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Abstract. Base isolation technologies have been proven to be very efficient in protecting structures
from seismic hazards during experimental and theoretical studies. In recent years, there have been more
and more engineering applications using base isolators to upgrade the seismic resistibility of structures.
Optimum design of the base isolator can lessen the undesirable seismic hazard with the most efficiency.
Hence, tracing the nonlinear behavior of the base isolator with good accuracy is important in the
engineering profession. In order to predict the nonlinear behavior of base isolated structures precisely,
hundreds even thousands of degrees-of-freedom and iterative algorithm are required for nonlinear time
history analysis. In view of this, a simple and feasible exact formulation without any iteration has been
proposed in this study to calculate the seismic responses of structures with base isolators. Comparison
between the experimental results from shaking table tests conducted at National Center for Research on
Earthquake Engineering in Taiwan and the analytical results show that the proposed method can
accurately simulate the seismic behavior of base isolated structures with elastomeric bearings.
Furthermore, it is also shown that the proposed method can predict the nonlinear behavior of the VCFPS
isolated structure with accuracy as compared to that from the nonlinear finite element program. Therefore,
the proposed concept can be used as a simple and practical tool for engineering professions for designing
the elastomeric bearing as well as sliding bearing.
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1. Introduction

Structures and their internal contents can be protected during severe earthquake events with the
installation of base isolators. The seismic response of the superstructure can be mitigated within a
desirable range by using the method of shifting the fundamental frequency of the conventional
fixed-base structure away from the predominant frequencies of ground excitations. In recent years, a
number of base isolators have been proposed and the effectiveness of each in mitigating the seismic
response of a structure has been investigated through theoretical and experimental studies. In
general, the base isolator can be classified into two groups: the elastomeric and sliding type base
isolators. The Stirrup Rubber Bearing (SRB) (Tsai et al. 2002, 2003a, Chen 2003), which belongs
to the elastomeric bearing, and the Variable Curvature Friction Pendulum System (VCFPS) (Tsai
et al. 2003b), which belongs to the sliding bearing, have been adopted in this study. 

In the past, different numerical algorithms with different mathematical models for a multiple
degree-of-freedom base-isolated structure have been proposed. Due to the highly nonlinear behavior
of the base isolator, the step-by-step time history algorithm is the fundamental requisition for the
calculation of the seismic response of a multiple degree-of-freedom base isolated structure. In order
to provide a simple tool for engineering professions to design the elastomeric and sliding bearings
without any inconvenience during preliminary design. Exact solutions considering superstructure as
a rigid body for base isolated structure with elastomeric-type isolators and sliding-type isolators
have been proposed. The concept of the piecewise exact method for a linear system proposed by
Nigam and Jennings (1968, 1969) has been further extended to the nonlinear hysteretic analysis of
the base-isolated structure during earthquake ground motions. Very good agreement can be observed
obviously from the comparison between exact solutions and experimental results of shaking table
tests using SRB isolators. It is also revealed that the exact solutions are very close to the numerical
results calculated from finite element computer program (Tsai 1996).

2. Mechanical behavior for elastomeric isolator

The Wen’s model in an incremental form has been proposed by Tsai et al. (2003c). The increment
of the horizontal force of the base isolator can be expressed as:

(1)

where Fy and Y represent the yield force and yield displacement, respectively; dxb(τ) is the
increment of the horizontal displacement; dZ(τ) denotes the increment of dimensionless parameter
that controls the plastic behaviour of the elastomeric bearing; α is the ratio of the post-yielding
stiffness to the elastic stiffness.

The ratio α can be represented as:

(2)

where kp(xb) is the post-yielding stiffness and ke(xb) is the elastic stiffness.
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The parameter dZ(τ) can be shown in the following form:

 (3)

Constantinou et al. (1990) have proposed that . In particular, A = 1, β = 0.1 and
γ = 0.9 are suggested.

One can set

(4)

Thus, Eq. (3) can be rewritten as:

(5)

Backsubstitution of Eq. (5) into Eq. (1) gives:

(6)

The horizontal stiffness of the elastomeric bearing can be obtained from Eq. (6) as:

(7)

Therefore, the isolation frequency of a base-isolated structure using elastomeric bearings can be
given as:

(8)

3. Piecewise exact solution for base isolated structure using elastomeric bearings

As shown in Fig. 1, the time history of the ground acceleration is composed of piecewise linear
segments; namely, the time history of the ground motion between time  and ti can be reasonably
assumed as a linear variation (Chopra 1995). As shown in Fig. 2, if the superstructure moves as a
rigid body and the first mode of the base-isolated structure involves deformation only in the
isolation system under earthquakes, the isolated structure can be idealized as a SDOF system. Then,
the equation of motion of the base isolated structure can be given by:

(9)

where m, cb and kb(xb) are the total mass of the base isolated structure, damping coefficient and
horizontal stiffness of the base isolator, respectively; xb is the horizontal displacement of the base
isolator relative to the ground; and  is the ground acceleration at time ti.
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The displacement response consisting of the free-vibration response and the particular solution
between time  and time ti is obtained as:

(10)

where ξ is the viscous damping ratio.
In the beginning of each time step, the isolator displacement is equal to that at the end of the

previous time step, , then:

(11)
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Fig. 1 Linear interpolation for ground motions

Fig. 2 Idealization of rigid body motion for superstructure
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The velocity response can be obtained form Eq. (10) as:

 (12)

In the beginning of each time step, the velocity is equal to that at the end of the previous time
step, , thus:

(13)

The derivative of the velocity with respect to time leads to the acceleration:

(14)

4. Geometric formulation and mechanical behavior for VCFPS isolator

The mechanical behavior of VCFPS is very similar to that of the FPS proposed by Zayas (Zayas
et al. 1987, Al-Hussaini et al. 1994). The difference between the VCFPS and FPS is that the radii
of curvature of the VCFPS can be lengthened with an increase of the isolator displacement. Hence,
the fundamental period of the base-isolated structure can be shifted further away from the
predominant periods of near-fault ground motions, and the resonant possibility of the superstructure
with earthquakes can be prevented.

As shown in Fig. 3, the geometric function used to describe the VCFPS base isolator can be
expressed in the following (Tsai et al. 2003b):

(15)

where R is the radius of curvature at the center of the sliding surface of the VCFPS; xb is the
horizontal displacement of the isolator; f (xb) is the function to describe the increase of the radius of
curvature with an increase of the horizontal displacement.

If the function f (xb) is given as:

(16)

E is the parameter that describes the variation of curvature of the concave surface.
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Backsubstitution of Eq. (16) into Eq. (15) results in:

(17)

As shown in Fig. 3, the equilibrium of VCFPS in vertical and horizontal directions can be shown
as:

 
(18)

and

(19)

where W is the vertical loading; P denotes the reaction force normal to the concave surface; T is the
friction force tangent to the concave surface; and F is the horizontal force imposing at the concave
sliding surface.

Rearrangement of Eqs. (18) and (19) leads to:

(20)

The slope of the concave sliding surface of the VCFPS can be obtained from Eq. (17) as:

(21)

Backsubstitution of Eq. (21) into Eq. (20) yields:

(22)
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Fig. 3 Forces acting on concave sliding surface
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If the restoring force can bring the slider back to the initial position within the sliding
displacement x0, then the parameter E can be determined as:

(23)

where T0 is the static friction force.
Backsubstitution of Eq. (23) into Eq. (22) gives:

(24)

where  represents the horizontal stiffness of the VCFPS and can be expressed as:

(25)

If the variation of the vertical loading due to the overturning moment is neglected, then the
isolation frequency of VCFPS isolated structure can be obtained as:

 (26)

where µmin is the friction coefficient at zero sliding velocity. It should be noted from Eq. (26) that
the isolation frequency is a function of the horizontal displacement rather than a constant value.

5. Piecewise exact solution for VCFPS isolated structure

Based on the concept of idealizing the superstructure as a rigid body under earthquakes, the
equation of motion of a base isolated structure considering the superstructure as a rigid body can be
expressed as:

(27)

where m, cb and  are the total mass of the base isolated structure, damping coefficient and
horizontal stiffness of the base isolator, respectively; xb is the horizontal displacement of the base
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isolator relative to the ground;  is the friction coefficient of the sliding surface; and  is the
ground acceleration at time ti.

The friction coefficient  proposed by Al-Hussaini et al. (1994) can be shown in the
following:

(28)

where µmin and µmax are the friction coefficients at zero sliding velocity and high sliding velocity,
respectively; α is the parameter which controls the variation of friction with velocity.

Tsai (1995, 1997) also proposed an analytical model for the friction force which considers the
variation of the friction force due to the instantaneous applied normal load P, sliding velocity V and
energy accumulation in the sliding history:

(29)

where A* represents the contact area at the interface; λ1 and λ2 are the parameters associated with
the quasi static friction force; β1 and β2 are the parameters which control the variation of friction
with velocity; Coef is a decay function which depicts the phenomenon of degradation of the friction
force with the increase of the number of cyclic reversals. The coefficient of Coef can be given as:

(30)

where γ1 and γ2 are parameters to describe the decay behavior of the friction force at the Teflon
interface associated with the energy accumulation in the sliding history;  is the friction force
when the sliding velocity is equal to zero.

The transient solution of Eq. (27), xc(τ ) can be given as:

 (31)

where ωn is the natural frequency which is a function of the horizontal sliding displacement
mentioned above;  is the damped frequency; ξ is the viscous damping ratio.

The steady-state solution, xp(τ) between time  and ti is:

 (32)

The sliding displacement of the base isolator between time  and ti can be obtained from Eqs.
(31) and (32) as:
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(34)

If the friction coefficient is assumed approximately constant in the time step, the derivative of
Eq. (33) respect to τ yields:

(35)

In the beginning of each time step, the velocity is equal to that at the end of the previous time
step,  , thus, the coefficient D can be obtained as:

(36)

The sliding acceleration can be given as:

 (37)

Hence, the sliding displacement, sliding velocity and sliding acceleration can be obtained from
Eqs. (33), (35) and (37), respectively.

5.1 Nonsliding phase

The summation of the inertial and restoring forces imposing at the base raft is lower than the
static friction force, i.e.,:

(38)

Then the structure will behave as a conventional fixed base structure, and the sliding displacement,
sliding velocity and sliding acceleration are:

(39)

5.2 Initiation of sliding phase

The base isolated structure will behave as a fixed base structure unless the static friction force can
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smaller than that of the sampling time interval of the earthquake history, it is reasonable to set that
the direction of sliding at the current time step is the same as the previous time step. It should be
noted that the direction of sliding remains unchanged during a particular sliding phase. At the end
of each time step, the validity of inequality of Eq. (40) should be checked. If the inequality is not
satisfied at a particular time step, then the structure enters a nonsliding phase and behaves as a fixed
base structure.

6. Comparisons between exact solutions and experimental results for base isolated
structure using SRB isolators

In order to verify the feasibility of the proposed method, the shaking table tests of a full scale
steel structure with Stirrup Rubber Bearings were performed at the National Center for Research on
Earthquake Engineering in Taiwan. As shown in Fig. 4, the three-story structure is 9 m in height
and the total weight of the structure is about 40 tons. The properties of columns and girders of the
steel structure are H200 × 200 × 8 × 12 and H200 × 150 × 6 × 9, respectively. The fundamental
periods of the fixed-base structure in its longitudinal and transverse directions are 0.942 and
0.699 sec, respectively. In order to increase the rigidity of the superstructure, diagonal steel bracings
(2L100 × 100 × 13) were installed on the structure during the tests. As shown in Fig. 5, the
fundamental frequency of the fixed-base structure with diagonal bracings is 4.243 Hz (i.e., 0.236 sec
in period) based on the experimental results of the white noise test of 0.05 g in PGA. The adopted
SRB isolators shown in Fig. 6 adopted in this study are 200 mm in diameter and 104 mm height.

Fig. 4 Base-isolated structure with bracings on shaking table at the National Center for Research on
Earthquake Engineering in Taiwan
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The transfer function of the horizontal displacement of the SRB shown in Fig. 7 indicates that the
installation SRB isolators can shift the fundamental period away from the predominant periods of
earthquake excitations. Hence, it is reasonable to regard the superstructure of the base isolated
structure as a rigid body during earthquakes. 

The dimensionless parameters of α , A, β, γ for Eqs. (4) and (6) are 0.25, 1.0, 0.1, 0.9 and the
yield displacement Y is 0.68 mm, respectively. The comparisons of the bearing displacement,
bearing acceleration and hysteresis loop between the exact solution and the shaking table test during
the 1940 El Centro earthquake of 0.116 g in PGA is presented from Fig. 8 to Fig. 10, respectively.
Very good agreement between exact solutions and experimental results can be observed from these
three figures. Therefore, the nonlinear behavior of the SRB isolator during earthquakes can be
obtained by using the proposed method. During the shaking table tests, the SRB isolated structure
subjected to the Chi-Chi earthquake (TCU129 station) was also performed. The displacement and

Fig. 5 Transfer function of roof acceleration of fixed-base structure under white noise test of 0.05 g in PGA

Fig. 6 The stirrup rubber bearing
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Fig. 7 Transfer function of relative displacement of SRB bearing under white noise test of 0.05 g in PGA

Fig. 8 Comparison of bearing displacement between exact solution and experimental results under El Centro
earthquake of 0.116 g in PGA

Fig. 9 Comparison of bearing acceleration between exact solution and experimental result under El Centro
earthquake of 0.116 g in PGA
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acceleration histories of the SRB isolator shown in Figs. 11 and 12 illustrate that exact solutions are
very close to experimental results. Furthermore, it is also shown from Fig. 13 that the proposed
method can trace the force-displacement loop with good accuracy. Based on the observations

Fig. 10 Comparison of hysteresis loop between exact solution and experimental result under El Centro
earthquake of 0.116 g in PGA: (a) Experimental result; (b) Exact solution

Fig. 11 Comparison of bearing displacement between exact solution and experimental result under Chi-Chi
earthquake (TCU129) of 0.289 g in PGA
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aforementioned, it can be concluded that the exact solution can be given as a simple yet accurate
method for engineering professions in preliminary design for elastomeric bearings. 

Fig. 12 Comparison of bearing acceleration between exact solution and experimental result under Chi-Chi
earthquake (TCU129) of 0.289 g in PGA

Fig. 13 Comparison of hysteresis loop between exact solution and experimental result under Chi-Chi
earthquake (TCU129) of 0.289 g in PGA: (a) Experimental result; (b) Exact solution
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7. Comparisons between exact solutions and numerical results from nonlinear
analyses for VCFPS isolated structures

The comparisons between the exact solutions and the numerical results from the nonlinear finite
element computer program are presented in this section (Tsai 1996). As shown in Fig. 14, a three-
dimensional reinforced concrete building has been given as a numerical example. The building is
30.5 m in height, and the dimensions of the cross sections of columns and girders are 0.8 m × 0.8 m
and 0.45 m × 0.8 m, respectively. The elastic modulus and Poisson’s ratio of the building’s
construction material are 2.46 × 107 kN/m2 and 0.2, respectively. The total weight of structure is
81207.18 kN. The fundamental period of the fixed-base structure in x and y direction are 1.025 sec
and 1.079 sec, respectively. The fundamental period at the center of the concave sliding surface of
the VCFPS is 2.5 sec, and the designed restoring force can bring the slider back to the center of the
isolator when the isolator displacement is less than 0.8 m. The parameters µmin, µmax and α for
Eq. (28) are 0.042, 0.102 and 1.903, respectively. The comparisons of the sliding displacement and
the average hysteresis loop under the 1940 El Centro earthquake (Imperial Valley Station) between
the exact solutions and results from the NSAT computer program are displayed in Figs. 15 and 16,
respectively. It is shown from these two figures that the hysteresis behavior and the stiffness-
softening phenomenon calculated from the exact solution are very close to that from the NSAT
program.

In recent years, there have been significant studies on the seismic response of the base isolated
structure under near-fault earthquakes. The long predominant periods and the pulse-like ground
velocity can give the base isolator a significant relative displacement. Therefore, it is interest to
validate whether the exact solution can predict such phenomenon or not. The comparisons of the
sliding displacement and the average hysteresis loop under the Chi-Chi earthquake (TCU068
Station) between the exact solutions and results from the NSAT computer program are displayed in
Figs. 17 and 18, respectively. The large displacement and the significant base shear force from the
exact solution and the NSAT program are very correlated.

Fig. 14 A six-story reinforced concrete building: (a) Longitudinal direction; (b) Transverse direction
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Fig. 15 Comparison of sliding displacement between exact solution and numerical result from nonlinear
analysis during 1940 El Centro earthquake of 1.0 g

Fig. 16 Comparison of hysteresis loop between exact solution and numerical result from nonlinear analysis
during 1940 El Centro earthquake of 1.0 g in PGA: (a) Numerical results from NSAT program;
(b) Exact solution
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Fig. 17 Comparison of sliding displacement between exact solution and numerical result from nonlinear
analysis during 1999 Chi-Chi earthquake of 0.511 g in PGA

Fig. 18 Comparison of hysteresis loop between exact solution and numerical result from nonlinear analysis
during 1999 Chi-Chi earthquake of 0.511 g in PGA: (a) Numerical results from NSAT program;
(b) Exact solution
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8. Conclusions

Exact formulations assuming rigid body response of a structure isolated with sliding-type and
elastomeric-type base isolators have been derived in this study. The use of the proposed single
degree-of-freedom exact solutions can save a large amount of calculation time with good accuracy.
Comparisons between the exact solutions, experimental results and the numerical results from the
nonlinear finite element computer program demonstrate the feasibility of the proposed concept. The
displacement history, hysteresis behavior and the isolation period of the base isolator can be
predicted accurately based on the observation of this study. Hence, the method proposed in this
study can be adopted for engineering professions to determine the dimensions of bearings during the
process of the preliminary design.
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