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The torsional buckling analysis for cylindrical shell with 
material non-homogeneity in thickness direction 

under impulsive loading 
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Abstract. This study considers the buckling of orthotropic cylindrical thin shells with material non-
homogeneity in the thickness direction, under torsion, which is a power function of time. The dynamic
stability and compatibility equations are obtained first. Applying Galerkin’s method then applying Ritz
type variational method to these equations and taking the large values of loading parameters into
consideration, analytic solutions are obtained for critical parameter values. Using those results, the effects
of the periodic and power variations of Young’s moduli and density, ratio of Young’s moduli variations,
loading parameters variations and the power of time in the torsional load expression variations are studied
via pertinent computations. It is concluded that all these factors contribute to appreciable effects on the
critical parameters of the problem in question.
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1. Introduction

Non-homogeneous materials are of considerable technical and engineering importance. These
materials have properties that vary as a function of position in the body. Non-homogeneous
materials can frequently be found in nature as well as in man-made structures. However, typically
non-homogeneous materials seem to be those with elastic constants varying continuously in
different spatial directions. Continuous non-homogeneity is a direct generalization of homogeneity
in theory; besides, material non-homogeneity becomes essential and must sufficiently be considered
in a number of practical situations. In all the referenced works, and in most of available solutions to
elastic non-homogeneity, it is assumed that the material is isotropic or orthotropic, the Poisson’s
ratio is constant, and the Young’s moduli or density is either an exponential or a power function of
a spatial variable (Massalas et al. 1981, Khoroshun and Kozlov 1988, Guiterrez et al. 1998,
Wang et al. 2000, Sofiyev 2002).

There are many studies about the buckling of homogeneous cylindrical shells under torsion (static
or dynamic torsional buckling) and some of these are mentioned as (Donnell 1933, Sachenkov and
Baktieva 1978, Tan 2000, Park 2001, Sofiyev et al. 2003). But, one such problem, not considered
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till today, is the torsional buckling of non-homogeneous orthotropic cylindrical shells under loads,
which is a power function of time.

The aim of the present research is to study the buckling problem for a non-homogeneous
orthotropic cylindrical shells, of constant Poisson’s ratio and non-uniform Young’s moduli and
density in the form of a continuously function of the thickness coordinate, subjected to torsion
varying as a power function of time, by using the Ritz type variational method.

2. Problem formulation 

Consider a cylindrical shell, with length L, thickness h and radius R, which is made of an
orthotropic non-homogeneous material with immovable simple supports along the whole
circumference of the ends. The origin of a coordinate system is located within the midpoint of
length the reference surface of the shell with x, y and z measured along the longitudinal,
circumferential, and radial directions, respectively. The axes of orthotropy are parallel to the x and
y-axes (see Fig. 1).

Assume that the Young’s moduli and density of the material are continuous functions of the
coordinate in the thickness direction. Hence, the Young’s moduli and density can be expressed as
functions of  as follows:

(1)

where E01, E02 and G0 are the Young’s moduli of the homogeneous orthotropic material and its
shear modulus, respectively, ρ0 is the density of the homogeneous material and µ is the variation
coefficient of the Young’s moduli and density satisfying , , (i = 1, 2) are continuous
functions corresponding to the variations of the Young’s moduli and density, which satisfy

.
The shell is subjected to a torsion applied along the edges, varying as a power function of time in

the form: , . Here  and  are the membrane forces
for the condition with zero initial moments, S1 is static torsional load, S0 is the torsional loading
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Fig. 1 Geometry and the coordinate system of a cylindrical thin shell 
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parameter, t is time and α ≥ 1 is the power expressing the time dependence of the torsional loading.
The dynamic stability and compatibility equations for non-homogeneous orthotropic cylindrical

shells for the stress function φ and the displacement w, after some mathematical operations, can be
obtained as (see Sofiyev 2002)

 

(2)  

 

(3)

where a comma denotes partial differentiation with respect to the corresponding coordinates bij, cij,
i, j = 1, 2, 3, 4 and are given in Sofiyev (2002). Expressions , k = 0, 1, 2 included by bij and cij

are defined as follows:

(4)

3. Solution of the eigenvalue problem

Assuming the cylindrical shell to have simply supports at the ends, the solution of equation set
(2, 3) is sought in the following form:

(5)

where, n is the wave number in the direction of the y axis, γ tangent of the angle between the waves
and x axes, ξ(t) and ζ(t) are the time dependent amplitudes. 

Boundary conditions are satisfied when they integrated from 0 to 2πR, if x = ±L/2. 
Substituting expressions (5) in the equation set (2, 3) and eliminating ζ(t), applying Galerkin’s

method in the ranges −L/2 ≤ x ≤ L/2 and 0 ≤ y ≤ 2πR and when it is taken in consideration that
nγ << 1 and n4 >>  are provided for a certain wave number n of the cylindrical shells in
medium length, the following equation is obtained:

(6)

where  and , tcr being the critical time and 0 ≤ τ ≤ 1 the dimensionless time
parameter.
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An approximating function will be chosen as  satisfying
the initial conditions . Here A is constant. The β coefficient for torsion
given as a power function of time, it can be shown by numerical computations that correspond
to: β = 2 when α = 1, 2; β = 3 when α = 3, 4.

Applying the Ritz type variational method to differential Eq. (6) and minimizing characteristic
equation according to the wave number n, an equation is obtained. After solving this equation for
S1 = 0 and for large values of S0, and after some mathematical operations, the following expressions
are found for the static critical torsional load, dynamic critical torsional load and dynamic factor,
respectively (see Sofiyev et al. 2003):

 (7)  

where Bq(α), q = 0, 1, 2 given in Sofiyev (2002) and the following definition apply:

 (8)

When µ = 0, α = 1, the appropriate formulas for a cylindrical shell made of a homogeneous isotropic
material are found as a special case (see Sachenkov and Baktieva 1978).

4. Numerical computations and results

For the numerical computations, the material properties are given in Table 1: 

In Table 2, the values of the dynamic critical torsional load and dynamic factor of cylindrical thin
shells made of the Glass/epoxy and Graphite/epoxy material versus the power α and loading
parameter S0 are presented, when Young’s moduli and density function are given linearly and
parabolic. When Young’s moduli and density varies linearly and parabolic functions the effect on
critical parameters is bigger in parabolic state. When the Young’s moduli and density function are
negative, the effect to the critical parameters are more. For both materials properties, the effect of
Young’s moduli and density variations to the critical parameters are the same as percentage. There
is a very big difference between the critical parameter values for glass/epoxy and graphite/epoxy
composites.

Table 1 The material properties of the Glass/epoxy and Graphite/epoxy composites

Materials E01 (N/m2) E02 (N/m2) ρ0 (kg/m3) ν12 ν21

Glass/epoxy 5.38 × 107 1.793 × 107 2004 0.25 0.0833
Graphite/epoxy 1.724 × 108 7.79 × 106 1530 0.35 0.016
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The numerical analysis for the cylindrical shell parameters which are taken into consideration
show that the torsional loading parameter varies approximately by the following values to become
the loading dynamic: a) When α = 1, it must be in 4.2 × 104 ≤ S0 < 3 × 107 (N/m×s), b) When α = 2,
it must be in 3 × 107 ≤ S0 < 1.6 × 1010 (N/m×s2), c) When α = 3, it must be in 1.6 × 1010 ≤ S0 <
6 × 1012 (N/m×s3). Consequently when the loading law changes, the values of loading parameter
change, too.

In Fig. 2, the numerical computations were carried out for the following material properties:
E01 = 2 × 108 (N/m2), ν12 = 0.2, ν21 = ν12 × E02/E01, ρ0 = 7800 (kg/m3). Fig. 2 shows the variation of
the dynamic critical torsional load and dynamic factor versus the ratio E1/E2, when Young’s moduli
functions are given as . In homogeneous and non-homogeneous cases,
when the ratio E1/E2 increases, the values of Scrd decrease, but the values of Kd increase. In
comparison with homogeneous cases, the effect of Young’s moduli variation to Scrd values is 7%
and to Kd values is 44%. 

ϕ i z( ) cosλ z , i 1=( )=

Table 2 The variation of the critical parameters for different functions of the Young’s moduli and density with
different power of time α (L/R = 2.22, R/h = 112.5)

α = 1, β = 2, 
S0 = 2 × 105 (N/m×s)

α =2, β = 2, 
S0 = 2 × 108 (N/m×s2)

α = 3, β = 3, 
S0 = (2 × 1011 N/m×s3)

Scrd (N/m ) Kd Scrd (N/m) Kd Scrd (N/m) Kd

Graphite/epoxy (Glass/epoxy) for µ = 0

68.3(80.7) 2.57(2.76) 56.9(72.1) 2.14(2.47) 59.1(78.0) 2.22(2.67)

ϕI(z), i = 1, 2 Graphite/epoxy (Glass/epoxy) for µ = 0.9

67.9(80.1) 2.67(2.87) 56.3(71.3) 2.21(2.55) 58.4(77.0) 2.30(2.76)

70.7(83.5) 2.39(2.57) 59.7(75.7) 2.02(2.33) 62.6(82.6) 2.12(2.54)

65.8(77.7) 2.79(3.00) 53.9(68.3) 2.28(2.64) 55.5(73.2) 2.35(2.83)

z±
z 2

z 2–

Fig. 2 The variation of the dynamic critical torsional load and dynamic factor with E1/E2 (S = S0t, S0 = 31600
N/m×s, λ = π/6, µ = 0.9, L/R = 2.22, R/h = 112.5)
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5. Conclusions

This study has considered torsional buckling of orthotropic cylindrical shells, with non-uniform
Young’s moduli and density, subjected to dynamic loading given by a power function of time was
studied. For large torsional loading parameter values, the analytical solution for the critical
parameters of orthotropic cylindrical shells with non-uniform Young’s moduli and density in the
thickness direction, have been found. Numerical computations were carried out for the Young’s
moduli and density vary in the form of periodic and power function and the power of time in the
torsional loading expression.
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