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Abstract. In recent years the pure displacement formulation for plate elements has not been as popular
as other formulations. We revisit the pure displacement formulation for shear-deformable plate elements
and propose a family of N-node, displacement-compatible, fully-integrated, pure-displacement, triangular,
Mindlin plate elements, MIN-N. The development has been motivated by the relative simplicity of the
pure displacement formulation and by the success of the existing 3-node plate element, MIN3. The
formulation of MIN3 is generalized to obtain the MIN-N family, which possesses complete, fully
compatible kinematic fields, in which the interpolation functions for transverse displacement are one
degree higher than those for rotations. General element-level formulas for the thin-limit Kirchhoff
constraints are developed. The 6-node, 18 degree-of-freedom element MIN6, with cubic displacement and
quadratic rotations, is implemented and tested extensively. Numerical results show that MIN6 exhibits
good performance for both static and dynamic analyses in the linear, elastic regime. The results illustrate
that the fully-integrated MIN6 element has excellent performance in the thin limit, even for coarse
meshes, and that it does not require shear relaxation.

Key words: Mindlin plate elements; displacement formulation; triangular plate elements; higher-order
plate elements.

1. Introduction

Much of the recent work on plate bending finite elements has focussed on Mindlin plate theory as
compared to Kirchhoff plate theory. The primary advantages of Mindlin theory, specifically the
inclusion of shear deformation and the low-order (C0) continuity required for finite element
implementations, are well-known. The primary difficulty with Mindlin elements is that ‘basic’ low-
order displacement elements tend to experience shear locking, or at least are excessively stiff, when

† Assistant Professor, Corresponding author, E-mail: jliu@tntech.edu
‡ Professor

DOI: http://dx.doi.org/10.12989/sem.2005.19.3.297



298 Y. Jane Liu and H.R. Riggs

modeling thin plates. Shear locking in Mindlin elements results from their inability to satisfy, in the
thin limit, the Kirchhoff constraints of vanishing transverse shear strains everywhere within the
element without the introduction of additional spurious constraints. Numerous strategies have been
used to avoid these problems, such as incompatible modes, discrete penalty constraints; selective,
reduced integration; and improved shear strain interpolations (Tessler 1985). A few of the many
finite elements based on these approaches are described in (Batoz 1982, Belytschko et al. 1984,
Choi and Park 1999, Hughes et al. 1977, Hughes and Tezduyar 1981, MacNeal 1978, Pugh et al.
1978, Sheikh and Dey 2001, Xu 1992).

Of the above techniques to obtain a robust shear-deformable element, the assumed strain
technique is currently one of the more popular (Bathe et al. 1989, Bathe and Dvorkin 1985,
Belytschko and Wong 1989, Brezzi et al. 1989, MacNeal 1982, Sze 1997, Sze and Zhu 1998,
Zienkiewicz and Lefebvre 1988). Although these elements can have good performance, assumed
strain elements can be viewed as a mixed formulation, in which the transverse displacement and
rotations are interpolated ‘as usual’, but transverse shear strains are assumed and interpolated
separately. As a result, these formulations are typically more complex than pure displacement
elements.

The objective of this paper is to revisit the pure displacement formulation for plate elements and
to develop a family of such elements with good performance for both thin and moderately thick
plates. One approach that has been used for pure displacement elements to satisfy more readily the
Kirchhoff constraints with polynomial interpolation functions is to interpolate the transverse
displacement with functions that are one degree higher than the rotations in the thin limit. To
achieve this, independent interpolation functions for the transverse displacements and the normal
rotations can be used. If this is done, however, one has more degrees-of-freedom for the
displacements than the rotations, which can be inconvenient for general applications, and there is
therefore motivation to eliminate these ‘extra’ degrees-of-freedom.

Timoshenko beam theory, the 1-D analog to Mindlin plate theory, has similar problems with shear
locking, and the earliest application of independent interpolation with different degrees to solve
shear locking was by de Veubeke (1965) for a Timoshenko beam element. He eliminated the ‘extra’
degrees of freedom for the displacement by static condensation (see also (Crisfield 1986)). Static
condensation requires more element computations, and it also reduces the element’s application in
dynamic analysis. A more elegant approach to eliminate the extra degrees-of-freedom was
developed by Tessler and Dong (1981). They started with independently interpolated elements. From
these, they developed ‘constrained’ elements, eliminating the extra DOFs by reducing the order of
the shear strain variation in the element. This procedure leads to explicit interpolation functions that
can be used to develop pure displacement elements that are fully integrated but that do not lock.
The elimination of the extra DOFs result in coupling the transverse displacement field to the
rotational DOFs through the interpolation functions.

One of the first applications of independent, different-degree interpolation to Mindlin elements
was to rectangular elements by Greimann and Lynn (1970). Hughes and Tezduyar (1981) developed
an element that was conceptually based on such an interpolation, although in practice they used
equal-degree interpolation functions with a modification of the shear strain to avoid locking. Tessler
(Tessler 1982, Tessler and Hughes 1983, 1985) extended his approach for Timoshenko beams to
Mindlin plates (the approach and result of which is similar to (Greimann and Lynn 1970) for
rectangular plates). He developed the 3-node, 9-DOF ‘constrained’ element MIN3, with simple,
explicit interpolation functions. This fully-integrated, full-rank, low-order (constant moment), pure
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displacement element has been shown to perform very well for very thin to moderately thick plates,
and it has been extended to shells (Tessler 1990). Crisfield (1984) also used independent
interpolations to develop a displacement element. He used similar shear constraints to eliminate
some DOFs, but the constrained element actually has more nodes with rotational than displacement
degrees-of-freedom. 

It should be noted that although the initial elements have independent interpolation, constraints are
introduced that couple the transverse displacement field to the rotational degrees-of-freedom. The
resulting functions have been referred to in the literature as anisoparametric, interdependent, and
linked interpolation functions (Auricchio and Taylor 1994). One could also start with such
interpolation functions. This approach has been used to develop mixed Mindlin plate elements
(Auricchio and Taylor 1994, Taylor and Auricchio 1993, Xu 1992, Zienkiewicz et al. 1993). Mixed
elements, however, lack the simplicity of pure displacement elements (as long as the latter require
no special procedures to obtain adequate performance).

Of the elements surveyed, only MIN3 (Tessler and Hughes 1985) has the following characteristics:
pure-displacement element; simple, explicit, complete polynomial interpolation functions;
displacement-compatible; full integration; and good performance for thin and moderately thick
plates. The strategy herein is to extend the approach used to develop MIN3 to higher-order
elements. First, we review the basic equations of the underlying, linear elastic Mindlin plate theory
and the basic concepts of the original MIN3 development. Following that, we present a general
methodology to develop interpolation functions for higher-order elements in the MIN-N ‘family’ of
N-node, triangular Mindlin elements, in which N is also the number of terms in the complete 2-D
polynomial (i.e., 3, 6, 10, etc.) that is used to interpolate the normal rotations. MIN3 is the lowest
order element in the family. Then, the approach is used to develop MIN6, a 6-node, 18 DOF, cubic-
displacement triangular element. Lastly, we present numerical results for MIN6 and compare them
to results for MIN3, for an isoparametric 6-node element (ISOMIN6), and for the 6-node ANSYS
element SHELL93 (ANSYS 1998).

2. Basic equations

Consider a plate in the x-y plane with thickness t and mid-plane area A. Let u(x, y, z) and v(x, y, z)
be the plate in-plane displacements of a point (x, y, z) and w(x, y) be the transverse displacement of
a point (x, y) on the mid-surface of the plate. Let θx(x, y) and θy(x, y) be the rotations about the
(negative) x and (positive) y-axes, respectively, of the line that was initially normal to the
undeformed midsurface. We assume that plane sections remain plane but not necessarily normal to
the deformed midplane. Therefore,

(1)

The plate bending curvatures and transverse shear strains are, respectively,

(2)

u x y z, ,( ) zθy x y,( ), v x y z, ,( ) zθx x y,( ) and w x y z, ,( ) w x y,( )===

κ

κxx

κyy

κxy 
 
 
 
  θy x,

θx y,

θy y, θx x,+ 
 
 
 
 

and γ
γxz

γyz 
 
  w,x θy+

w,y θx+ 
 
 

= = = =
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Given the strain definitions, the moment-curvature relations and shear resultant-strain relations can
be written as M = Dbκ and Q = Gsγ, respectively, where Db and Gs are constitutive matrices. The
shear constitutive matrix includes the classical shear correction factor, k2 (typically 5/6 for a
homogeneous plate).

The rotations θx, θy and the transverse displacement w are considered as independent variables in
Mindlin theory. However, in the thin plate limit the Kirchhoff constraints of vanishing shear
deformation lead to

(3)

The inability of the interpolated displacement fields of a pure displacement element to satisfy  Eq. (3)
everywhere within the element leads to shear locking in the thin limit.

In a displacement finite element formulation, the deformations are related kinematically to the
displacements such that κ = Bbd and γ = Bsd, in which d is the vector of nodal displacements, and
Bb and Bs are the strain-displacement matrices. Standard theory then leads to the element stiffness
matrix, K, in terms of its bending, Kb, and transverse shear, Ks, components:

(4)

3. MIN3 overview

In this section we review the basic concept and formulation of MIN3. Details of the derivation can
be found in Tessler and Hughes (1985). The initial nodal configuration involves 6 nodes: 3 vertex
nodes with translational and rotational degrees-of-freedom, and 3 midside nodes with translational
degrees-of-freedom only. Note that this strategy is the exact opposite of Hughes’ heterosis element
(Hughes and Cohen 1978), which involved more nodes with rotational than translational degrees-of-
freedom. Standard, triangle interpolation functions are used for the independent interpolation of the
displacement variables, which results in a complete quadratic variation for the displacement, a
complete linear variation for the rotations, and a complete linear variation for the transverse shear
strains. To eliminate the three transverse displacement degrees-of-freedom at the midside nodes
while maintaining interelement compatibility, the tangential shear strain along each edge is required
to be constant, i.e.,

,  i = 1, 2, 3 (5)

where s denotes the edge coordinate, θn is the rotation normal to the edge, and ξi are the usual area
coordinates. Enforcement of these constraints leads to a constrained transverse deflection field, in
terms of the nine vertex DOFs, that remains a complete quadratic polynomial. However, the shear
strain is no longer a complete linear polynomial.

Element matrices follow from standard displacement-based finite element formulation. Full
integration is used to evaluate the element stiffness, Eq. (4), and it therefore has full rank.

The different degree interpolation is not sufficient to eliminate locking under all boundary
conditions; see Tessler (1985). To eliminate locking completely, Tessler and Hughes (1985)

w,x θy+ 0 and w,y θx+ 0→→

K Kb Ks+ Bb
 TDbBbdA

A
∫ Bs

 TGsBsdA
A
∫+= =

γsz s, w,s θn+( ),s ξ i 0≡ 0≡=
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enhanced the classical shear correction, k2, with a finite element relaxation factor, φ2. That is, k2 is
replaced with . The factor φ2 is calculated automatically. Its maximum value is 1, which
corresponds to no relaxation. In the thin limit, as the element thickness approaches zero relative to
its size, the factor tends to zero. Another advantage of the relaxation introduced by φ2 is that the
excessive stiffness inherent with coarse meshes is reduced.

The success of MIN3 is due to both the interpolation function strategy and the element-
appropriate shear relaxation factor. It is a very good element, based upon numerical testing on
linear, elasto-static problems.

4. Derivation of the MIN-N family

4.1 General strategy

Because of the displacement basis of MIN3, it is clear that a family of elements can be defined
once a methodology is established to generate the interpolation functions. Such a methodology is
presented in this section. The desired triangular N-node, 3N-DOF elements, MIN-N, must have
complete polynomial interpolation for the transverse displacement, w, that is one degree higher than
the interpolation of the normal rotations, θx and θy.

The first step in the derivation is to define a family of unconstrained elements that are based on
independent interpolations of the transverse displacement and normal rotations. Standard
interpolations for the rotations are used with the usual triangular nodal configuration, as shown in
Fig. 1. These interpolation functions have degree . Hierarchical interpolation
functions are employed for the higher-order terms of the transverse displacement field. From the
unconstrained interpolation functions, the constrained interpolation functions for MIN-N are
developed by enforcing continuous shear constraints along any line in the N-node element, which
reduces the degree of completeness of the shear strain field by one. As a result of imposing these
constraints, the hierarchical (nodeless) DOFs are eliminated and the transverse displacement of the
constrained element is then coupled with the rotational degrees-of-freedom. The constrained element
has the same nodal configuration, with the same nodal DOF, as the unconstrained element (which
also has nodeless DOFs). The displacement fields for the unconstrained and constrained elements
are compared in Table 1.

ke
2 φ2k2

=

p 1 8N+ 3–( ) 2⁄=

Fig. 1 Unconstrained and constrained elements’ nodal configuration. (a) N = 3, Linear; (b) N = 6, Quadratic;
(c) N = 10, Cubic
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4.2 Unconstrained element interpolation

The nodal displacements of the N-node element are wi, θxi and θyi, i = 1, 2, ..., N, with

w = {wi} θx = {θxi} θy = {θyi} (6a)

The vector of nodal degrees-of-freedom is

(6b)

The standard Lagrange-type, p-degree interpolation functions, Ni, i = 1, 2, ..., N, that are used
extensively for plane triangular elements and that can be found in many finite element texts (see,
e.g., Cook et al. 2002) are used for the rotations and for the transverse displacement. Because the
transverse displacement is interpolated with functions of degree p + 1, hierarchical functions are
used for the p + 2 higher-order terms. These functions, which are zero at the nodes, are most easily
defined similar to the Ni, i.e., as products of linear functions passing through the nodes. The
nodeless degrees-of-freedom associated with the hierarchical terms are represented by

(7)

The displacement interpolation can be expressed as

(8)

in which N is the 1 × N vector of the Ni and Na is the 1 × (p + 2) vector of hierarchical interpolation

d

w

θx

θy 
 
 
 
 

=

a a j{ } , j 1 2 … p 2+( ), , ,= =

u

w

θx

θy 
 
 
 
  N  0  0  Na

0  N  0  0
0  0  N  0

w

θx

θy

a 
 
 
 
 
 
 

Nudu= = =

Table 1 Displacement interpolation for unconstrained and constrained elements

Element type Unconstrained element Constrained element

Degree of interpolation fields
w ; θx, θy

(p + 1); p  (p + 1); p

Degree of shear strain along s
γsz = w, s + θn

 p p − 1

Number of nodes 
N = (p + 1)(p + 2)/2 N  N

Number of nodal DOF 3N 3N

Number of hierarchical DOF  p + 2  0

Number of constraint equations 0  p + 2
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functions Naj , j = 1, 2, ..., (p + 2). Note that the unconstrained elements have 3N nodal degrees-of-
freedom and p + 2 nodeless degrees-of-freedom.

The unconstrained interpolation functions for MIN3, MIN6, and MIN10 are, respectively,

(9a)

(9b)

and

(9c)

with i = 1, 2, 3; k = 2, 3, 1 and the ξi are area coordinates.

4.3 Shear constraint equations

The tangential transverse shear γsz along any arbitrary line L that makes an angle α with the x-axis
(Fig. 2) is defined as

(10a)

in which θn is the midsurface-normal rotation as depicted. The relation between γsz , γxz and γyz is 

(10b)

Ni ξ i= Nai ξ iξk=

Ni ξ i 2ξ i 1–( ) Ni 3+ 4ξ iξk Nai ξ iξk 2ξ i 1–( ) Na4 ξ1ξ2ξ3= = = =

Ni
1
2
---ξ i 3ξ i 1–( ) 3ξ i 2–( ) N2i 2+

9
2
---ξ iξ k 3ξ i 1–( ) N2 i 3+

9
2
---ξ iξ k 3ξ k 1–( )= = =

N10 27ξ1ξ2ξ3 Nai ξ iξ k 3ξ i 1–( ) 3ξ i 2–( ) Na4 ξ1ξ2ξ3 3ξ1 1–( )= = =

Na5 ξ1ξ2ξ3 3ξ2 1–( )=

γsz w,s θn+=

γsz γxzcosα γyzsinα+=

Fig. 2 Notation for MIN-N element
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Our desired element, MIN-N, is obtained from the unconstrained element by eliminating the p + 2
nodeless degrees-of-freedom, a, for which p + 2 constraints are needed. The p + 2 constraint
equations are obtained from

(11)

Eq. (11) says that the p-th partial derivative of the shear strain γsz along any direction is required to
be zero. For example, for a 3-node element, p = 1 and the first partial derivative has to be zero; for
a 6-node element, p = 2 and the second partial derivative has to be zero; etc. Although this high-
order constraint reduces the degree of completeness of the shear strain polynomial by one, it is
chosen because it 1) maintains interelement compatibility and 2) results in the highest degree shear
strain field possible for the constrained element.

Eqs. (10b) and (11) result, for arbitrary α , in the p + 2 constraints

(12)

To provide some clarity to Eq. (12), we state them explicitly for the first three members of the
MIN-N family.

1. MIN3 is a 3-node triangle with p = 1, a quadratic displacement field, and linear rotation fields.
The three constraint equations are

(13a)

2. MIN6 is a 6-node triangle with p = 2, a cubic displacement field, and quadratic rotation fields.
The four constraint equations are

(13b)

3. MIN10 is a 10-node triangle with p = 3, a quartic displacement field, and cubic rotation fields.
The five constraint equations are

 (13c)

4.4 Constrained interpolations

From Eqs. (2), (8), and (12), we can write the (p + 2) constraints in terms of the nodal and
nodeless degrees-of-freedom:

γsz ,s…ss 0
p

≡{

∂ pγxz

∂xp
----------- 0=

p m–( )
∂ pγxz

∂xp m 1+( )– ∂ym 1+
--------------------------------------- m 1+( )+

∂ pγyz

∂xp m– ∂ym
------------------------ 0 m 0 1 2 … p 1–( ), , , ,= =

∂ pγyz

∂yp
----------- 0=

γxz x, 0, γxz y, γyz x,+ 0, γyz y, 0= = =

γxz xx, 0, 2γxz xy, γyz yy,+ 0, γxz yy, 2γyz xy,+ 0, γyz yy, 0== = =

γxz xxx, 0, 3γxz xxy, γyz xxx,+ 0, 2γxz xyy, 2γyz xxy,+ 0,= = =

γxz yyy, 3γyz xyy,+ 0, γyz yyy,= 0=
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(14)

in which the B matrices involve partial derivatives of the interpolation functions. From Eq. (14), the
nodeless degrees-of-freedom a can be written in terms of the nodal degrees-of-freedom because Bca

is an invertible matrix. As a result, a can be eliminated from Eq. (8), resulting in

(15a)

in which

(15b)

Nc is the 3 × 3N matrix of constrained interpolation functions for MIN-N elements and

(15c)

Li and Mi have degree p + 1, one order higher than N. Notice that as a result of enforcing the
continuous shear constraints along any line in the element, the transverse displacements are now
coupled to the bending rotations. (Note that when L = M = 0, the interpolation functions for the
isoparametric family of elements are recovered.)

To guarantee that rigid body motions can be represented, the interpolation functions must satisfy
the conditions

(16)

The restriction on Ni is clearly satisfied because these are the standard interpolation functions. The
unconstrained interpolation functions certainly can represent rigid body motions. The constrained
interpolation functions are obtained from the unconstrained functions by restricting the variation of
the shear strains. Because rigid body motions involve zero shear, the constraints do not affect the
ability of the constrained functions to represent rigid body motion, and hence the remaining two of
Eq. (16) also will be satisfied.

Once the interpolation functions of MIN-N are developed, formulating the element stiffness,
consistent mass matrices and consistent load vectors follows the straightforward procedure in the
displacement-based finite element formulation. Stiffness, consistent mass matrices and consistent
load vectors are obtained with full integration. We note that the strain-displacement matrices are

0  Bcθx
  Bcθy

  Bca[ ]

w

θx

θy

a 
 
 
 
 
 
 

0=

u Ncd=

Nc

N  L  M
0  N  0
0  0  N

=

LT Li{ } MT Mi{ } i 1 2 … N, , ,= = =

Ni
i 1=

N

∑ 1 Li
i 1=

N

∑ 0 Mi
i 1=

N

∑ 0≡≡≡
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(16a)

(16b)

The consistent mass matrix is

(17)

in which  is the 3 × 3 sectional mass matrix, including rotary inertia.
The consistent load vector for the distributed normal load, q, as well as applied bending moments,

, and transverse shear force, , prescribed on the portion Γσ of the element boundary Γ
may be written as

(18)

4.5 Shear variation of MIN-N

The transverse shear strains in the unconstrained elements are complete polynomials of degree p.
The shear constraints limit the shear strain variation for MIN-N. To satisfy the first and last shear
constraints in Eq. (12), the shear strains must be of the form

(19a)

(19b)

in which the coefficients A and B involve the nodal degrees-of-freedom. (The subscript notation is
such that the comma separates the two indices and does not imply differentiation, and repeated
indices do not imply summation.) Satisfaction of the other p constraint equations requires

(20)

4.6 Kirchhoff constraints of MIN-N

In the thin plate regime as , the Kirchhoff constraints, Eq. (3), are enforced over the
entire element domain. Together with Eqs. (19a), (19b) and (20), we obtain

(21)

These are the p × (p + 2) Kirchhoff constraint equations for MIN-N in the thin plate limit.

Bb

0  0  N,x

0  N,y  0

0  N,x  N,y

=

Bs
N, x  L, x  M, x N+

N, y  L, y N+   M, y

=

M Nc
 T mNcdA

A
∫=

m

Mxx Myy, Q

F q N  L  M[ ] TdA
A
∫ 0  MyyN  MxxN[ ] T

dΓ
Γσ

∫ Q N  L  M[ ] TdΓ
Γσ

∫+ +=

γxz An m– m, xn m– ym

m 0=

n

∑ 
 
 

n 0=

p 1–

∑ Ap m– m, xp m– ym

m 1=

p

∑+=

γyz Bn m– m, xn m– ym

m 0=

n

∑ 
 
 

n 0=

p 1–

∑ Bp m– m, xp m– ym

m 0=

p 1–

∑+=

Ap n– 1– n 1+, Bp n– n,+ 0 n 0 1 … p 1–, , ,= =

L t⁄ ∞→

An m– m, Ap n– 1 n 1+,– Bp n– n,–=( ) Bn m– m,, , 0 m 0 1 … n; n 0 1 … p 1–, , ,=, , ,=→
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Although the formulation here is somewhat different and has been generalized for higher-order
elements, it can be readily verified (Liu 2002) that the interpolation functions and constraint
equations, when specialized for N = 3, are the same as for the original MIN3 element as given in
(Tessler 1985, Tessler and Hughes 1985).

5. Formulation of MIN6

The 6-node, 18 degree-of-freedom (DOF) element MIN6 is developed based on the general
formulation of MIN-N. Fig. 1(b) shows the nodal configuration for MIN6, and the unconstrained
interpolation functions are given in Eq. (9b).

5.1 Constrained interpolation functions

The constrained interpolation functions are obtained from the unconstrained interpolation
functions by imposition of the 4 shear constraints in Eq. (13b). Note that the interpolation functions
are defined in terms of the area coordinates ξi rather than in terms of x and y, and therefore the
derivatives needed in Eq. (13b) are not immediately available. If the element is distorted (i.e., the
edges are curved), the Jacobian matrix is not constant, and the resulting constrained interpolation
functions would not be polynomials because of the inverse of Bca, and the nodeless degrees-of-
freedom a would not be constant. Hence, a straight sided element is assumed in the derivation of
the interpolation functions. As a result, the linear relation between Cartesian and area coordinates
for a straight-sided triangle is valid:

(22a)

in which coefficients ai, bi, and ci are given by

(22b)

with a cyclic permutation of the indices (i = 1, 2, 3; j = 2, 3, 1; k = 3, 1, 2). xi and yi are the nodal
coordinates of node i. Although this assumption does not necessarily restrict the actual element
geometry to be straight-sided, it is anticipated that MIN6’s performance will be sensitive to
distortion (i.e., to the placement of the middle nodes).

The constrained interpolation functions in terms of the area-parametric coordinates, Nc, can be
obtained as

(22c)

(22d)

(22e)

with i = 1, 2, 3; j = 2, 3, 1; k = 3, 1, 2. It is readily verified that the conditions for rigid body
motions, Eq. (16), are satisfied by these functions.

ξ i
1

2A
------- ci bix aiy+ +( )=

ai xk xj–= bi yj yk–= ci xjyk xk–= yj

Ni ξ i 2ξ i 1–( ) Ni 3+ 4ξ iξk==

Li Ni
1
3
--- bkξ j bjξ k–( ) Li 3+ Ni 3+

1
3
--- biξ k bk ξ i

1
2
---– 

 –= =

Mi Ni
1
3
--- akξ j ajξ k–( ) Mi 3+– N– i 3+

1
3
--- aiξ k ak ξ i

1
2
---– 

 –= =
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5.2 Kirchhoff constraints of MIN6

The 8 Kirchhoff constraints in the thin limit can be obtained generally from Eq. (20). However,
there is an alternative formulation of these constraints. Consider the element in Fig. 1(b). Along any
edge ij, the transverse displacement, w(s), is a cubic function and the edge-normal rotation, θn(s), is a
quadratic function in terms of the edge coordinate s. Imposition of the Kirchhoff constraint, Eq. (10a)
leads to two Kirchhoff edge constraints per edge, for a total of six ‘edge’ constraints:

(23a)

(23b)

with a cyclic permutation of the indices.
From Eq. (21) we know there are 8 Kirchhoff constraints. We refer to the remaining two as

‘interior’ constraints. To find them, first consider Fig. 1(b) again. Imagine lines connecting each
vertex node with the opposite midside node. Along each of these lines, the Kirchhoff constraint can
be imposed, resulting in the ‘interior’ Kirchhoff constraints:

(24)

again with a cyclic permutation of the indices. Eq. (24) represents three equations, only two of
which are independent (any two can be used).

The 8 Kirchhoff constraints of MIN6 are given explicitly in Eqs. (23a), (23b) and (24). Specific
details of the derivation can be found in Liu (2002).

When 4 MIN6 elements are placed in a cross-diagonal pattern, as depicted in Fig. 3, one would
expect to have 24 Kirchhoff constraints (2 per edge plus 2 per element). However, it can be shown
that there are only 23 independent constraints. One can therefore expect better performance in the
thin limit for MIN6 when used in a cross-diagonal meshing scheme, as compared to the

1
2
--- wi wj+( ) wi 3+

1
8
--- bk θxi θxj–( ) ak θyi θyj–( )–[ ]+– 0=

3 wi wj–( ) 1
2
--- bk θxi θxj 4θxi 3++ +( ) ak θyi θyj 4θyi 3++ +( )–[ ]+ 0=

7 wi wk–( ) 10 wj 3+ wi 3+–( ) ak aj–( ) θyi θyj 3+–( ) bk bj–( ) θxi θxj 3+–( )–+ +

 aj ai–( ) θyi 3+ θyk–( ) bj bi–( ) θxi 3+ θxk–( ) 0=+ +

Fig. 3 MIN6 cross-diagonal pattern
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performance in other meshing schemes. Conceptually, one obtains an additional ‘free’ degree-of-
freedom in each pattern by the elimination of one constraint. (The same is true for MIN3.) Hence,
this cross-diagonal meshing strategy is used in most of the test problems discussed below.

Remark. The smoothing element analysis methodology for stress recovery and a posteriori error
estimation for finite element analysis has been developed recently; see, e.g., (Riggs et al. 1997,
Tessler et al. 1998, 1994, Yazdani et al. 2000). The method results in a nearly C1 continuous
recovered stress field based on the underlying interelement-discontinuous finite element stress field.
The method can result in a superconvergent recovered stress field if the smoothing element is of
sufficient order relative to the finite element stresses. In the cited work, the interpolation functions
and constraint equations for MIN3 were used to develop a quadratic smoothing element, which is
most effective when applied to finite element stress fields that are linear within the finite element.
Higher order smoothing elements are recommended for higher order finite elements. The
interpolation functions and constraint equations developed herein allows the development of higher
order smoothing elements.

6. Numerical results for MIN6

MIN6 can reproduce rigid body modes when the element is both undistorted (straight edges) and
distorted (curved edges). It passes the thin plate, constant moment patch test proposed by MacNeal
and Harder (1985) when the element is undistorted, but not when it is curved. This is clearly a
result of the related assumption in the development of the interpolation functions; see the discussion
in section 5.1. As a result, only straight-sided elements are used subsequently. The same mesh
proposed in MacNeal and Harder (1985) was used here, except that each quadrilateral was meshed
by two triangles. In addition, MIN6 passes the mixed patch tests involving constant moment and
linear moment involving a tip-loaded cantilever ‘beam’ described in Batoz and Lardeur (1989).

An important factor in the performance of MIN3, especially for coarse meshes, is the element-
appropriate shear relaxation. Tests were carried out to determine if MIN6 required shear relaxation,
and it was shown that the element does not (Liu 2002). None of the results presented herein
involves relaxation; i.e.,  for all cases.

6.1 Thin limit behavior

To evaluate the performance of MIN6 in the thin limit, a series of analyses involving square,
simply supported and clamped plates subjected to a concentrated center load and a uniform
distributed load were carried out. The L/t ratio was varied from 10 to 1000. For comparison, results
are compared to those for a 6-node, displacement-based, isoparametric Mindlin plate element with
full integration (ISOMIN6). ISOMIN6 has the same formulation as MIN6, except that L = M = 0.
Clearly, the element has the same nodal configuration as that of MIN6. The three meshes shown in
Fig. 4 were used. Center displacements, nondimensionalized by the Kirchhoff solutions, are plotted
for MIN6 and ISOMIN6 in Figs. 5 and 6. The results show that MIN6 neither locks nor is
excessively stiff, even for thin plates and the coarse 2 × 2 meshes. However, ISOMIN6 results with
the 2 × 2 coarse mesh show clearly that the element has substantially poorer performance for thin
plates, and locks completely for the clamped plate.

φ2 1≡
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Fig. 4 Meshes of one quadrant of a symmetric, square plate

Fig. 5 Center displacement of a simply supported plate with varying L/t ratios and three meshes

Fig. 6 Center displacement of a clamped plate with varying L/t ratios and three meshes
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6.2 Meshing strategy

In the subsequent tests, results for MIN6 are compared with MIN3 and ANSYS’ SHELL93
(ANSYS 1998) element. SHELL93 was chosen as an example of a commercially-available, 6-node
triangle. SHELL93 is a reduced-integrated, isoparametric element with a shear relaxation factor,
which is conceptually similar to φ2, to prevent shear locking.

The preferred meshing strategy for both MIN6 and MIN3 is a cross diagonal pattern, as depicted
in Fig. 7. The figures shows a basic quadrilateral meshed with the same nodal pattern for both
MIN6 and MIN3. SHELL93 meshes are identical to the MIN6 meshes (This configuration may not
be optimal for SHELL93.) Meshes for all three elements therefore have the same number of nodes
and degrees-of-freedom. Note that the MIN3 meshes have four times the number of elements as the
MIN6 meshes.

6.3 Isotropic thin and moderately thick square plates (L/t =1000 and 10)

Convergence studies are carried out for a thin square plate with L/t of 1000 and a moderately
thick square plate with L/t of 10. Simply supported and clamped boundary conditions are used, and
the plates are subjected to a uniform load and a center concentrated load. The meshes are shown in
Fig. 8. Poisson’s ratio is 0.3 in all cases. The center deflection and center bending moment were
chosen to evaluate the numerical performance. Fourier series solutions, which are used to

Fig. 7 The cross-diagonal meshes of MIN6 and MIN3 for plate problems

Fig. 8 One quadrant of doubly-symmetric square plates (dashed lines indicate MIN3 elements)
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nondimensionalize the results, are given in Table 2. Wthin and Mthin (Liu et al. 2000) are Kirchhoff
theory solutions of the center deflection and bending moment and Wmind are Mindlin theory solutions
of the center deflection. P is the center point load, q is the uniform load, and D = Et3/12(1 − ν2),
where E and ν are Young’s modulus and Poisson’s ratio, respectively.

Table 2 Reference solutions for center deflection and bending moment of a square plate

Boundary condition and loading
 Square plate

Wthin Wmind  Mthin

Simply supported with center load 0.0116PL2/D ----  ----
Clamped with center load 0.00560PL2/D --- ----

Simply supported with uniform load 0.00406qL4/D 0.00427qL4/D 0.0479qL2

Clamped with uniform load 0.00126qL4/D 0.00150qL4/D 0.0231qL2

Fig. 9 Convergence of center deflection for a thin square plate with center load

Fig. 10 Convergence of center deflection for thin square plate with uniform load
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Convergence plots are shown in Figs. 9 to 11. The results show that MIN6 is as accurate as MIN3
and in some cases more accurate. Both elements are more accurate than SHELL93. All elements,
however, illustrate convergent behavior. Note that in Fig. 9 MIN3 displays greater accuracy than
MIN6. This is because the shear relaxation factor φ2 for MIN3 has been optimized based on this
problem, i.e., a thin square plate with a concentrated load.

For the fine meshes, the errors in the center moments for MIN6, as measured by the averages of
the moments at the integration points closest to the center of the plate, were 0.5% and 1.7% for the
simply supported and clamped plates, respectively.

6.4 Thin circular plates (2R/t = 100)

A simply-supported, thin circular plate (2R/t = 100) is used to demonstrate the performance of
MIN6 when nonrectangular 4-element assemblies are used. The three meshes shown in Figs. 12 and
13 are used. MIN6 and SHELL93 have the same meshes and MIN3’s meshes are shown in Fig. 13.

Fig. 11 Convergence of center deflection for moderately thick square plate with uniform load

Fig. 12 MIN6 and SHELL93 meshes for 1/4 thin circular plate
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To keep MIN6 straight-sided, only the element’s vertex nodes are placed on the circular boundary.
Only the transverse displacement of the nodes on the circular plate boundary are restrained.
Poisson’s ratio is 0.3. Center deflection results, as a ratio of the exact solutions in Table 3, are
shown in Fig. 14. MIN6’s performance is excellent for deflection in the thin regime, and the
element competes well with MIN3 and SHELL93.

For the fine mesh, MIN6’s center moment, based on the average of the moments at the closest
integration points, is in error by less than 0.1%.

Fig. 13 MIN3 meshes for 1/4 thin circular plate

Table 3 Exact solutions for center deflection and bending moment of a circular plate (Roark and Young 1975)

Boundary condition and loading Wthin  Mthin

Simply supported with center point load  PR2(3 + ν)/[16πD(1 + ν)]  ----
Simply supported with uniform load qR4(5 + ν)/[64D(1 + ν)]  qR2(3 + ν)/16

Fig. 14 Convergence of center deflection for thin circular plate (2R/t =100)



The MIN-N family of pure-displacement, triangular, Mindlin plate elements 315

6.5 Orthotropic square plate (L/t = 30)

A simply supported, orthotropic thin square plate (L/t = 30) is used to test the convergence and
accuracy of MIN6 for non-isotropic problems. The meshes are shown in Fig. 8. Material properties
are Ex = 22.9 × 106; Ey = Ez = 1.39 × 106; Gxy = Gxz = 0.86 × 106; Gyz = 0.468 × 106; νxy = νxz =
0.32 and νyz = 0.49. (These properties correspond to a Gr/Ep unidirectional composite.) A uniform
sine loading, q = sin(πx/L)sin(πy/L), is applied. The load within each triangle of the finite element
model varied quadratically for MIN6 and linearly for MIN3. Convergence of the center deflection,
bending moments and shear forces are shown in Figs. 15 to 18. For comparison, exact solutions
(Liu et al. 2000) and the results of MIN3 are presented in the figures. MIN6’s results are excellent.
For MIN6 and MIN3, the bending moments and shear forces are obtained from the Gauss point
closest to the corner or edges.

Fig. 15 Convergence for center deflection of orthotropic
square plate (L/t = 30)

Fig. 16 Convergence of moment Mxy of orthotropic
square plate (L/t = 30)

Fig. 17 Convergence of moment Mx and My of orthotropic square plate (L/t = 30)
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6.6 Thin rhombic (skew) plate

A thin, simply-supported rhombic plate with an acute angle of 30o is frequently used to test plate
elements. A ‘4 × 4’ mesh of 16 MIN6 elements is shown in Fig. 19. The corresponding MIN3
mesh with the same number of DOFs has 64 elements. The plate was given properties of a = 100,
t = 1, E = 1 × 107 and ν = 0.3 (Ibrahimbegovic and Frey 1994). The plate has a uniformly

Fig. 18 Convergence of shear force Qx and Qy of orthotropic square plate (L/t = 30)

Fig. 19 ‘4 × 4’ MIN6 mesh of a rhombic plate

 
Table 4 Center displacements and moments for the skew plate

Mesh

MIN6 MIN3 MIN6 MIN3 MIN6 MIN3

4 × 4 0.443 0.466 1.81 1.78 1.04 0.982
8 × 8 0.395 0.430 1.84 1.90 1.07 1.10

16 × 16 0.410 0.422 1.91 1.93 1.10 1.12
Reference 0.408 0.408 1.91 1.91 1.08 1.08

w

qa4 1000D⁄
-----------------------------

Mmax

qa2 100⁄
---------------------

Mmin

qa2 100⁄
---------------------
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distributed load of magnitude q. Transverse displacement and principal moments at the center of the
plate for 3 meshes (4 × 4, 8 × 8, and 16 × 16) are given in Table 4. The reference solution is from
Morley (1963). The moments along the short diagonal, from point A to the plate center in Fig. 19,
are shown in Fig. 20 for the 16 × 16 mesh. The moments for MIN6 are obtained from the
integration points closest to the line (two per element). It is clear that MIN6 performs very well,
having difficulty only near the singularity at A.

6.7 Free vibration of thin and moderately-thick plates

The natural frequencies of simply-supported thin (L/t = 104) and moderately thick (L/t = 10)
isotropic square plates have been computed with the 64 element mesh (145 nodes) shown in Fig. 8.
Poisson’s ratio is 0.3. The exact, Mindlin-solution nondimensional frequencies 
(where ωnm is the natural frequency for mode m, n and ρ is the mass density) for the symmetric modes
are presented in Table 5 (Liu et al. 1998). The percent error of the frequencies are shown in Table 6

λnm ωnmL
2

ρ Et
2( )⁄=

Fig. 20 Bending moments along short diagonal

Table 5 Non-dimensional frequencies λnm for simply-supported square plates exact solutions 
(Liu et al. 2000)

Mode number
Thin plate (L/t = 104) Thick plate (L/t = 10)

λnm λnm

n m Mindlin Mindlin
1 1 5.97337 5.76932
1 3 29.8668 25.7337
3 3 53.7602 42.3832
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for MIN6 and MIN3. Consistent mass matrices with full integration were used for both elements.
Rotary inertia was included with MIN6 (the MIN3 element does not include rotary inertia). The results
demonstrate the good performance of MIN6. The pure displacement formulation and full integration
implementation of MIN6 leads to the expected consistent overestimation of each natural frequency.
Note that because of the shear relaxation factor for MIN3, the element is not a ‘pure’ displacement
element and it does not always predict an upper bound on the frequencies.

A more detailed analysis of the element’s performance for free vibration problems appears in Liu
and Buchanan (2004). Numerical results are compared with experimental data and previously
published numerical results. The results for MIN6 compare very favorably.

7. Conclusions

A general derivation for the interpolation functions of a family of higher-order, pure-displacement,
triangular Mindlin plate elements is developed. The development has been motivated by the
successful performance of MIN3 (Tessler and Hughes 1985), which becomes the lowest order
element in the family. The transverse displacement is interpolated by a polynomial one order higher
than the interpolation of the rotations. The transverse displacement is coupled with the bending
rotations by enforcing continuous shear constraints along any line in the element. The elements
possess fully compatible kinematic fields.

An efficient, cubic-displacement, compatible, fully-integrated, six-node element, MIN6, with
neither shear locking nor excessive stiffness in the thin limit, is generated as an example of a
higher-order element in the family. MIN6 has the straightforward formulation and implementation
characteristic of pure, displacement-based elements. Based on numerical testing, MIN6 is accurate
and robust when it is straightsided. For meshes with the same number of degrees-of-freedom, it is
comparable in accuracy to MIN3 and the ANSYS’ SHELL93 (ANSYS 1998) element. In addition,
MIN6 does not require shear relaxation in the thin limit. Extension of the element to a flat shell
element is straightforward.

As a result of the assumption of a straight-sided triangle in developing the interpolation functions,
MIN6 does not pass the constant-moment patch test when the sides are curved, and therefore at
present it should only be used as a strict triangle. To extend the applicability of the element,
methods should be explored to improve its performance with curved sides.

Table 6 Percent error in frequencies λnm for simply-supported square plates

Mode number
Thin plate (L/t = 104) Thick plate (L/t = 10)

% error in λnm % error in λnm

n m MIN6 MIN3 MIN6 MIN3
1 1 0.0256 −0.1746 0.0196 −0.1518
1 3 1.2787 0.2350 0.6605 0.7830
3 3 1.8094 −1.0835 1.3666 1.0389
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