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Large deflections of variable-arc-length beams under 
uniform self weight: Analytical and experimental
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Abstract. This paper presents the solution of large static deflection due to uniformly distributed self
weight and the critical or maximum applied uniform loading that a simply supported beam with variable-
arc-length can resist. Two analytical approaches are presented and validated experimentally. The first
approach is a finite-element discretization of the span length based on the variational formulation, which
gives the solution of large static sag deflections for the stable equilibrium case. The second approach is
the shooting method based on an elastica theory formulation. This method gives the results of the stable
and unstable equilibrium configurations, and the critical uniform loading. Experimental studies were
conducted to complement the analytical results for the stable equilibrium case. The measured large static
configurations are found to be in good agreement with the two analytical approaches, and the critical
uniform self weight obtained experimentally also shows good correlation with the shooting method.

Key words: large sag deflection; variable-arc-length beams; uniformly distributed self weight; finite-
element solution; shooting method; experimental studies.

1. Introduction

Recently, the simply-supported Variable-Arc-Length (VAL) beam has been investigated using
various loading conditions and solution methods. The variability in arc-length of this beam arises
from one end being pinned and the other end being supported by a frictionless roller at a fixed
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distance from the pinned end. The distance between the two supports is specified while the total
arc-length of the beam is unknown and must be determined. Since the beam span length is very
long, the change in beam arc-length due to sag is not negligible. Subjected to either self weight or
applied forces, the beam can experience large static sag deflection in which sag ratio is significantly
larger than that obtained from Linear Beam Theory (LBT). The sag ratio is defined as the ratio of
mid-span static deflection due to a given loading to the beam span length, . 

The flexible elastic horizontally sagging pipelines or very long span suspended elastica pipes,
which are frequently found in the fields of offshore engineering and petroleum industries, may be
considered as VAL beams. Interesting features of these beams are that they may have at least two
equilibrium configurations under given loading conditions and that there exists a critical or
maximum loading. Therefore, it is essential for an engineer designing a VAL beam to have a good
understanding of static behavior. 

Chucheepsakul et al. (1995, 1996, 1997a, b, 1999) solved the large deflection of VAL beams
subjected end moment and point loading by using the finite element method, the shooting-
optimization method, and the elliptic integral. The different methods provide independent
verification of each solution. Studies have addressed additional static problems such as beam
deflection using intrinsic coordinates (Golley 1997), large deflections of beams under point loads
(Wang et al. 1997), and beam static behavior under follower force (Hartono 2000). 

However, the static solution of the VAL beam configuration subjected to uniformly distributed
loading or beam self weight has not yet been found. Therefore, the present study continues in this
line of research by providing the large static (sag) deflection solution of beam under a given
uniform self weight magnitude. The maximum or critical value of applied uniform beam self weight
that the beam can resist is also highlighted. The measured results of static sag deflection and the
critical applied loading are conducted to validate the analytical results.

Two analytical approaches are presented to solve the problem. The finite-element approach is
based on the variational formulation, in which the energy functional involving strain energy due to
bending, the potential energy from uniform beam self weight, and the additional strain energy due
to axial force is formulated. Because of the unknown arc-length, the finite-element discretization of
span length is employed. The nonlinear equation is solved to obtain the stable static configurations
using the Newton-Raphson iterative process. The second approach is the shooting method based on
the elastica theory formulations in which the set of governing differential equations is numerically
integrated using the Runge-Kutta-Felhberg algorithm. This method gives the results which included
both stable and unstable equilibrium configurations, and the critical value of applied uniform
loading is also obtained.

In association with analytical formulations, static tests in precisely controlled experiments were
conducted. The range of tested beam specimens were built to behave as analytical models and
measured to obtain the large stable static beam configurations at the specific point along beam arc-
length as well as the critical uniform self weight. The experimental results, for both the stable static
configuration due to a given uniform self weight and for the critical loading, are in very good
agreement with analytical results.

2. Analytical solutions 

The VAL beam is pinned at end A and supported on the frictionless roller at end B located at a

ysmax
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fixed distance L from A as shown in Fig. 1. The total arc-length of beam, St, is varied due to the
“sag” of the beam from its self weight given as w (force per unit arc-length). The VAL beam is
made from an elastic material. The beam’s section dimension is very small in comparison with its
length making it a “slender” beam. The overhung part of the beam is short in comparison with its
span-length and therefore its effects are neglected. Since axial movement is unrestrained at the
roller, the effects of axial deformation are not included. Shear deformation is small and therefore
neglected as usual for slender beams.

2.1 Finite element solution

To obtain the large static equilibrium deformation, ys(x), the energy functional of the beam system
is established and minimized using the finite element method. The beam formulations are derived
based on the function of x, the projection of beam on the known span length, L, instead of the beam
arc-length, S. Because the total arc-length of VAL beam is an initial unknown, the use of beam arc-
length, as the independent variable as commonly used for conventional beam elements, may not be
convenient for establishing the beam boundary conditions. The boundary conditions can be
conveniently established by using the horizontal known span length as the independent variable. 

Considering the case of large displacement at a position, , the element energy functional
due to bending under beam self weight and axial force is expressed in rectangular coordinates as 

(1) 

The terms ys(x), , and  are the large static displacements and its derivatives with
respect to the variable x, where

x is measured along the undeformed median line of beam,
lk is the x projection of the kth element, 
EI is the transverse bending stiffness of the beam, and
dx is the x projection of length ds of the beam.
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Fig. 1 Undeformed and deformed configuration of VAL beams
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The first term in Eq. (1) is bending strain energy. The second term is the potential energy of
uniformly distributed load. The multiplier N of the last term is identified as axial force, while λ
represents a multiplier to account for the arc-length being unvaried due to bending at equilibrium
position. The multiplier N can be obtained by considering the static equilibrium of forces on the
segment of beam in the normal and tangential directions (Malvern 1969) as shown in Fig. 2(a). This
multiplier is written as 

(2)

The multiplier λ is also given in Huang and Chucheepsakul (1985) as

 (3)

The finite element procedure based on the span length discretization (Chucheepsakul et al. 1995,
1997a) is used to solve the stationary condition, δπk = 0. In the procedure, the span length is divided
into a number of elements. The large static displacement of the span element is approximated by

 (4)

in which [N] = row of fifth-order polynomial shape functions; and {q} is a nodal displacement
vector of ys and its first and second derivatives at both ends of the element.

By using the fifth-order polynomial shape function, the beam’s displacements, ys, and its
derivatives up to second order are directly computed at the nodes. In addition, a better result is
obtained for a fifth-order polynomial rather than a cubic polynomial. A thorough explanation of use
of fifth-order polynomial shape functions is given in Chucheepsakul and Huang (1997b). 
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Fig. 2 Equilibrium of forces on beam segment: (a) normal and tangential coordinate, (b) rectangular
coordinate
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Substituting the approximated displacement ys and its derivative in the element energy, the energy
functional of the k th element, πk, can be expressed in terms of its local degrees-of-freedom. The
equilibrium condition, δπk = 0, leads to the highly nonlinear equilibrium equation 

 

 (5)

in which , and . The multipliers N and λ as well as uniform loading
w are unvaried during the process of performing the variation δπk.

By assembling the total contribution, one obtains the global equilibrium equation (δπ = 0) in
terms of the global degrees of freedom {Qi} as

(6) 

The system of Eq. (6) with the boundary conditions,  and  is solved by the
Newton-Raphson iterative procedure. With this procedure, the incremental equation is 

(7)

where the matrix on the left side of Eq. (7) is the global incremental stiffness matrix. 

2.2 Shooting method 

The beam is subjected to a uniformly distributed self weight per unit arc-length, w, within its span
length. By considering a free body diagram at static configuration of beam segment as shown in
Fig. 2(b), the bending moment, M, is given as

(8)

The constitutive relation and the geometric relations are given by 

(9) 

In view of Eqs. (8) and (9), the governing differential equations and the boundary conditions can
be written as
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(11a-c)

 (12a-c)

Introducing the following non-dimensional parameters

(13a-h)

and substituting these non-dimensional parameters into Eqs. (10) to Eqs. (12) yields

 (14a) 

(14b,c)

(15a-c)

(16a-c)

Thus, for a given value of , there are four unknowns  to be evaluated from
three first order differential equations together with four end conditions (

). However if the given value, , is greater than the critical or maximum
value, the solution does not exist. Instead of assigning , the value of θ had been assigned and
unknowns  and  are solved. Thus, given any θA or θB, one guesses  and  at the first
iteration from the linear small deflection theory. Eqs. (14) to Eq. (16) are numerically integrated
using the fifth order Cash-Karp Runge Kutta with adaptive step size adjustment during integration
following Felhberg method (Press et al. 1992). 

In the calculation, the error is minimized by the simplex method (Nelder and Meade 1965) in
which the objective function for the minimization is 

(17) 

In computation, the desired value of φ is zero for a solution. 

3. Measurement procedure 

Three laboratory-scale beam specimens made from tempered spring steel and designed to behave
as VAL beams, defined as in Fig. 1, were built with dimensions and material properties as presented
in Table 1. The beam specimens were mounted on an isolation table for self-adjusting the level of
the testing system. A micrometer was used to measure the vertical static sag deflections of beam
configuration at specific points along the beam arc-length. This micrometer can measure the
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Fig. 3 Typical set-up of testing of beam No. 3, = 7.8173 or sag ratio, w ysmax
L 0.14754=⁄

Table 1 Beam specimen information 

Beam
No.

Weight per
unit volume

(MN/m3)
ρ

Modulus of
elasticity
(MN/m2)

E

Depths

(m)
d

Widths

(m)
b

Span length

(m)
L

Non-dimensional
self weight

1 7.5824 × 10−2 1.9933 × 105 1.00 × 10−3 2.54 × 10−2 0.980 4.2962
2 7.5824 × 10−2 1.9933 × 105 0.80 × 10−3 2.54 × 10−2 0.940 5.9240
3 7.5824 × 10−2 1.9933 × 105 0.80 × 10−3 2.54 × 10−2 1.030 7.8173

Specimen material: Tempered spring steel (SK5)
 = wL3/EI       = Non-dimensional beam self weight

w = ρA = ρ(bd) = Uniform self weight of beam (forces per unit arc-length)

w

w
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displacement for range of measurement range (300 mm.) with accuracy better than 0.01 mm. The
typical set-up is shown in Fig. 3. Due to initial lack of straightness, the beam was tested, turned
over, and tested again. The testing results were averaged. 

The testing to determine the maximum or critical uniform beam self weight was performed by
increasing the applied non-dimensional uniform beam self weight, , until the beam
became unstable. The applied non-dimensional uniform beam self weight or  was increased step-
by-step by holding the beam cross-section constant in which the beam weight and bending stiffness
were also unchanged, and adjusting the span length with a small incremental step of 2.5 mm. The
span-length of the beam specimen was increased step-by-step until the beam began slipping rapidly
at the frictionless roller support. This behavior was the unstable state. The beam span length of the
previous step was used to calculate the critical self weight or  obtained from experiment. The
accuracy of the experimental critical loading depends on the size of incremental step. The smaller
incremental step yields the better results. 

4. Results and comments

The results of large stable static deflection are calculated for various values of non-dimensional
beam self weights, , by using the non-linear finite element method (FEM) and shooting method
(SM) and are used to compare with those based on Linear Beam Theory (LBT). The stable
equilibrium solution from FEM and the SM are in very close agreement. The LBT results agree
quite closely with FEM and SM results for the low  values or little sag (  less than 2.00 or

 less than 0.0264) but begin to diverge for higher  values. Fig. 4 illustrates these results.

w wL3 EI⁄=
w

wcr

w

w w
ysmax

L⁄ w

Fig. 4 Variation of maximum static displacement, , with various values of ysmax
L⁄ w
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These results indicate that VAL beams with large static displacements are more accurately modeled
using the presented FEM or SM formulations than by simply using LBT.

Fig. 5 shows the plots of , , and  against end rotations in the range of 
obtained from SM. The maximum or critical values that the beam can resist, , is 8.2461 at θA

(or θB) = 0.5627 rad. The beams have two possible static configurations for any value of  which
is less than the critical loading, . One with smaller rotation is stable, while the other with a
larger rotation is unstable. Plots of the stable and unstable equilibrium configuration for  = 6.00

w ysmax
L⁄ St L⁄ 0 θ π 2⁄≤ ≤

wcr

w
wcr

w

Fig. 5 Plot of , , and  versus θA or θBw ysmax
L⁄ St L⁄

Fig. 6 Stable and unstable equilibrium configurations of  = 6.00w
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as well as critical equilibrium configuration are shown in Fig. 6. In Fig. 5, the results also indicate
that the maximum  and  are found to be 0.8347 and 2.1884, respectively at the end
rotation equal to π/2. These values are independent of loading conditions (Chucheepsakul et al.
1995, 1996, 1997b).

The large static sag configuration of VAL beams for the stable equilibrium case under a given
uniform self weight were measured at specific locations along the beam arc-length and compared
with those obtained from FEM and SM. Because of the symmetry of beam configuration, the
comparisons are presented for a half of beam arc-length as shown in Table 2. The average measured
static displacements are 2.50% larger than those obtained analytically (FEM and SM) for all beam
specimens. 

The maximum or critical loading value due to uniform self weight, , obtained experimentally
is 8.0726. The deviation is within 2.10% lower than those obtained from SM. The deviation of
critical uniform loading may come from the effect of initial deflection of the tested beam
specimens. Theoretically, the undeformed configuration of VAL beams is assumed to be straight but
in the testing procedure there exists a small amount of initial deflection prior to testing because of
beam’s self weight.

From these results, the comparisons between experimental and two analytical results show that
very good agreement was obtained in this investigation for large static sag deformation due to beam
self weight as well as for critical uniform self weight. 

ysmax
L⁄ St L⁄

wcr

Table 2 Analytical and experimental comparison of large static sag deflection of VAL beam due to self weight

  
Static sag ratio, 

Location, x/L 0.0833 0.1666 0.2500 0.3333 0.4167 0.500

4.2962

FEM 0.01570 0.03017 0.04241 0.05166 0.05741 0.05936
SM 0.01570 0.03016 0.04241 0.05165 0.05741 0.05936

Average 0.01570 0.03017 0.04241 0.05166 0.05741 0.05936
Experiment 0.01595 0.03061 0.04255 0.05173 0.05755 0.05918
%Deviation −1.5673 −1.4374 −0.3290 −0.1353 −0.2432 +0.3041

5.9240

FEM 0.02364 0.04536 0.06364 0.07738 0.08589 0.08877
SM 0.02364 0.04535 0.06363 0.07716 0.08542 0.08877

Average 0.02364 0.04536 0.06364 0.07727 0.08565 0.08877
Experiment 0.02417 0.04672 0.06521 0.07930 0.08790 0.09070
%Deviation −2.1928 −2.9109 −2.4076 −2.5598 −2.5397 −2.1278

7.8173

FEM 0.03844 0.07345 0.10250 0.12403 0.13719 0.14163
SM 0.03843 0.07342 0.10249 0.12402 0.13724 0.14162

Average 0.03843 0.07344 0.10250 0.12403 0.13721 0.14162
Experiment 0.03944 0.07523 0.10605 0.12805 0.14221 0.14655
%Deviation −2.5645 −2.3793 −3.3474 −3.1394 −3.5159 −3.3604

FEM   = Stable static displacement obtained analytically by using Finite Element Method
SM  = Stable static displacement obtained analytically by using Shooting Method 
Average    = Average static displacement from two analytical solutions
% Deviation = Difference between average analytical and experimental results.

w
ysmax

L⁄
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5. Conclusions

Two analytical approaches are presented for the solution of VAL beams subjected to a uniformly
distributed self weight and validated experimentally. The finite-element method gives the stable
equilibrium configuration and shows good agreement with shooting method. The results of shooting
method yield the beam configurations for both stable and unstable equilibrium cases. Analytical
results reveal that static sag deflections due to self weight of VAL beams are larger than linear beam
theory (LBT). This is especially true for beams with  higher than 2.0. 

The experimental studies were conducted for the stable equilibrium case. The static beam
configurations due to a given uniform loading determined experimentally closely matched the
analytical results, where average deviations were less than 2.50%. Good agreement of critical
uniform loading, , was determined to be 8.2461 obtained analytically (SM), and 8.0726 obtained
experimentally. 
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