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An analytical solution for finitely long hollow cylinder 
subjected to torsional impact
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Abstract. An analytical method is presented to solve the elastodynamic problem of finitely long hollow
cylinder subjected to torsional impact often occurs in engineering mechanics. The analytical solution is
composed of a solution of quasi-static equation satisfied with the non-homogeneous boundary condition
and a solution of dynamic equation satisfied with homogeneous boundary condition. The quasi-static solution
is obtained directly by solving the quasi-static equation satisfied with the non-homogeneous boundary
condition. The solution of the non-homogeneous dynamic equation is obtained by means of finite Hankel
transform on the radial variable, r, Laplace transform on time variable, t, and finite Fourier transform on
axial variable, z. Thus, the solution for finitely long, hollow cylinder subjected to torsion impact is
obtained. In the calculating examples, the response histories and distributions of shear stress in the finitely
long hollow cylinder subjected to an exponential decay torsion load are obtained, and the results have
been analyzed and discussed. Finally, a dynamic finite element for the same problem is carried out by
using ABAQUS finite element analysis. Comparing the analytical solution with the finite element solution,
it can be found that two kinds of results obtained by means of two different methods agree well.
Therefore, it is further concluded that the analytical method and computing process presented in the paper
are effective and accurate. 
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1. Introduction

In many applied engineering fields, a notable problem is the determination of dynamic shear stress
in a structure subjected to torsional impact load. This dynamic stress may affect the dynamic
strength of the structure. Torsional impact can take place in many different engineering applications
such as machine drilling, geologic exploration drilling, structural bolt fastening. Previous researches
on theoretical solutions for structures under impact loads have mainly focused on radial impact (Cho
et al. 1998, Eringen and Suhubi 1975, Pao and Ceranoglu 1978, Cinelli 1965, 1966, Soldatos and
Ye 1994, Wang et al. 2000). General solution methods used for thick-walled cylindrical shell
dynamic problems are: the integral transform method (Cho 1998), the eigen-function method
(Eringen and Suhubi 1975), the ray method (Pao and Ceranoglu 1978) and the finite Hankel
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transform (Cinelli 1965). The theoretical solution of thick-walled shells under torsional impact has
seldom been considered so far. Liu and Wang (1995) give the response histories of semi-infinite and
infinite elasto-body under a torsional force with time and uniform distribution along the length of
cylinders. Kim and Haim (1991) presented the response histories of shear stress wave in a
cylindrical wave-guide tube with longitudinal section periodic changing by using the theory of
elasticity and experiments. Clark (1956) investigated torsional wave propagation in hollow
cylindrical bars. Gazis (1995a, 1995b) presented three-dimensional investigation of the propagation
of waves in hollow circular cylinders. Armena.kas (1965) researched torsional waves in composite
rods. An approximate theory of torsional wave propagation in elastic circular composite cylinders
was presented by Haines and Lee (1971). Carcione and Seriani (1998) has given the propagation of
torsional waves in lossy cylinders. A simulation of stress waves in attenuating trill strings, including
piezoelectric sources and sensors was presented by Carcione and Flavio (2000). Cinelli (1966) gives
a theoretical solution for a hollow cylinder under torsional impact by making use of the finite
Hankel transform. After analysis, the theoretical solution given in Cinelli (1966) was seen to be
manifestly incorrect and no examples were given. Due to the complexity of the problem, the
investigations on the propagation of torsional wave in a finitely long hollow cylinder are only a few. 

This paper develops analytical equations for elastodynamic problem of finitely long hollow
cylinder, with mixed boundary conditions under torsional impact loading. The analytic expressions
of the tangent displacement and the shear stress in the finitely long cylinder subjected to torsional
impact load are obtained by means of a finite Hankel transform on the radial variable r, Fourier
transform on axial variable z and Laplace transform on time variable t. 

In the example calculations, the histories and the distributions of shear stress in the finitely long
hollow cylinder subjected to torsional impact load are presented. By analyzing the calculated results,
it is found that the solution has the wave’s properties, and appears in a strong discontinuity effect at
the shear stress wavefront. Finally, a dynamic finite element is carried out for the same problem by
using ABAQUS finite element analysis. Comparing the analytical solution with the finite element
solution, it is manifested that the method and the calculating procedure presented in the paper is
concise and practicable, has certain practical applications to similar questions.

2. Dynamic equation and solution for torsional problem

A finitely long hollow cylinder with the outer boundary fastened and inner wall subjected to a
torsional impact load A(z, t) is shown in Fig. 1. Considering the geometry and loading shown in Fig. 1,
this is seen to be an axisymmetric problem. Therefore, in the cylindrical coordinate system, all the
strain variables are independent of θ, and Ur = Uz = 0. Thus, geometrical equations, stress-strain
relations and equilibrium equations can be, respectively, expressed as
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(3)

where Uθ (r, z, t) expresses tangential displacement, G expresses shear module and ρ expresses the
density of material.

 From Eqs. (2) and (3), the elastodynamic equation is written as

 (4)

where  is the velocity of shear stress wave.
Boundary condition:

 
 

     (5)

Ends condition:

(6)

Initial condition:

 (7)

The solution of Eq. (4) can be expressed as 

 (8)

where Uθs(r, z, t) is defined as a quasi-static solution which satisfies a homogeneous quasi-static
equation with inhomogeneous boundary condition and Uθd (r, z, t) is a dynamic solution which
satisfies an inhomogeneous dynamic equation with homogeneous boundary conditions.
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Fig. 1 The structural model
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The quasi-static equation is expressed as

 (9)

The corresponding inhomogeneous boundary condition is 
 

    (10)

Solving Eq. (9) and applying inhomogeneous boundary condition (10), we have

(11)

From Eqs. (4), (8), (9) and (10), the inhomogeneous dynamic equation with the corresponding
boundary and initial condition are, respectively, represented as

(12)

(13)

(14)

In Eq. (12), the  is the known quasi-static solution shown in Eq. (11).
The homogeneous form of Eq. (12) can be written as 

 (15)

The general solution for Eq. (15) is written as

 (16)

where J1(ξr) and Y1(ξr) are, respectively, first order Bessel function of the first and the second
kinds, B1(z) and B2(z) are arbitrary function. From Eq. (16) and Eq. (13), we have
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Substituting Eq. (17b) into Eq. (16) yields

 (18)

From Eq. (17), an eigenequation is given by

 (19)

where (20) 

ξi (i = 1, 2, 3, …) are the positive real eigenroots of the eigen Eq. (19).
Eq. (16) can be rewritten as

 (21)

where, (22)

Applying the normalization of , from Eq. (21) we have

 (23)

Apparently, from a serial of , the general expression of Ud(r, z) can be
represented as

 (24)

Let finite Hankel transform of  be defined as

(25)

the inverse transform of finite Hankel transform (25) is 
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where  (27)

Using the above definition and applying the finite Hankel transform for r in the inhomogeneous
dynamic Eq. (12), we have 
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The Laplace transform for time t and its inverse can be, respectively, defined as

 
 (29)

where,  is a complex variable.
 Applying Laplace transform for t to Eq. (28) yields 
 
 

(30)

In order to ensure both  and  meet the free end conditions, we suppose 
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According to the following finite Fourier cosine transform and its inverse transform
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Ũθs Ũθd
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where, 

(35a-h)

Eq. (34) can be simplified as

 (36)

where, (37)

Applying the inverse Laplace transform to Eq. (36) yields
 

(38)

where  (39)

The inverse Fourier transform of Eq. (38) gives
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The inverse Hankel transform of Eq. (40) gives
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From Eqs. (8), (11) and (41), the analytical expression of the elastodynamic solution is represented
as 
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where 

(43)

From Eqs. (1) and (2), the analytical expression of the dynamic shear stress can be written as 

 (44)

3. Example and discussion

In practical engineering, torsional impact load with exponential decay is more common, which
can be represented as
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 (48)

 (49)

where (50)

and  and  are, respectively, zero order Bessel function of the first and the second
kinds.

In example calculations, to improve the convergence of these series in the expression of the
solution, we consult a particularly useful book given in Lighthill (1958). Material properties of the
structure are considered as: G = 80 Gpa, ρ = 7800 kg/m3. The thickness of hollow cylinders are,
respectively, (b − a)/a = 20 and (b − a)/a = 2, where a = 0.01 m. In order to make the problem easy to
deal with, the all variables are taken as the form of dimensionless:  ,
Z* = z/L, , ,  (m/pa).

Fig. 2 to Fig. 7 show that the curves of shear stress and tangent displacement vary with z* and
time T* when the finitely long, hollow cylinder with (b − a)/a = 20 is subjected to torsional impact,
during . For this structure and the corresponding parameters, the reflecting effects of the
shear stress wave in the structure are excluded. From Fig. 2 and Fig. 3, it can be seen that shear
stress  and  meet the corresponding boundary condition at both the internal boundary, and
two ends of the finitely long hollow cylinder. From Fig. 5 to Fig. 7, it can be seen that there is
abrupt leap at the wavefront of the shear stress wave and tangent displacement when T * = 1. When
the stress wave reaches the place R * = 1, and as the wavefront spreading far from the place R * = 1
to the external boundary during T* > 1, the responses of the shear stress wave and tangent
displacement at this point will gradually tend to the quasi-static solution of the point. In order to
describe the wave effect of the shear stress and tangent displacement in the finitely long hollow
cylinder subjected to the torsional impact load, much clearly, Fig. 8 and Fig.  9 show the responding
histories of the shear stress and the tangent displacement at the place Z* = 0.5 (the middle part of
the finitely long, hollow cylinder). For a certain point in the hollow cylinder where the stress wave
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has not reached, the response value of the stress wave equals to zero. When the wavefront arrives at
the point, the response value is the biggest. When wavefront goes away from the point, the
corresponding response value tends to the quasi-static solution of the point. 

For the finitely long hollow cylinder with (b − a)/a = 2 subjected to the torsional impact, the shear
stress varying with the axial variable z and time t are, respectively, shown in Fig. 10 to Fig. 15, for

. During T* > 1, any point in this structure will be influenced by reflected wave between
the inner and outer wall. Because of the influence of the incessant reflection of the wave, the
responses at any point in the structure will oscillate strongly. 

0 T* 20≤ ≤

Fig. 2 The responding histories of shear stress τrθ
*  in

finitely long hollow cylinder under torsion
shock. R* = 0, (b − a)/a = 20, Z* = z/L, R* =
(r − a)/(b − a), T* = tCL/a, τ rθ

* τ rθ τ0⁄=

Fig. 3 The responding histories of shear stress τzθ
*  in

finitely long hollow cylinder under torsion
shock. R* = 0, (b − a)/a = 20, Z* = z/L, R* =
(r − a)/(b − a), T* = tCL/a, τ zθ

* τ zθ τ0⁄=

Fig. 4 The responding histories of tangent displace-
ment  in finitely long hollow cylinder
under torsion shock. R* = 0, (b − a)/a = 20,
R* = (r − a)/(b − a), T* = tCL/a, Z* = z/L,

Uθ
*

Uθ
* Uθ τ0⁄=

Fig. 5 The responding histories of shear stress τrθ
*  in

finitely long hollow cylinder under torsion
shock. R* = 1, (b − a)/a = 20, Z* = z/L, R* =
(r − a)/(b − a), T* = tCL/a, τ rθ

* τ rθ τ0⁄=
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In order to prove the validity of the analytical method and the solving process further, a dynamic
finite element solution for the same example used in the solution is also achieved by using
ABAQUS finite element analytical card. In this dynamic equation of elastic system, using the
Halmiton principle, the dynamic equation of the finite element is written as 

(51)

where [K] is the stiff matrix, [M] is the weight matrix, {d} is the displacement of the knot points

K[ ] d{ } M[ ] d··{ }+ F t( ){ }=

Fig. 6 The responding histories of shear stress τzθ
*  in

finitely long hollow cylinder under torsion
shock. R* = 1, (b − a)/a = 20, Z* = z/L, T* =
tCL/a, R* = (r − a)/(b − a), τ zrθ

* τ zθ τ0⁄=

Fig. 7 The responding histories of tangent displace-
ment Uθ

*  in finitely long hollow cylinder
under torsion shock. R* = 1, (b − a)/a = 20,
T* = tCL/a, R* = (r − a)/(b − a), Z* = z/L,
Uθ

* Uθ τ0⁄=

Fig. 8 The responding histories of shear stress τrθ
*  in

finitely long hollow cylinder under torsion
shock. (b − a)/a = 20, Z* = z/L = 0.5, R* =
(r − a)/(b − a), T* = tCL/a, τ rθ

* τ rθ τ0⁄=

Fig. 9 The distributions of shear stress τrθ
*  in finitely

long hollow cylinder under torsion shock.
(b − a)/a = 20, Z* = z/L = 0.5, R* = (r − a)/
(b − a), T* = tCL/a, τ rθ

* τ rθ τ0⁄=
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and {F(t)} is the dynamic load. In the solving process of the dynamic finite element, using a
directly integral method, the solution of the dynamic Eq. (51) can be obtained by ABAQUS
program card. Considering Fig. 1, the finite element model and net for the middle plane at z* = 0.5
of the finitely long hollow cylinder can be shown in Fig. 16. The geometry size and material
property are the same as those in the theoretical solution and time step is taken as ∆t = 0.01a/CL.
The relative error is less than 1%.

Fig. 10 The responding histories of shear stress τrθ
*

in finitely long hollow cylinder under torsion
shock. R* = 0, (b − a)/a = 2, Z* = z/L, T* =
tCL/a, R* = (r − a)/(b − a), τ rθ

* τ rθ τ0⁄=

Fig. 11 The responding histories of shear stress τzθ
*

in finitely long hollow cylinder under torsion
shock. R* = 0, (b − a)/a = 2, Z* = z/L, T* =
tCL/a, R* = (r − a)/(b − a), τ zθ

* τ zθ τ0⁄=

Fig. 12 The responding histories of tangent displace-
ment  in finitely long hollow cylinder
under torsion shock. R* = 1, (b − a)/a = 2,
Z* = z/L, R* = (r − a)/(b − a), T* = tCL/a,

Uθ
*

Uθ
* Uθ τ0⁄=

Fig. 13 The responding histories of shear stress τrθ
*

in finitely long hollow cylinder under torsion
shock. R* = 0.1, (b − a)/a = 2, Z* = z/L, R*

= (r − a)/(b − a), T* = tCL/a, τ rθ
* τ rθ τ0⁄=
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4. Conclusions 

It is noted that while solving the present problem, the number of eigenvalue terms was taken as
40, and the relative error in the results obtained was less than 1%. The features of the stress waves
propagating in the finitely long, hollow cylinder along the radial direction are clearly shown in
Figs. 2-9. The responses of shear stress at which the wavefront of stress wave has not arrived equal
to zero. The responses of shear stress at which the wavefront arrives appear in the maximum value
and strong discontinuous effects. The propagation of the wavefront decays and the dynamic stress
approaches to the quasi-static stress at the same point when time is large and the effect of reflected
wave does not appear.

Fig. 14 The responding histories of shear stress τzθ
*

in finitely long hollow cylinder under torsion
shock. R* = 0.1, (b − a)/a = 2, Z* = z/L, T*

= tCL/a, R* = (r − a)/(b − a), τ zθ
* τ zθ τ0⁄=

Fig. 15 The responding histories of tangent displace-
ment  in finitely long hollow cylinder
under torsion shock. R* = 0.1, (b − a)/a = 2,
T* = tCL/a, R* = (r − a)/(b − a), Z* = z/L,

Uθ
*

Uθ
* Uθ τ0⁄=

Fig. 16 The finite element net for the middle plane at z* = 0.5 in finite length of hollow cylinder under sudden
torsion load for β = 0, (b − a)/a = 5
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Comparing the theoretical solution with the finite element solution shown in Fig. 17 and Fig. 18,
it can be found that two kinds of results obtained by making use of two different solving methods
are suitably approached. Therefore, it is further concluded that the method and computing process
of the theoretical solution are effective and accurate.

It is noted that the key to solve the problem of stress wave propagation using a dynamic finite
element method is how to select calculating time step corresponding the finite element mesh.
Therefore, it is very difficult to exactly obtain the maximum amplitude of stress wavefront by using
the dynamic finite element calculation. An analytical solution can give an exact expression of stress
wave propagation, which can be used to directly discuss some physical characters of stress wave
propagation. 

From this knowledge of the response histories for the elastodynamic solution to finitely long
hollow cylinder subjected to torsional impact load presented in this paper, it can be assessed that the
dynamic intensity of the structure subjected to torsional impact load in various special engineering
requirements such as mechanical drilling, petroleum drilling and automatic fasten of steel structure’s
fastening bolts, and can also use it as a reference of various approximate theories.
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Notation 

Uθ (r, z, t), Ur, Uz : tangential, radial and axial displacements
γij and τij : shear strains and shear stresses
τrθ : shear stress in the rθ plane
τθz : shear stress in the θz plane
Uθs : quasi-static displacement solution
Uθd : displacement solution of nonhomogeneous dynamic equation
G : shear modulus
ρ and t : density of the material and time variable
a, b and L : internal radii, external radii and length of hollow cylinder

: elastic wave speed 
A(z, t) : torsion impact load function 

and : first order Bessel function of the first and second kinds
and : zeroth order Bessel function of the first and second kinds

ξι(i =1, 2, 3, …) : positive eigenroots 

Nondimensional Quantities

Cτ  G ρ⁄=

J1 ξ ir( ) J1 ξ ir( )
J0 ξ ir( ) Y0 ξ ir( ) 

T*=tCτ a⁄    R* r a–( ) a⁄     R1 r a–( ) b a–( )⁄    Z* z L⁄   τ rθ
*,=,=,=, τ rθ τ0⁄=

τθz
* τθz τ0⁄= ,  Uθ

* Uθ τ0 m Pa⁄( )⁄=




