.2 1.5, 2, 3 square square, 
rectangular concentric

Ahmed et al.
(1998) 9 3-16 50.3* 20 200,

400 1.5 square square, 
rectangular

concentric,
eccentric

n = number of specimens, dmax = maximum aggregate size, d = specimen depth, h = specimen height.
*converted from cube strength to cylinder strength
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following assumptions: the potential energy released during the fracture is proportional to the crack
length (a), to the area of the cracking zone; the width of the front of cracking zone (ndmax) is
constant, where n is an empirical constant and dmax is the maximum aggregate size.

SEL of Bazant is illustrated in Fig. 4. For small test specimens there is no size effect due to the
strength at failure being proportional to the material strength. This case corresponds to the strength
criterion, and is represented by the horizontal line in Fig. 4. In the large test specimens, we have the
maximum possible size effect. The material strength at failure is proportional to a characteristic
dimension and corresponds to the classical linear elastic fracture mechanics, which is represented by
the inclined line with slope −1/2 in Fig. 4. The intersection of the two asymptotes corresponds to
d = d0 and is called the transitional size. The results of most concrete test specimens in existing
experimental studies lie in the transition zone between these extreme cases. Contrary to LEFM, size
effect in the Weibull-type statistical approach is characterized a straight line with slope −1/6, as is
shown in Fig. 4 (Bazant and Yavari 2005).

Size effect in concrete behaviour has been extensively studied both experimentally and
theoretically with success (Bazant and Pfeiffer 1987, Bazant and ener 1987, Bazant and Prat 1988,
Marti 1989). However, some published experiments indicate results different from those predicted
by the Bazant’s SEL. Large concrete members without initial cracks such as Hasegawa’s (1985)
split-cylinder test specimens and Shioya’s (1989) test beams can resist some stress. Consequently,
Kim and Eo (1990) developed a modified size effect law (MSEL) based on the concept of dissimilar
cracks, where an empirical constant of size independent strength σR is added to Eq. (3):

(4)

Eq. (4) is also called the extended size effect law in a different approach by Bazant (2002).
According to MSEL, the size effect becomes insignificant for both very small and very large
characteristic dimensions, as represented by the curved thick solid line in Fig. 4. In practice, d0 in
Eq. (4) is chosen about 2-3dmax (Kim et al. 1999, 2000, 2001). 

S

σN Bσ0 1
d
d0

-----+
1 2⁄–

= σR+

Fig. 4 Size Effect Law (SEL) and Modified Size Effect Law (MSEL) 
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4. Experimental program

The test specimens considered are square prisms with the height-to-depth ratio equal to 2 and 3.
To determine size effect, geometrically similar specimens with cross-sectional depths d = 50, 100
and 200 mm were tested. Not only size of specimen but also variables of the ratio of height/depth
h/d, maximum aggregate size dmax and ratio of effective area to the bearing area R are here
considered in order to find a general expression of the bearing resistance strength of concrete. Six
series specimens (54 prism specimens), namely A, B, C, D, E and F were tested concerning these
three variables in different combinations. All specimens in each series were cast from the same
batch of concrete. Three identical cylinder specimens with diameter 150 mm and length 300 mm
were also cast from each batch of concrete to determine compressive strength of concrete. The
maximum aggregate size was 4 mm for batch A, B, 8 mm for C, D and 16 mm for E, F,
respectively. The maximum sand grain size was 4 mm for each batch. Mineralogically, the aggregate
consisted of river sand. The aggregate and sand were air-dried prior to mixing. The Portland cement
was used for the production of concrete mixtures which had a 28 day compressive strength of
32.5 MPa. The specimens were cast with the side of depth in a vertical position. All the specimens
and cylinders were removed from the mold after 1 day and were subsequently cured till testing at
28 days, in a moist room of 95 percent relative humidity and temperature of about 25oC.

All the specimens were tested in a digital compression machine with a capacity of 2500 kN
except for the largest specimens in height (h = 600 mm), which were tested in MFL system
compression and bending machine with a capacity of 5000 kN. The specimens were loaded
monotonically until failure, through smooth steel bearing plates with various areas according to the
selected R values. Care was taken to apply a constant loading rate. Typically, it took about 8 min
(± 30 sec) to reach the maximum load for each specimen size. The smooth bearing plates of high
tensile steel were 10 mm thick. The steel plates did not indicate any flexural or any other
deformation after testing. The identical cylinders were tested at an age similar to that of the square
prism specimens.

5. Analysis of test results

5.1 Test results

For each of the 54 specimens, Table 2 summarizes the characteristic dimension d (specimen
depth), the compressive strength  of concrete, the maximum aggregate size dmax, the value of R,
the height/depth ratio h/d, the square bearing plate size a, the observed failure load Pu and the
nominal strength σN according to Eq. (1). In the same table, the mean normalized nominal strength
values  and the average apex angles θ values of the pyramid, which takes form below
the bearing plate, are also given for each specimen size.

As Niyogi (1974) and Ince and Arici (2004) previously observed in their studies, basically there
was no difference between the behaviour of specimens having different sizes under similar
concentrated loading. They had the typical vertical cracking more or less along the center line of
one or more side faces as described in section 2. In addition, it was seen that three or more cracks
spread radially from the loaded surface.

fc′

σN fc′ R⁄( )
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5.2 Analysis of test data

To obtain a general equation that can predict the bearing strength of concrete prism specimens at
failure, all of the series are used in the analysis. For this reason, the term of σ0 in Eq. (3) or Eq. (4)
is taken as , proposed by Hawkins, since each test series involves different R ratios and
compressive strength values . However, the following factors must be considered when a size
effect formula on bearing strength of concrete is proposed. 

5.2.1 Effect of maximum aggregate size on size effect
Eq. (4) is valid only for geometrically similar structures of specimens made of concrete with same

maximum aggregate size dmax. Nevertheless, it is found in the previous study by Ince and Arici
(2004) that the effect of maximum aggregate size on the bearing capacity of concrete can be
negligible within the practical range of size. Correspondingly, Kim et al. (1999) analysed the size
effect on compressive strength of concrete cylinders by using total of 678 test data in the literature,
and concluded that the effect of maximum aggregate size on size effect can be ignored.

5.2.2 Effect of apex angle of pyramid and height/depth ratio of specimen on size effect 
The apex angles θ of the pyramids could not be accurately measured since the sides of the

pyramids were not perfectly symmetrical. Nevertheless, it was observed that θ values vary from
approximately 40 to 57o. The observed range is in good agreement with the range in the literature

fc′ R
fc′

Table 2 Experimental results

Series fc'
[MPa]

dmax

[mm] R h/d
a

[mm]
d

[mm]

Pu [kN] σN = Pu/a2 [MPa] θ
(deg)1 2 3 1 2 3

A

20 50 23.2 22.9 23.9 58.00 57.25 59.75 1.149 40
20.3 4 6.25 2 40 100 82.7 86.3 88.3 51.69 53.94 55.19 1.056 47

80 200 265 262.3 272.9 41.41 40.98 42.64 0.821 51

B
20 50 23.1 24.2 24.1 57.75 60.50 60.25 1.057 40

22.5 4 6.25 3 40 100 92.7 90.2 89.7 57.94 56.38 56.06 1.009 45
80 200 290 283 305 45.31 44.22 47.66 0.813 51

C
20 50 36.5 35.9 36.3 91.25 89.75 90.75 1.109 40

32.7 8 6.25 2 40 100 136.7 134.1 134.7 85.44 83.81 84.19 1.034 46
80 200 420.6 415.4 417.1 65.72 64.91 65.17 0.799 48

D
12.5 50 21.8 22.1 21.9 139.52 141.44 140.16 1.074 44

32.7 8 16.0 2 25 100 81.5 80.8 82.7 130.40 129.28 132.32 1.000 51
50 200 297.1 283.5 290.1 118.84 113.40 116.04 0.888 53

E
20 50 28.7 28.9 29.6 71.75 72.25 74.00 1.153 48

25.2 16 6.25 2 40 100 106.2 107.8 107.9 66.38 67.38 67.44 1.064 52
80 200 365 373 359.1 57.03 58.28 56.11 0.907 57

F
20 50 29.6 29.7 29.6 74.00 74.25 74.00 1.082 46

27.4 16 6.25 3 40 100 112.3 113.9 118 70.19 71.19 73.75 1.047 52
80 200 367 367 395 57.34 57.34 61.72 0.858 53

σN

fc′ R
------------
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(Shelson 1957, Au and Baird 1960, Hawkins 1960, 1968). However, the average values of θ
generally increase with increasing specimen depth, as is shown in Table 2. This means that this type
of failure is similar to failure of Brazilian split-tension specimens. On the other hand, it is observed
from Table 2 that the values of θ are not affected from the ratios of height/depth of samples.
Furthermore, these values are approximately the same as the θ values measured on the cube
specimens in the previous study by Ince and Arici (2004), in which cube sizes were d = 50, 100 and
200 mm. Fig. 5 shows, for different values of height/depth ratio (in which, h/d = 1 presents cube
specimens (Ince and Arici 2004)), the apex angle of the pyramid against the specimen size, for two
different maximum aggregate diameters. 

Fig. 6 shows the mean values of the normalized bearing strength  against the variation
of height/depth ratio (h/d), for the specimens with d = 200 mm in Table 2. In the same figure, the
best-fit curve, expressed by a power function, is also given. As is shown in Fig. 6, the normalized
strength significantly decreases for low h/d ratios while it slightly reduces for high h/d ratios. This
type of decrease in strength is probably due to a reduced influence of the base friction force
between the bearing plate and the sample with increasing the specimen height, and also due to size
effect (Niyogi 1973). However, the large scatter at value of h/d = 1 shown in Fig. 6 is due to the
high confinement effect under the bearing plate, because the confinement is inversely proportional to
the specimen volume (Kim et al. 1999). Therefore, it may be concluded from Fig. 6 that, when
investigating the effect of specimen size on bearing strength of concrete, it needs to make a
distinction between cube (h/d = 1) and square prism block with h/d > 1. 

5.2.3 Effect of failure mode of specimens on size effect
Failure in test of concrete blocks loaded over a limited area is due to axial splitting cracks,

combined with frictional plasticity on the pyramid surface under the loading plate. In Table 2, if
variation of the average apex angles of pyramid according to specimen size is considered, it is
concluded that the height of pyramid decreases relatively as increasing specimen size. From this, the
following two results can be noted: (1) for the small specimen size, the load to cause the splitting

q fc′ R⁄( )

Fig. 5 Variation of apex angle of pyramid against
specimen size, for different maximum
aggregate sizes (R = 6.25) 

Fig. 6 Relation between specimen height/depth ratio
and bearing strength, for different maximum
aggregate sizes (d = 200 mm)
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crack is much higher than the load to cause frictional slip of the pyramid surface; (2) at large sizes,
the ultimate load is reached by frictional plastic slip in a small highly confined pyramid under the
bearing plate. This indicates that there is a transition to some non-brittle failure friction mechanism
at the ultimate load for a certain sufficiently large size. Bazant proposes, for this type of failure, that
it is necessary to add a lower limit value (σR) to size effect formula like MSEL. This might also be
true for some other tests such as compression tests (Kim et al. 1999) and split-tension cylinder test
(Bazant et al. 1991). 

5.2.4 Derivation of the size effect relationship
From the above discussions, the nominal bearing strength of concrete blocks can be expressed by:

 (5)

in which B, d0, n and α are positive empirical constants. Eq. (5) takes into account the effects of
both depth and height on size effect formula for the bearing strength of concrete blocks. A similar
approach was also utilized for size effect on flexural compressive strength of concrete by Kim et al.
(2001). In the present study, the Levenberg-Marquardt non-linear curve fitting algorithm was used
for determining the empirical constants in Eq. (5): 

(6)

where  is in MPa and d and h are in mm. Fig. 7 shows test data and Eq. (6) curve in the
 against  diagram. In the same figure, the statistical constants

(correlation coefficient r and coefficient ω of variation (vertical deviations from the regression line))
for Eq. (6) are also given. The statistical constants indicate that Eq. (6) agrees with the test results
quite well (ω < 0.100, r > 0.900).

σN fc′ R B 1
d
d0

----- h d⁄( )n+
1 2⁄–

α+
 
 
 

=

σN fc ′ R
1.03

1
d

94.27
------------- h

d
--- 

 
0.22

+

------------------------------------------- 0.32+ for h d⁄ 1>=

fc′
σN fc ′ R⁄ 1 d 94.27 h d⁄( )0.22⁄+

Fig. 7 Size effect in bearing test of concrete blocks
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6. Comparison with previous studies

In previous investigations, some effects on the bearing strength of concrete blocks were evaluated
(except for the work by Ahmed et al. 1998), as summarized in Table 1: R values, bearing plate
shape, disposition of the bearing plate with respect to the center of loaded surface, and height/depth
ratio. However, in the work of Ahmed et al., size effect cannot be clearly revealed since size range
is less than 1:4, and specimen sizes are d = 200 and 400 mm.

Fig. 8 shows the diagram of experimental versus predicted values of Eq. (6) for bearing capacity
of concrete. The coefficient of determination R2, the standard error σx|y and the approximate %5 and
%95 confidence limits of the vertical deviations of the data points from the line of slope 1 between
experimental and predicted bearing strength of concrete are also shown in Fig. 8. These confidence
limits, marked in the Fig. 8, have been estimated on the basis of the Gaussian distribution by
passing lines parallel to the line of slope 1 at vertical distances ±2σx| y. In spite of the large scatter,
which is due to test data obtained from different laboratories for different concretes, the figure
shows that Eq. (6) is in good agreement with the test results considered.

7. Conclusions

From the findings of these experimental and statistical investigations on size effect of bearing
strength of square prism concrete blocks with the ratio of height/depth > 1, the following
conclusions can be drawn:

1. The present experimental data indicate that the nominal strength at failure decreases as the
specimen size increases. Consequently, the present test results are in a good agreement with
MSEL.

Fig. 8 Plots of experimental versus predicted values of concrete bearing strength
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2. The nominal bearing strength significantly reduces for low height/depth ratios, while it
decreases slightly for high height/depth ratios.

3. Although the height of pyramid beneath bearing plate decreases with the increasing size of
specimen, it is independent of the specimen height/depth ratio. 

4. From the comparison of previous test results with Eq. (6), such a relationship seems to be
useful for determining bearing strength of square prism concrete blocks.
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Notation

a : square bearing plate size (mm)
A1 : bearing area (mm2)
Ac : effective area, as defined by ACI (mm2)
B : empirical constant
cn : constant depending on load type
d : specimen depth (mm)
d0 : empirical constant
dmax : maximum aggregate size (mm)
fc : concrete cube strength (MPa)
fc' : concrete cylinder strength (MPa)
h : specimen height (mm)
n : number of specimens, empirical constant
Pu : ultimate load (kN)
q : bearing strength (MPa)
R : Ac/A1

r : correlation coefficient
R2 : coefficient of deterimination
S : scale factor
t : specimen thickness (mm)
α : empirical constant
θ : apex angle of pyramid under bearing plate (deg)
σ0 : strength parameter (MPa)
σN : nominal strength (MPa)
σR : size independent stress (MPa)
σx|y : standard error
ω : coefficient of variation
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FPZ : Fracture Process Zone
LEKM : Linear Elastic Fracture Mechanics
MSEL : Modified Size Effect Law
SEL : Size Effect Law




