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Abstract. Using two different, but related approaches, an exact dynamic stiffness matrix for a two-part
beam-mass system is developed from the free vibration theory of a Bernoulli-Euler beam. The first
approach is based on matrix transformation while the second one is a direct approach in which the
kinematical conditions at the interfaces of the two-part beam-mass system are satisfied. Both procedures
allow an exact free vibration analysis of structures such as a plane or a space frame, consisting of one or
more two-part beam-mass systems. The two-part beam-mass system described in this paper is essentially a
structural member consisting of two different beam segments between which there is a rigid mass element
that may have rotatory inertia. Numerical checks to show that the two methods generate identical dynamic
stiffness matrices were performed for a wide range of frequency values. Once the dynamic stiffness
matrix is obtained using any of the two methods, the Wittrick-Williams algorithm is applied to compute
the natural frequencies of some frameworks consisting of two-part beam-mass systems. Numerical results
are discussed and the paper concludes with some remarks.
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1. Introduction

Beam-mass systems with varying degrees of complexities have been analysed by many
investigators using different methods. Dowell (1979) appears to be one of the earlier investigators
who studied some general properties of combined dynamical systems involving beams, springs, and
lumped masses. He made some useful observations for different component systems connected at
more than one points and provided solutions, which are particularly useful when establishing upper
and lower bounds of natural frequencies of complex vibrating systems. Some years later, Nicholson
and Bergman (1986) investigated the free vibration behaviour of combined dynamical systems by
using the classical method of separation of variables. They used Green’s function when solving the
generalised differential equations which eventually yielded the characteristic equation for the natural
frequencies of the system. However, one of the drawbacks of their method is that the convergence
towards an accurate result was somehow slow. Interestingly, Ercoli and Laura (1987) carried out an
analytical as well as experimental investigation on continuous beams having elastically mounted
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masses. From a theoretical standpoint, they obtained solution using different variational approaches.
They corroborated their theoretical predictions by experimental results. Liu et al. (1988) on the
other hand, used the Laplace transformation technique to formulate the frequency equations for
beams carrying intermediate concentrated masses. Their investigation covered both uniform and
non-uniform beams with one, two or three intermediate concentrated masses. Later, Wu and Lin
(1990) employed a technique which combines both analytical and numerical methods to study the
free vibration behaviour of uniform cantilever beams with point masses. Other contributors in this
field include Larrondo et al. (1992), Gurgoze (1996), Wu and Zhou (1998, 1999). In most of these
earlier works, the presence of a mass connected to a beam has often been assumed to be of
negligible size and concentrated at a point. Such simple models may lead to large errors in the
modal analysis if the mass has a sizeable dimension which is a significant proportion of that of the
beam. A classic example is an engine mounted on a high aspect ratio aircraft wing of a commercial
airliner. Of course, the wing may be idealised as an assembly of beams whereas the engine may be
assumed to be a lumped mass possessing almost infinite stiffness compared to that of the wing.
Clearly, the size of the engine may not be small enough to be regarded as a point mass when
carrying out an accurate free or forced vibration analysis of the combined wing-engine system
satisfactorily. It appears that this particular type of problems has been addressed only recently by
Kopmaz and Telli (2002) and Banerjee and Sobey (2003). The theory developed by these
investigators has only been applied to one-dimensional structures in a limited context. The solution
was restricted to a single two-part beam-mass system with specific boundary conditions at the ends.
Essentially, the works of Kopmaz and Telli (2002), and Banerjee and Sobey (2003) account for the
dynamic behaviour of a two-part beam-mass system consisting of two different beam segments
between which lies a rigidly connected mass/inertia element of finite length. 

The purpose of this paper is to extend the above investigations substantially so that a two-part
beam-mass system can be used in a framework. In order to achieve this, an exact dynamic stiffness
matrix of a two-part beam-mass system is developed from the free vibration theory of a Bernoulli-
Euler beam. The main advantage of the dynamic stiffness method is that it puts the analysis in a
much more general context in which a two-part beam-mass system can be a structural element so as
to form an integral part (or a component) of an overall final structure. 

The dynamic stiffness matrix of a two-part beam-mass system is developed in this paper by
employing two different approaches. The first approach is that of the transfer matrix method (Lee
2000, Syngellakis and Younes 1991, Tanaka et al. 1981) whereas the second one is a direct
approach which relies on satisfying the kinematical conditions at the joints of the combined system.
In the transfer matrix approach, the displacements and forces at one end of the two-part beam-mass
system are progressively transferred to the next adjacent end using suitable transformation. For
harmonic oscillation, the expressions for the displacements and forces are obtained from the exact
solutions of the governing differential equations of the combined system. The dynamic stiffness
matrix is finally developed by relating the forces and displacements at the two end-nodes of the
freely vibrating combined system. In the direct approach, the two-part beam-mass system is
idealised using two different coordinate systems. The Y-axes for both coordinate systems are
vertical. However, the X-axis for the left-hand beam element is from left to right whereas the
corresponding X-axis for the right-hand one is from right to left. By approaching the problem from
both sides of the coordinate systems, and satisfying the kinematical conditions at the joints between
the beams and the rigid mass, the dynamic stiffness matrix is derived. In both approaches, the
displacement and force vectors at one end of the combined system is related to those of the other.
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The algorithm of Wittrick and Williams (Wittrick and Williams 1971, Williams and Wittrick 1983
Williams and Howson 1997) is finally applied to the resulting dynamic stiffness matrix to yield
natural frequencies of frameworks consisting of two-part beam-mass systems. 

2. Theory

A two-part beam-mass system is shown in a right-handed rectangular Cartesian coordinate system
in Fig. 1. The central element, which connects two beam elements at its end, is a rigid body with
mass , length l3, and mass moment of inertia Iα about its centroidal axis. The lengths of the two
beam elements are l1 and l2 respectively, whereas the mass per unit length, extensional rigidity and
bending rigidity of the two beam elements are m1, E1A1, E1I1, and m2, E2A2, E2I2, respectively. The
total length of the whole assembly is L as shown in the figure.

2.1 Transfer matrix approach

The transfer matrix approach is used here to analyse the free vibratory motion of the combined
system. The method essentially focuses on the derivation of a relationship between the forces and
displacements at the left-hand end A, with those at the right-hand end D of the combined system
(see Fig. 1). 

The state vector for this problem in general form is defined as

S = [u  v  θ  P  S  M]T (1)

where u is the axial displacement, v is the transverse bending displacement, θ is the anti-clockwise
(tangential) bending rotation, P is the axial force, S is the shear force and M is the bending moment
at any cross-section of the beam-mass system. Note that the superscript T denotes a transpose. 

The transfer matrix method allows the state vector at the point B to be expressed in terms of that
at A, (see Fig. 1) as follows

(2)

where SA and SB are the state vectors at points A and B respectively, and T1 is the corresponding
transfer matrix relating the two. 

Likewise, the state vector at the point D (SD) can be determined in terms of that at C (SC) by
using the transfer matrix T2 as follows 

m3
*

SB T1SA=

Fig. 1 Notation and coordinate system of a two-part beam-mass system for the transfer matrix method
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(3)

For the central member which is a rigid body, the state vector SC at C can similarly be expressed
in terms of SB at B by using the transfer matrix T3 to give

(4)

Finally, the force displacement relationship between the two ends of the freely vibrating combined
system is obtained in the form of the following matrix relationship.

(5)

where  are the three transfer matrices corresponding to each part of the two-part
beam mass system. 

The equations of motion in free longitudinal and flexural vibration for the two beam elements
shown in Fig. 1 are, 

(6)

and

(7)

where i (i = 1, 2) denotes the left-hand and right-hand beam members, respectively. 
For harmonic oscillation with circular (angular) frequency ω, the displacements ui and vi can be

expressed as

(8)

where Ui and Vi are the amplitudes of longitudinal and flexural displacements in free vibration
respectively.

Substituting the Eqs. (8) into Eqs. (6) and (7) gives

(9)

(10)

where 

(11)

(12)

SD T2SC=

SC T3SB=

SD TSA T2T3T1SA= =

Ti i 1 2 3, ,=( )

EiAi

∂ 2ui

∂xi
2

---------- mi

∂ 2ui

∂t
2

----------=

EiIi

∂ 4vi

∂xi
4

---------- mi

∂ 2vi

∂t
2

----------+ 0=

ui xi t,( ) Ui xi( )eiωt=

vi xi t,( ) Vi xi( )eiωt= 



d
2
Ui

dxi
2

----------- α i
2Ui–=

d 4Vi

dxi
4

----------- β i
4Vi=

α i
2

miω
2

EiAi⁄=

β i
4

miω
2

EiIi⁄=
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The solutions of differential Eqs. (9) and (10) are in the usual notation given by

(13)

(14)

where fi , gi , ai, bi, ci and di (i = 1, 2) are two sets of six arbitrary constants for the two beam
elements respectively.

The bending rotation, axial force, shear force and bending moment of the beam element can be
written as (see Fig. 2(a) for sign convention) 

(15)

(16)

(17)

(18)

For each beam element, the right-hand state vector can be written in terms of the left-hand end
state vector by substituting appropriate properties and boundary conditions for each element. For
instance, the transfer matrix T1 for the beam element AB relating the state vector at A to that at B
can be obtained as follows. 

Substituting  into Eqs. (13)-(18) gives the state vector at A as 

(19)

Ui ficosα ixi gisinα ixi+=

Vi aicoshβixi bisinhβix cicosβixi disinβixi+ + +=

θi

dVi

dxi

-------- βi aisinhβixi bicoshβixi cisinβixi– dicosβixi+ +( )= =

Pi EiAi

dUi

dxi

--------– EiAiα i fisinα ixi gicosα ixi–( )= =

Si EiIi

d 3Vi

dxi
3

---------- EiIiβi
3

aisinhβixi bicoshβixi cisinβixi disinβixi–+ +( )= =

Mi E– iIi

d 2Vi

dxi
2

---------- E– iIiβi
2

aicoshβixi bisinhβixi cicosβixi disinβixi––+( )= =

x1 0=

UA f1                   PA E1A1g1α1–= =

VA a1 c1+    SA E1I1β1
3 b1 d1–( )= =

θA β1 b1 d1+( ) MA E1I1β1
2

a1 c1–( )–= = 





Fig. 2 Sign convention for positive axial force (P), shear force (S) and bending moment (M) (a) for a beam
element, (b) for a rigid mass element
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At  for the end B, the state vector at B can be obtained from Eqs. (13)-(18) to give, 

(20)

Now the six constants ( f1, g1, a1, b1, c1 and d1) in Eqs. (19) and (20) can be eliminated to form
the transfer matrix T1 relating the state vectors at B and A (see Fig. 1). 

Following the same procedure T2 can be derived for the right-hand beam element as well. 
Thus,  in general can be expressed as

(21)

For both beam elements, the components of the matrix  can be expressed by
substituting appropriate beam parameters. The elements of Ti are as follows

(22)

x1 l1=

UB f1cosα1l1 g1sinα 1l1+=

VB a1coshβ1l1 b1sinhβ1l1 c1cosβ1l1 d1sinβ1l1+ + +=

θB β1 a1sinhβ1l1 b1coshβ1l1 c1sinβ1l1– d1cosβ1l1+ +( )=

PB E1A1α1 f1sinα 1l1 g1cosα1l1–( )=

SB E1I1β1
3 a1sinhβ1l1 b1coshβ1l1 c1sinβ1l1 d1cosβ1l1–+ +( )=

MB E1I1β1
2

a1coshβ1l1 b1sinhβ1l1 c1cosβ1l1– d1sinβ1l1–+( )–= 











Ti i 1 2,=( )

Ti

T11  0  0  T14  0  0

0  T22  T23  0  T25  T26

0  T32  T33  0  T35  T36

T41  0  0  T44  0  0

0  T52  T53  0  T55  T56

0  T62  T63  0  T65  T66

=

Ti i 1 2,=( )

T11 T44 cosα ili= =

T14 sinα ili– EiAiα i( )⁄=

T22 T33 T55 T66 coshβili cosβili+( ) 2⁄= = = =

T23 T65– sinhβili sinβili+( ) 2βi( )⁄= =

T25 sinhβili sinβili–( ) 2EiIiβi
3( )⁄=

T26 T35– coshβili cosβili–( )– 2EiIiβi
2( )⁄= =

T32 T56– βi sinhβili sinβili–( ) 2⁄= =

T36 sinhβili sinβili+( )– 2EiIiβi( )⁄=

T41 EiAiα= isinα ili

T52 EiIiβi
3 sinhβili sinβili+( ) 2⁄=

T53 T62– EiIiβi
2 coshβili cosβili–( ) 2⁄= =

T63 EiIiβi sinhβili sinβili–( ) 2⁄–= 
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The rigid element, which may be considered to be a non-uniform rigid mass of length l3 with its
centre of gravity located at a distance λ l3 from one end (see Fig. 2b). 

The equations of motion follow from the equilibrium and compatibility conditions of the element
as follows (see Figs. 1 and 2)

(23)

The state vector SC at the end C can be written in terms of that at the end B by using the above
conditions. In matrix notation, this transfer matrix T3 is

(24)

where

(25)

Using the matrices given by Eqs. (21) and (24), the final matrix T (see Eq. 5) of the combined
system can be obtained as

(26)

where each of the A, B, C, and D matrices is a 3 × 3 sub-matrix. 
Now the relationship between forces and displacements can be rearranged with the help of Eq. (5)

to give 

(27)

where 

(28)

UC UB=

VC VB l3θB+=

θC θB=

PB PC– m3
*ω2UB–=

SB SC– ω2 λVC 1 λ–( )VB+[ ] m3
*–=

MC MB– SBλ l3 SC 1 λ–( )l3+ + ω2IαθB= 











T3

1  0  0  0  0  0

0  1  l3  0  0  0

0  0  1  0  0  0

m3
*ω2  0  0  1  0  0

0  m3
*ω2  ω2

m3
*λ l3  0  1  0

0  µ1  µ2  0  l3–   1

=

µ1 ω2m3
* 1 λ–( )l3–=

µ2 ω2
m3

*λ 1 λ–( )l3
2

Iα–[ ]–= 



T A  B
C  D

=

F Kδ=

δ UA  VA  θA  UD  VD  θD[ ] T=

F PA  SA  MA  PD  SD  MD[ ] T= 
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δ and F above are the displacement and force vectors at the two ends A and D of the combined
system (see Fig. 1). Note that for presentational purposes, the column vectors for nodal
displacements and nodal forces are represented by their corresponding transpose. The required
frequency dependent dynamic stiffness matrix for the combined system can be expressed after some
matrix manipulation as 

(29)

2.2 Direct approach

Two coordinate systems, namely O1X1Y1 and O2X2Y2 shown in Fig. 3, are chosen for the left-
hand and right-hand beam elements respectively. Axial and bending stiffnesses are uncoupled and
they are obtained by separate consideration of axial and bending motion of the combined system. 

The equations of motion in free longitudinal and flexural vibration for the two beam elements AB
and DC are given by Eqs. (6) and (7). Assuming harmonic oscillation as in Eqs. (8), and
introducing the non-dimensional length ξi so that 

(30)

Eqs. (9) and (10) can be re-written in non-dimensional form as shown below

(31)

(32)

where 

(33)

(34)

K B 1– A    – B 1–

C DB 1– A  – DB 1–
=

ξ i xi li⁄=

d
2
Ui

dξ i
2

----------- γi
2Ui+ 0=

d 4Vi

dξ i
4

---------- ki
4Vi– 0=

γ i
2 α i

2
li

2=

ki
4 β i

4
l i

4=

Fig. 3 Notation and coordinate system of a two-part beam-mass system for the direct method



Exact natural frequencies of structures consisting of two-part beam-mass systems 559

The solutions of differential Eqs. (31) and (32) are given by 

(35)

(36)

where  (i = 1, 2) are two sets of six different arbitrary constants for the two beam
elements AB and DC respectively.

The bending rotation, axial force, shear force and bending moment of the beam elements can be
expressed as

(37)

(38)

(39)

(40)

At the intersections at  and  (i.e.,  and ) for points B and C, see
Fig. 3, the following geometric and dynamic matching conditions must apply.

Continuity of slope:

(41)

Compatibility of longitudinal and flexural displacements:

(42)

(43)

Equilibrium equations for axial and transverse motions:

(44)

(45)

Equilibrium equation of rotational motion:

(46)

Ui ξ i( ) f̂icosγiξ i ĝisinγiξ i+=

Vi ξ i( ) âicoshkiξ i b̂isinhkiξ ĉicoskiξ i d̂isinkiξ i+ + +=

f̂i ĝi âi b̂i ĉi d̂i, , , , ,

θi ξ i( )
ki

li

--- âisinhkiξ i b̂icoshkiξ i ĉisinkiξ i– d̂icoskiξ i+ +( )=

Pi ξ i( )
EiAiγi

li

-------------- f̂isinγixi ĝicosγixi–( )=

Si ξ i( )
EiIiki

3

li
3

------------- âisinhkiξ i b̂icoshkiξ i ĉisinkiξ i d̂icoskiξ i–+ +( )=

Mi ξ i( )
EiIiki

2

li
2

-------------– âicoshkiξ i b̂isinhkiξ i ĉicoskiξ i– d̂isinkiξ i–+( )=

x1 l1= x2 l2= ξ1 1= ξ2 1=

1
l1

---VB
′ 1( ) 1

l2

---VC
′ 1( )–=

UB 1( ) UC 1( )–=

VB 1( )
l3

l1

---VB
′ 1( )+ VC 1( )=

PC 1( ) PB 1( ) m3
*ω2UB 1( )–=

E1I1

l1
3

----------VB
″′ 1( )

E2I2

l2
3

----------VC
″′ 1( )+ m3

*ω2 VB 1( )
l3

2l1

-------VB
′ 1( )+–=

E1I1

l1
2

----------VB
″ 1( )–

E2I2

l2
2

----------VC
″ 1( )

l3

2
---

E2I2

l2
2

----------VC
″′ 1( )

l3

2
---

E1I1

l1
3

----------VB
″′ 1( )–+ +

Iαω2

l1

-----------VB
′ 1( )–=
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Now it is possible to relate the two sets of the constants  and . Hence, the
derivation of dynamic stiffness matrix of the system essentially involves elimination of six constants
instead of the twelve. 

Applying the boundary conditions for the axial and bending displacements, bending rotations,
axial forces, shear forces and bending moments, and noting that ξi are zeros at end A and D for
i = 1 and i = 2 respectively, the following equations can be obtained 

(47)

and 

(48)

Eqs. (47) and (48) can now be written in the following matrix forms, 

(49)

(50)

where δ and F have already been defined in Eqs. (28), C is the unknown constant vector given by

(51)

The matrices R and Q in Eqs. (49) and (50) are obtained with the help of boundary conditions in
Eqs. (47)-(48) and the matching conditions in Eqs. (41)-(46). Thus the dynamic stiffness matrix of
the two-part beam-mass system K can be derived by eliminating the constant vector C from Eqs. (49)
and (50) and in this way relating the amplitudes of the forces F to those of the displacements δ at
the ends. In matrix notation, this is represented by Eq. (27) with

(52)

where K is the required frequency dependent 6 × 6 dynamic stiffness matrix of the two-part beam-
mass system. 

f̂i ĝi âi b̂i ĉi, , , , d̂i

UA f̂1   PA

E1A1γ1

l1

----------------ĝ1–= =

VA â1 ĉ1   SA+
E1I1k1

3

l1
3

--------------- b̂1 d̂1–( )= =

θA

k1

l1

---- b̂1 d̂1+( ) MA

E1I1k1
2

l1
2

--------------- â1 ĉ1–( )–==












UD f̂2   PD

E2A2γ2

l2

----------------ĝ2–= =

VD â2 ĉ2   SD+
E2I2k2

3

l2
3

--------------- b̂2 d̂2–( )= =

θD

k2

l2

---- b̂2 d̂2+( ) MD

E2I2k2
2

l2
2

--------------- â2 ĉ2–( )–==












δ RC=

F QC=

C f̂1 ĝ1 â1 b̂1 ĉ1 d̂1, , , , ,[ ] T=

K QR 1–=
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3. Solution procedures for the natural frequencies

The dynamic stiffness matrix described by Eqs. (29) or (52) can now be used to compute the
natural frequencies and mode shapes of a two-part beam-mass system with various end conditions
or a structure consisting of such systems. An accurate and reliable method of calculating the natural
frequencies and mode shapes of a structure consisting of two-part beam-mass systems using the
dynamic stiffness method, is to apply the algorithm of Wittrick and Williams (1971) which has
featured in numerous papers (see for example, Williams and Wittrick 1983, Banerjee 1997). Before
applying the algorithm the dynamic stiffness matrices of all individual elements in a structure are to
be assembled to form the overall dynamic stiffness matrix Kf of the final (complete) structure,
which may, of course, consist of a single element. The algorithm monitors the Sturm sequence
condition of Kf in such a way that there is no possibility of missing a frequency (or mode) of the
structure. This is, of course, not possible in the conventional finite element method. The algorithm
(unlike its proof) is very simple to use. The procedure is briefly summarised as follows.

According to the Wittrick-Williams algorithm, j, the number of natural frequencies passed, as ω is
increased from zero to ω*, is given by

(53)

where Kf , the overall dynamic stiffness matrix of the final structure whose elements all depend on
ω, is evaluated at ω = ω*; s{Kf} is the number of negative elements on the leading diagonal of Kf

∆,
Kf

∆ is the upper triangular matrix obtained by applying the usual form of Gauss elimination to Kf ,
and j0 is the number of natural frequencies of the structure still lying between ω = 0 and ω = ω*

when the displacement components to which Kf corresponds are all zeros. (Note that the structure
can still have natural frequencies when all its nodes are clamped, because exact member equations
allow each individual member to displace between nodes with an infinite number of degrees of
freedom, and hence infinite number of natural frequencies between nodes.) 

Thus

(54)

where jm is the number of natural frequencies between ω = 0 and ω = ω* for a component member
with its ends fully clamped, while the summation extends over all members of the structure. This
simple feature of the algorithm (coupled with the fact that successive trial frequencies can be chosen
by the user to bracket a natural frequency) can be used to converge on any required natural
frequency to any desired (or specified) accuracy. The paper by Williams and Howson (1977)
provides the step by step procedure for determining the natural frequencies of frameworks using the
dynamic stiffness matrix method. 

4. Results and discussions

The dynamic stiffness matrix of the two-part beam-mass system was first numerically checked to
machine accuracy for a wide range of frequency values using the above two formulations, namely
the transfer matrix approach and the direct approach, to ensure that the two methods give the same
results. 

j j0 s Kf{ }+=

j0 jm∑=
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It should be recognised that a single two-part beam-mass system for a given boundary condition
can be analysed for its free vibration characteristics by simply applying the boundary conditions of
the whole system, and without resorting to the development of its dynamic stiffness matrix. The
work of Kopmaz and Telli (2002) and that of Banerjee and Sobey (2003) are in fact examples of
this relatively simple approach in which the authors have solved the governing differential equations
of a two-part beam-mass system without developing the dynamic stiffness matrix. This approach is
all right for simple problems, but is inadequate when studying the free vibration characteristics of
frameworks consisting of two-part beam-mass systems. The present theory based on the dynamic
stiffness method has no such limitation because it can handle a single two-part beam-mass system
as well as a combination of them placed in any arbitrary orientations. 

To demonstrate some general applications of the theory, two illustrative examples are chosen. The
first example is a framework consisting of four structural elements of which three are uniform beam
elements without any rigid mass attachment whereas the fourth one has a rigid mass forming a two-
part beam-mass system. The geometrical details of this frame are shown in Fig. 4. The node
numbering and element types are also shown in the figure. Note that elements with the same
extensional rigidity EA, bending rigidity EI, and mass per unit length m constitute a single member
type. Thus the elements connecting nodes 1-3, 1-4, and 2-4 sharing the same above properties, have
been classified as member type I, see Fig. 4. Of course, the member connecting nodes 1 and 2 is a
two-part beam-mass system for this example, which is considered to be member type II as shown.
The data used for these two member types are as follows.

For member type I: 

  , m = 50 kg/m.

For member type II: 

  , m1 = m2 = 50 kg/m
 .

The first three natural frequencies for the frame were computed using the present theory and are
shown in column 2 of Table 1. In order to examine the effect of the length of the rigid mass, a
second set of results was obtained by assuming the rigid mass to be concentrated at a point on its
centre of gravity. The results are shown in column 3 of the table. A comparison of results shown in
columns 2 and 3 indicates that the size of the mass did not make much difference to the

EI 4.0 105 Nm2,×= EA 8.0 107 N×=

E1I1 E2I2 4.0 105 Nm2,×= = E1A1 E2A2 8.0 107 N×= =
Iα 1.562 kgm2= m3

* 75 kg=

Fig. 4 A framework consisting of two-part beam-mass systems with nodes 1 to 4, and member types I and II
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fundamental natural frequency, but it has altered the second and third natural frequencies by around
12%. The final set of results for this example was obtained by removing the rigid mass altogether.
The natural frequencies without the rigid mass are shown in the final column of the table. The
results indicate significant influence of the rigid mass on the three natural frequencies. Clearly, the
presence of the rigid mass reduces the natural frequencies as expected. 

The second example is also a framework, but is very different from the first one (see Fig. 5). This
particular problem was earlier solved by Williams and Howson (1977), but without any two-part
beam-mass system attachments. For the purposes of demonstration of the present theory, four of the
thirteen members of the original frame (earlier used by Williams and Howson 1977) were replaced
by two-part beam-mass systems as shown in the figure. The structural parameters used in the
analysis are as follows.

For member type I: 

 ,  
, ,

, , .

For member type II: 

 ,  
, ,

, , .

E1I1 E2I2 4.0 106 Nm2,×= = E1A1 E2A2 8.0 108 N×= =
m1 m2 30 kg m⁄= = l1 l2 3.0 m= =
m3

* 22.5 kg= Iα 1.875 kgm2= l3 1.0 m=

E1I1 E2I2 4.0 106 Nm2,×= = E1A1 E2A2 8.0 108 N×= =
m1 m2 30 kg m⁄= = l1 l2 1.15 m= =
m3

* 15.75 kg= Iα 0.643 kgm2= l3 0.70 m=

Table 1 The first three natural frequencies of the framework shown in Fig. 4, with and without 
a two-part beam-mass system (TPBMS) 

Natural frequency
number

Natural frequencies (Hz)

Current method With
no rigid massWith TPBMS With point mass

1 25.04 25.16 35.39
2 36.21 40.53 42.77
3 43.74 48.60 59.64

Fig. 5 A framework consisting of two-part beam-mass systems with nodes 1 to 8 and member types I, II and III
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For member type III: 

 ,  
, ,

, , .

The properties used for the rest of the members are same as those reported by Williams and
Howson (1977). Results are obtained for the first five natural frequencies of the frame using the
present theory and are shown in Table 2 alongside the results of Williams and Howson (1977). The
percentage difference shown indicates that the effect of the two-part beam-mass system can make
significant differences to some of the natural frequencies, particularly for the first and fifth
frequencies. 

5. Conclusions

By using two different approaches, the dynamic stiffness matrix of a two-part beam-mass system
has been developed and applied to frameworks. It has been shown that as a result of using the
present theory, the finite size of a rigid mass possessing rotatory inertia can be accounted for, in the
prediction of natural frequencies of frameworks accurately. The theory provides considerable scopes
for parametric studies to enable vibration attenuation of complex vibrating structures to be made, by
using two-part beam-mass systems and thus, placing the natural frequencies within appropriate and
desirable bands. Numerical results for natural frequencies are given for two example frameworks
and their significance has been discussed. The theory presented is expected to pave the way for
further research in the development of dynamic stiffness formulation of complex structural systems
combining both continuous and discrete elements. 
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E1I1 E2I2 4.0 106 Nm2,×= = E1A1 E2A2 8.0 108 N×= =
m1 m2 30 kg m⁄= = l1 l2 1.9 m= =
m3

* 27.0 kg= Iα 3.240 kgm2= l3 1.2 m=

Table 2 The first five natural frequencies of the framework shown in Fig. 5, with and without 
two-part beam-mass systems (TPBMS)

Natural frequency
number

Natural frequencies (Hz)
Difference

(%)with
TPBMS

without TPBMS
[Williams and Howson 1977]

1 31.363 35.762 14
2 37.647 39.104 4
3 40.290 42.555 6
4 48.869 51.394 5
5 49.004 53.935 10
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Notation

E1A1, E2A2 : extensional rigidity of the two beam elements of the TPBMS
E1I1, E2I2 : bending rigidity of the two beam elements of the TPBMS
Iα : mass moment of inertia of the rigid mass about the centroidal axis
l1, l2 : lengths of the two beam elements of the TPBMS
l3 : length of the rigid element 
L : the total length of the TPBMS
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m1, m2 : mass per unit length of the two beam elements of the TPBMS
m3

* : mass of the rigid element
M : bending moment 
P : axial force
S : shear force
SA, SB : state vectors at points A and B respectively
SC, SD : state vectors at points C and D respectively
TPBMS : two-part beam-mass system
T : corresponding transfer matrix
u : axial displacement
v : transverse (bending) displacement
θ : anti-clockwise (tangential) bending rotation




