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Abstract. This paper attempts to develop the analytical model of estimating the fatigue damage using a
linear dastic fracture mechanics method. The stress history on a welding member, when a truck passed
over a bridge, was defined as a block loading and the crack closure theory was used. These theories
explain the influence of a load on a structure. This study undertook an analysis of the stress range
frequency considering both dead load stress and crack opening stress. A probability method applied to
stress range frequency distribution and the probability distribution parameters of it was obtained by
Maximum likelihood Method and Determinant. Monte Carlo Simulation which generates a probability
variants (stress range) output failure block loadings. The probability distribution of failure block loadings
was acquired by Maximum likelihood Method and Determinant. This can caculate the fatigue reliability
preventing the fatigue failure of a welding member. The failure block loading divided by the average
daily truck traffic is a predictive remaining life by a day. Fatigue reliability analysis was carried out for
the welding member of the bottom flange of a cross beam and the vertical stiffener of a sted box bridge
by the proposed model. Results showed that the primary factor effecting failure time was crack opening
stress. It was important to decide the crack opening stress for using the proposed modd. Also according
to the 50% reiability and 90%, 99.9% failure times were indicated.

Key words: fracture mechanics method; fatigue; reiability; stress range frequency.

1. Introduction

The failure probability of the probability variant related to a welding member failure should be
precisely calculated in order to predict the life expectancy of the welding member subjected to the
loading of fatigue. The basic method used to evaluate directly a failure probability is through
adequate repeated simulation as it is so difficult that only an analysis method can calculate exactly
it. Reliability analysis can estimate and express the failure possibility quantitatively (or the failure
probability). This study utilizes the fatigue reliability analysis model based on the principles of
linear elastic fracture mechanics. This approach applies the fatigue anaysis to fracture mechanics in
order to estimate the failure probability and the fatigue reliability of the block loading that a
welding member is subjected to. By applying the proposed fatigue reliability analysis moddl, the
stress history at the welding member of the bottom flange of a cross beam and the vertical stiffener
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of a steel box girder bridge in public use was measured. Estimates of the failure probability and
fatigue reiability of a member were also made according to life expectancy.

2. Fatigue reliability analysis model explanation

When a truck passes over a bridge, in the proposed fatigue rdiability anaysis moddl, the stress
history generated in a member is defined as block loading. A stress range frequency distribution is
caculated from the stress history, taking into consideration factors such as dead loading stress and
crack opening stress. The Maximum Likelihood Method (MLM) is used to ascertain the parameters
of the probability distribution which expresses a stress range frequency distribution. The assessment
of probability distribution fitness used a Determinant. The resultant probability distribution with the
largest Determinant is adopted. The Monte Carlo Simulation (MCS) uses the probability distribution
parameters of the stress range frequency distribution of many block loadings on a steel bridge
member. MCS generates the probability variants (stress ranges) with a probability distribution
character and uses those in a fatigue crack evolution equation (James 1998). Failure block loadings
are cdculated by a numerical integration from an initial crack to a limit crack. The parameters of a
probability distribution of a failure block loading are calculated using the MLM. The probability
distribution of failure block loading is determined by a Determinant. Fatigue reliability is calculated
using a failure cumulative probability distribution of a block loading. According to 50%, 90% and
99.9% rdiability in terms of a fatigue reliability function, the failure block loading can be estimated
and the life expectancy can be predicted. Fig. 1 shows the procedure of the fatigue reliability analysis.
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Fig. 1 Procedure of fatigue reliability analysis model
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2.1 Effective stress range and crack opening stress

An effective stress range is the difference between the maximum stress and minimum stress and is
calculated in following Eqg. (2).

Afeff = fmax_fmin (1)

The fin is the minimum stress if the minimum stress is larger than the crack opening stress, or the
crack opening stress if the minimum stress is smaller than the crack opening stress. In Eq. (2) e IS
defined as the vaue added the dead loading stress and the maximum stress of a block loading. fgead
is the dead loading stress attained in a structural analysis and fra i IS the i-th maximum stress of a
block loading.

fmax = fdead + fmax,i (2)

The concept of the crack opening stress was introduced (Hou and Lawrence 1996). This is the
state of the working stress (f,,) when a crack is open completely. It was proposed that a fatigue
crack evolution occurs when a crack is open completely. Crack opening stress can be calculated
using the ratio (p) of the crack opening stress to the maximum stress of the whole block loading. In
Eq. (3) Newman (1981) proposed that the ratio of the crack opening stress to the maximum stress is
approximately 0 to 0.7. (fna)s IS the maximum stress of a whole block loading.

= p Ufra)s 3
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2.2 Probability distribution parameter estimation

The Maximum Likelihood Method (MLM) is used to determine the point estimator of a parameter
directly. The parameter estimation of a stress range frequency distribution, and a probability
distribution of failure block loadings, were made using the MLM. Table 1 shows the likelihood
function and a maximum likelihood estimator for each of probability distributions.

2.3 Fatigue reliability of a member

In a fatigue anaysis before the definition of fatigue reliability, if X is a failure block loading and x
is a block loading, the cumulative probability density of a failure block loading can be expressed
like a following EQ. (4).

Fx(x) = P[X<X] 4

Here, x means the block loading used when a crack evolves from an initiad crack size to a limit
crack size. The probability of no failure (the fatigue reliability) is defined as a following Eg. (5).

Ry(X) = 1-Fy(x) = 1-P[X<X] (5)
Rx(x) is a fatigue reliability function. For example if the cumulative probability function of a

failure block loading in Eq. (6) is a Weibull probability density, the fatigue reliability function is the
same as a following Eq. (7).

Fx(x) = 1—exp(—(x/ 6)") (6)
R«(X) = 1=Fx(x) = exp(~(x/ 6)") (7)
1.0
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E 06T
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0'00.0 ; BusBy By,

Block Loading
Fig. 2 Fatigue reliability function
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Using a fatigue reliability function, the failure block loading according to reliability (or a failure
probability in an opposite concept) can be calculated on the curve of a cumulative probability
density function. Fig. 2 shows the curve of a cumulative probability density function of a failure
block loading calculated by MCS. With a reliability of 99.9%, the failure block is founded to be
Bog.o, 90% By and 50% Bsxg (Flg 2)

3. Fatigue reliability analysis of a welding member
3.1 Stress history measurement
Fig. 3 shows the procedure of fatigue reliability analysis of a member in the proposed mode.

First, stress history measurement was made on a welding member on a steel bridge which is at an
optimal location for fatigue damage. Particularly the stress intensity between a vertical stiffener and
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Fig. 3 Procedure of fatigue reliability analysis of a member



352 Yeon-Soo Park, Suk-Yeol Han and Byoung-Chul Suh

0.0 1.0 2.0 3.0 4.0 5.0
Time(sec)

Fig. 4 Stress history of a block loading

the bottom flange of a cross beam exists, as tensional stress is created in terms of the deflection
generated by truck crossings. Also there may be fatigue damage possibility due to flaws in welding
or by the effect of residual stress on the welding. Strain history data was obtained using a strain

gauge on this part. Strain history by Young's modulus illustrates a stress history as exemplified in
Fig. 4.

3.2 Stress range frequency analysis

Stress history was modified by starting a maximum or minimum point, so that the half cycle of
the stress range may not be counted. A Rainflow Cycle Counting Method was used for stress range
frequency analysis after considering dead loading stress and crack opening stress. Rainflow Cycle
Counting Algorism does not take into account the loading history sequences. An excessive loading
cycle in a block loading model determines a crack opening stress. It is not clear from the Rainflow
Cycle results, when a cycle appears before or after an excessive loading. Therefore, the time
location of a stress cycle in a block loading, was determined and analysis including the loading
history sequence was undertaken in order to rearrange the Rainflow Cycle Counting results, as a
post process. Fig. 5 shows the stress range sequence of a block loading. Stress range frequency
anaysis was performed by drawing up a program.
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Fig. 5 Stress range considering loading sequence of a block loading
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Table 2 Determinants and parameters of each probability distribution for 400 block loadings (p = 0.3)

Gumbel Normal Lognormal Exponential Weibull
o A w 0
Parameters ¢ H ¢ P
0661 0875 1309 208 -0483 1251 0.764 0820 1122
Determinant (r?) 0.927 0.737 0.992 0.974 0.987

o
N
o

[ Stress Range Frequency
Distribution

o
W
S

—B— Lognormal Probability
Distribution

o
n
o

Probability

o
o

0.00

0.20 5.08 9.95 14.83 19.70 24.58
Stress Range(MPa)

Fig. 6 Stress range frequency distribution & lognormal probability density for 400 block loadings

3.3 Probability distribution parameter estimation of stress range frequency distribution

The stress range frequency analysis was performed for 400 block loadings measured the structural
detail of a steel highway bridge and a probability method was applied to the stress range frequency
distribution. The probability distribution parameters were established using MLM to find a particular
probability distribution that adequately expressed a stress range frequency distribution. Consequently,
Lognormal probability distribution sufficiently expressed the stress range frequency distribution of
400 bhlock loadings. Table 2 shows each of probability distribution parameter and Determinant. Fig. 6
shows the stress range frequency distribution of 400 block loadings and the Lognormal probability
distribution curve.

3.4 Fatigue crack evolution equation

The welding member of an analysis is the same as in Fig. 7 with a semi-elliptical crack length ¢
and a crack depth a exigting at a welding member between a verticd stiffener and the bottom flange
of a cross beam on a steel box girder bridge. The evolution equation for this fatigue crack could be
expressed as in Eq. (8) derived from block loading and the Paris' raw. Table 3 shows the modulus
for afatigue crack evolution. The material parameters are m and C. a and ¢; are a crack depth and a
crack length, respectively. a and ¢; are a limit crack depth and a limit crack length, respectively.

“ da

Bf = -
RLONME DY

(8)
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Fig. 7 Welding member of the bottom flange of a cross beam and vertical stiffener

Table 3 Coefficients required for fatigue crack evolution

C m a (m) a (m) ¢ (m) ¢ (m) d (m) b (m)
27x10™ 3 0.0001 0.01 0.0002 0.009 03 0.01

In case of the fatigue crack generated by the inner flaw or the surface flaw of a welding joint
exhibited, the ratio of the block loading employed with a plate thickness penetration to that of a
whole life is large. As the crack evolution velocity accelerates after the penetration of the plate, the
crack dimensions at the plate thickness penetration was used as a limit crack size. A limit crack
length was assumed to be 30% of a flange width.

The crack length change (Aa/AB) per a block loading is the summation of crack length change as
a result of loading cycles. The stress intensity factor range can be expressed using (AKe)i=
(Af)i /TRY(3) - Mi(a). Where Y(a) is the stress intensity correction factor, a function of the crack
depth a as well as the other crack half-length c, the flange thickness b, and the flange width d.
Eq. (9) adopted in this study was from Newman and Raju (1983) at the bottom flange with a semi-
dliptica surface crack.

1 2
Y(a) = — [+, + Ms%‘jfw ©
J1+ 1.464(a/c) '
_ _ __089 _
Where, M, = 1.13-0.09a/c, M; = 0.5— 065 — 14%1 M, = o=~ 054

0 1 @&y 3D
f, = 1/Jcosm/wa

In Eq. (10), the Mk(a) is stress concentration factor, depends not only on the crack depth a but
also on other geometric parameters such as the flange thickness b, the weld height h and the weld
angle 6. The stress concentration factor represents the magnification factor taking into account the
stress concentration due to specific structural detail. The classical solution presented by Sedlacek
et al. (1997) was adopted for this factor.

w

M, = v% (10)
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Where, the parameter v and win Eq. (11), Eq. (12) are caculated according to Hobbacher (1993).
v = 0.8086 —0.1554(h/b) + 0.0429(h/ b)* + 0.0784(h/ b)tan¢ (10)
= —0.1993 — 0.1839(h/b) + 0.0495(h/ b) + 0.0815(h/ b)tan¢ (12)
3.5 Probability distribution and fatigue reliability of failure block loading with MCS

MCS can compute the crack length per a block loading by generating probability variables (stress
ranges) of a Lognormal probability distribution. The numerical repetition from an initial crack size
to a limit crack size in a crack eguation per a block loading can attain a failure block loading. The
probability distribution for failure block loadings was estimated and adequately explained a
Lognormal probability distribution. Table 4 shows the Lognormal probability distribution parameters
according to ADTT, and simulations. The probability distribution parameters of the failure block
loadings were calculated using the MLM. Also, a Determinant was also used to evaluate the fitness
degree of the probability distribution of failure block loadings. The MCS program coded by Visual
Basic 6.0, was implemented. Fig. 8 shows the Lognormal probability distribution curve and the
probability distribution of failure block loading according to simulations.

Table 4 Lognormal probability distribution parameters according to smulations (o = 0.3)

Lognormal probability distribution parameters

ADTT RUN
A g r?
1000 400 16.25480 0.00582 0.94973
1000 800 16.25479 0.00564 0.97464
1000 1000 16.25474 0.00569 0.99071
1000 2000 16.25476 0.00581 0.99139
1000 5000 16.25478 0.00585 0.99800
1000 10000 16.25475 0.00617 0.99699
0.20
[ Probability Distribution
of Failure Block
0.16 1 | —=—Lognormal Probability
Distribution
N =R
= 0.12
§ 0.08
0.04
0.00 = =
11231850 11326650 11421450 11516250 11611050 11705850

Number of Block

Fig. 8 Failure probability distribution of ADTT = 1000, Run = 1000
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Fig. 9 Fatigue reliability according to simulations

The fatigue reliability of a welding member was obtained in terms of the cumulative probability
density of failure block loading. Fig. 9 shows the fatigue reliability curves of Lognormal cumulative
probability density according to ADTT = 1000 and the ssimulations.

A block loading with 50% reliability is 1.1464 x 10’, when run = 1000 and p = 0.3. Like the
failure cumulative probability density curves, the more simulations increase, the wider the block
loading range of the reliability curve becomes.

4. Results and discussions
4.1 Fitness of probability distribution and effect on simulations

The fitness degree between a stress range frequency distribution and a theory probability
distribution was judged by the Determinant (r?). In the case of 400 block loadings, the Determinant
of the Gumbel probability distribution was r? = 0.927, Normal 0.737, Lognormal 0.992, Exponential
0.974, and Weibull 0.987. The Determinant of the Lognormal probability distribution of a stress
range frequency distribution was the largest, so it was adopted as the probability distribution of a
stress range frequency distribution. Utilizing the same methodology, a Lognormal probability
distribution was adopted as the specific probability digtribution of a failure block loading. As for
scale factors (A) and shape factors (&) of a Lognormal probability distribution, that they converge
into a value was unknown, as the simulation increases. It was known, however that the Determinant
converges into a value as the simulation increases. Namely, the Determinant converged into a value
over 1000 of the simulations.

4.2 Peak analysis method
To validate the proposed model, peak analysis method and RMS methods were executed. The

crack evolution equation of a block loading using the peak analysis method is the same as that of
Eq. (12). The single stress range Afax, IS taken as a probability variable, and is considered to be the



Fatigue reliability analysis of steel bridge welding member by fracture mechanics method 357

largest stress range in a block loading.
Aa/ DB = C(f(g) /TRAf )" (12)

When using the peak analysis method, the probability variable (stress range) is generated by MCS
using Lognorma probability distribution parameters. A failure block loading was obtained by
numerically integrating the crack evolution amount per a block loading from an initial crack to a
limit crack for average daily truck traffic.

4.3 RMS (Root-Mean-Square) method

Bosoms (1973)' RMS method was used in Eg. (13). This is an analytica mode that is based on
the root mean sguare of a stress intensity factor range. The crack evolution equation for a block
loading is derived in Eq. (14).

172

MK = {i(AK?)/n} (13

172 m

Na/AB = C(f(g)/malfrys) " = cgf(g)ﬁa{i(mi)z/n} @ (14)

Each block loading Afgys from 400 block loadings measured on a steel highway bridge was
calculated. It was used to establish a probability distribution parameter. When performing MCS, the
daily average truck traffic and the probability distribution parameters were considered to compute a
failure block loading by integrating the numerical crack evolution amount per a block loading from
an initia crack to a limit crack.

4.4 Comparison of analysis results

Table 5 shows the failure times corresponding to p = 0.3 and 0.5 (50%) reliability, that was
calculated using the fatigue reliability analysis model and that of the peak analysis method. The
failure time of proposed fatigue analysis model, which was smaller than that of the peak analysis
method, was considered to be a conservative result. The failure time of the proposed fatigue analysis
model differed according to p value. The larger p is, the larger the falure time is like Table 6. A
crack grows when stress is larger than the crack opening stress in the proposed analytica modd,
while the stress smaller than the crack opening stress does not effect crack growth. When p is large,
the crack opening stress is large, and failure time increases, because the stress range is small.

Table 5 Failure times according to analysis method

Analysis method ADTT RUN Failure times (year)
RMS - - 102.57
Peak analysis 1000 1000 72.73

Proposed model 1000 1000 26.17
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Table 6 Failure times according to p (Reliability 50%)

Analysis method o} ADTT RUN Failure time (year)
0.3 26.17
Proposed model 04 1000 1000 83.56
05 253.22

Table 7 Failure times according to reliability (o = 0.3)

Analysis method Reliability (%) ADTT RUN Failure times (years)
50 26.17
Proposed model 90 1000 1000 25.98
99.9 25.71

All stresses in the domain where dead loading stress is large contribute to crack growth in the
proposed analysis moddl. Where, if dead loading stress is small, the small stress does not contribute
the crack growth even after extreme loading. If the dead loading stress is small and the crack
closure effect exists, the failure probability of the proposed model would be smaller than that of the
peak analysis method, or the reliability of the peak analysis method may be less than that of the
proposed model. In the peak analysis method, certain characteristics are not derived from the
domain where the crack closure exists (in the domain where dead loading stress is small) or where
crack closure does not exist (in the domain where dead loading stress is large). In the dead loading
effect, the whole stress ranges contribute crack growth in the domain where dead loading stress is
large. After extreme loading stress works, crack closure phenomenon occurs in the domain where
dead loading stress is small. Thus, the proposed model clearly explains the basic behavior of the
delay of crack growth.

As the failure time of RMS method was larger than that of any other method of analysis, RMS
method was found to be a questionable practicable estimation. It did not explain the loading cycle
sequence effect, crack delay or acceleration. When the loading effect is a a minimum, the RMS
method was found to be applicable to only a short spectrum. It was found that the RMS
methodology ignores the influence of the peak loading cycle in the tail end of the probability
distribution.

Table 7 shows the failure times (p = 0.3) at 50% reliability and 90%, 99.9% according to the
fatigue reliability.

5. Conclusions

After the dtress history was measured at the welding member of the bottom flange of a cross
beam and vertical diffener of a steel box girder bridge, the analysis was fulfilled using the fatigue
reliability analysis model based on a linear dagtic fracture mechanics method. The following
conclusions were obtained.

1. The probability method was applied to a stress range frequency distribution for a stress history.

The fatigue reliability analysis model that could compute the fatigue failure Probability and the
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reliability of the failure block loading estimated by Monte Carlo Simulation, was brought
forward.

2. The probability distribution parameters of the stress range frequency distribution of 400 block
loadings were estimated by MLM. Consequently, the probability distribution of a stress range
frequency distribution and failure block was a Lognormal probability distribution. Then,
Determinant, as a means of the judgment criterion of fitness degree, was larger than that of any
other probability distribution.

3. It was well known that the failure time of the proposed analysis method varied in accordance
with the ratio of the crack opening stress and maximum stress. Determining crack opening
stress was important so as to use the proposed analysis method.

4. Results did not confirm that Lognorma probability distribution parameters of a failure block
loading converged into a value. It was however, established that the Determinant converged into
single value over 1000 simulations.

5. Results showed that the failure times according to 50, 90, 99.9 % reliability were presented
respectively.
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