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Abstract. The suboptimal control rule is introduced in structural control implementation as an
alternative over the optimal control because the optimal control may require large amount of processing
time when applied to complex structural control problems. It is well known that any time delay in
structural control implementation will cause un-synchronized application of the control forces, which not
only reduce the effectiveness of an active control system, but also cause instability of the control system.
The effect of time delay on the displacement and acceleration responses of building structures is studied
when the suboptimal control rule is adopted. Two examples are given to show the effectiveness of the
suboptimal control rule. It is shown through the examples that the present method is easy in
implementation and high in efficiency and it can significantly reduce the time delay in structural control
implementation without significant loss of performance.
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1. Introduction

As large civil engineering structures such as tall buildings, high-rise towers and long-span bridges
become lighter and more flexible, their dynamic responses due to wind, earthquake and other
extraordinary loads are of great concern. To keep these structures functioning safely, effective
vibration control devices have been developed to reduce the dynamic responses of these kinds of
dynamic sensitive structures to environmental loads.

There are three major classes of control systems:
1. Passive control system that does not require external power source to provide the control forces

in reduction of structural dynamic responses (Han et al. 2003, Li et al. 1999, Li et al. 2002a,
2002b).

2. Active control system that requires large external power sources (such as electro-hydraulic or
electromechanical actuators) to supply control forces in reduction of structural dynamic
responses (Soong 1990, Polak et al. 1994, Wang et al. 1994, Li et al. 2001a, Fang et al. 2003). 

3. Semi-active control system that typically requires small external power source (such as
batteries) to develop the control forces in reduction of structural dynamic responses (Abe 1996,
Dupont et al. 1997, Symans and Constantinou, 1997a, 1997b, 1999, Ricciardelli et al. 2000). 

The optimal control has been the subject of study in the field of structural control for many years
(Li et al. 2001b, 2002). However, time delay is one of the major obstacles in the application of the
optimal control to complex and large-scale structures, especially those in civil engineering. The
delay can cause un-synchronized application of the control forces, which not only reduce the
effectiveness of an active control system, but also cause instability of the control system. Many
researchers have studied the time delay problem in the application of vibration control. However, the
previously developed methods are generally suitable for small time delay for the case of simple
harmonic excitations. The control system stability is not guaranteed as the time delay becomes
larger (Xu et al. 2002). An algorithm was proposed by Cai and Huang (2002) to transform the
continuous time differential equation with time delay into a standard discrete time form. And the
time performance index is used in the design of the optimal controller. The control system stability
is prone to be guaranteed through the proposed control method. Furthermore, this method is
applicable to the case of a large time delay. Cai et al. (2003) also proposed an approach to reform
the motion equation of the time-delay control system into a standard form of a first-order
differential equation to incorporate the time-delay effect into the motion equation throughout the
derivation of the control algorithm. Normally the classical optimal control method requires all the
state variables of the control system to be measurable and available for control feedback. However,
for a high-order or complex system, the dimension of the degree-of-freedom of the system is
usually high (Li 2003). Furthermore, some state variables of the system are usually unmeasurable
and some state variables in control feedback have only a small effect on control performance.
Therefore, the classical optimal control method requires large amounts of computation time. One
feasible way to overcome this problem is to adopt the discrete sub-optimal control method with
partial-state feedback, only the state variables which have a significant effect on the control
performance are determined. The sub-optimal controller is finally designed using only the
determined stated variables (Levine and Athans 1970, Choi and Sirisena 1974, Cai and Sun 2003).
Another efficient and effective method is to simplify the solution process of the Riccati equation by
reducing the order of the Riccati matrix and appropriate selection of the weighting functions (Xu
et al. 2002). Thus, it simplifies the design of a structural control system and reduces the time delay
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in structural control implementation dramatically. 
Literature review reveals that the majority of the previous research works generally concentrated

on the application of the optimal control methods to structural control. It has been gradually
recognized that the suboptimal control strategy is simple in terms of the controller’s structure and is
easy to realize in practices (Cai and Sun 2003). However, comprehensive studies on examining the
performance of the suboptimal control methods in structural control implementation have been
seldom reported. In this paper, a suboptimal control rule is proposed by appropriate selection of the
weighting functions, and the detailed comparison of the performances of the suboptimal control rule
and the classical optimal control methods is made. The effects of time delay on the proposed
suboptimal control algorithm are studied. It is found that the suboptimal control is a viable
alternative to the optimal control without significant loss of performance.

2. Simulation of earthquake excitations

When the vibration control techniques are applied to civil engineering structures under earthquake
excitations, it is often necessary to simulate the earthquake actions for the design of the structural
control systems. Generally speaking, it is over-simplified to treat earthquake excitation as a white
noise. It is more reasonable to dissolve an earthquake wave as a sum of a deterministic disturbance
and a white noise, that is

(1)

where  is the ground acceleration of earthquake, εt is the white noise and at is a deterministic
disturbance. The simulation of earthquake excitation can be divided into two parts. The first
deterministic part at, also known as trend part, can be extracted from the original earthquake record
sequence by the GM (2,1) method (Yang and Wu 1992). This method will be briefly introduced in
the following section. While the second term (stationary random part εt) can be described by the
ordinary Auto Regressive Moving Average (ARMA) model, the GM (2,1) method is introduced into
this study for extracting the deterministic part at from the original earthquake record .

In the GM (2,1) method, first of all, the Accumulated Generating Operation (AGO) is conducted for

the original earthquake record sequence , thus the newly built sequence   by the

AGO process can be obtained; then the grey model is used to describe the new sequence , and
the deterministic part at of the original earthquake record xt can be obtained indirectly by derivation
of the new sequence . The detailed description of this algorithm can be found in Yang and Wu
(1992). Only the brief introduction of this method is given below:

After the newly built sequence  is obtained by means of the AGO process, a second-order
differential equation is established as follows: 
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Eq. (2) is called as the GM (2,1) model, where b1, b2 and b3 can be obtained as follows,

(3)

Letting the characteristic roots of Eq. (2) be  and , one has

(4)

where c1 and c2 are constants determined from the initial conditions in Eq. (2). From Eq. (4), the
deterministic part at of the original earthquake record  can be obtained indirectly as follows: 

(5)

Once the deterministic part at is obtained, the residual part εt can be simulated by ARMA model.
In order to verify the reliability and effectiveness of the proposed method, twenty earthquake
records (including El Centro 1940, Olympia 1949, Taft 1952, Parkfield 1966, San Fernando 1971
etc.) listed in Naeim (2001) were adopted in this study for the simulation of earthquake excitations
and it was found that the residual components are very close to the white noise. Thus, it seems that
the procedures described in Eqs. (1) to (5) are applicable to the simulation of earthquake actions.

Let (6)

where, , ∆t is usually taken as 0.02 second. The adoption of Eq. (6)

makes the residual component εt in Eq. (6) be almost zero at l1∆t. 
For the El Centro earthquake record (Naeim 2001), it is found from the simulation results with the

above method that a = −0.0526, b = 0.079, c1 =150.1 and c2 = −99.86.

3. Optimal control force

For a linear system including a structure with n degrees of freedom and n1 control devices, its
equation of motion can be expressed as,

(7) 

where M, C and K are, respectively, the mass matrix, damping and stiffness matrices; X is the
(n + n1)-dimensional displacement vector, F(t) is a (n + n1)-vector representing the applied load or
external excitation, and U is the n-dimensional control force vector. The (n + n1) × n1 order matrix D
is the location matrix that defines the locations of the control forces.
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To facilitate discussion, let , N = n + n1, then

(8)

where

The optimal control vector U can be obtained as follows;

(9)

where , (matrix I is called the unit matrix ), r > 0,

 is obtained from the Raccati equation

(10)

where ,
Q and R are referred to as weighting matrices, whose magnitudes are assigned according to the

relative importance of the state variables and the control forces in the minimization procedure. By
varying the relative magnitudes of Q and R, one can synthesize the controllers to achieve a proper
trade off between the control effectiveness and control energy consumption. 

Eq. (9) is known as the optimal control rule. Normally, the optimal control force is often delayed by

l time step, denoting as l = , in which  is the symbol for integer truncation. Therefore U is 

specified at time step (t − l), that is

(10a)

Let the time delay of the control force be δt, in the time interval , and let F(t) =
, then for Eq. (7) we have

(11)
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Let

,

Then Eq. (12) can be written in the following form

(13)

Letting the Hamilton function (Yang et al. 1995) as

(14)

Solving the extreme value of H in Eq. (14), one obtains

(15)
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Then a' is a function of Z, and , therefore we have
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(20)

Selecting R as identity matrix and letting , then

(21)

Eq. (21) is the suboptimal control rule. It is noted that U is a function of , which means it would
increase the damping of the system. Also, once one large value of β is selected, the damping of the
system increases dramatically. However, the selection of β should be appropriate, for example the
selection should make the damping ratio of the system less than 1. In fact, the selection is restricted
by the energy provided by the control system. 

Using Eq. (21), the motion equation of a structure becomes

(22)

Eq. (22) can be rewritten as

(23)
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where

 

From Eq. (28), the control force and displacement response of the structure can be predicted. From
Eq. (1), the response of a linear structure can be divided into two parts: one is the response Yt under
the deterministic function αt; the other is the response Zt under the near white noise εt. Zt can be
predicted using the method described below.

The best prediction of Zt for the first step is: 

 (29)

The best prediction of Zt for the second step is:

(30)

The best prediction of Zt for the l-th (l > 2) step is:

(31)

 (32)

Therefore, the best prediction of the control force for the l-th step is,

(33)

where . 

It is noted that the prediction should be combined with the observation values. This is shown from
Eqs. (29)-(33) that the observation values Zt, Zt−1 appear in these equations. 

4. Time delay

Active structural control systems have been installed into many high-rise buildings in the world.
Relevant information, including structural responses, external disturbances and control forces etc.
need to be known for the implementation of an active control system. In other words, a certain
amount of time is required for the application of active control forces. Time delay also exists in
exerting the active control forces. As the degrees of freedom of the system increase, the time delay
will increase rapidly. The more complex the structural control system is, the more the time delay
may be.
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For structural control of a 20-story building, in general, the time delay δt is between 0.02~0.05
second. Usually, for δt < 0.1 T1 (T1 is the period of the first mode of the structure), an efficient
computation processing is required. Otherwise, the structure may be destroyed before the control
force is applied, if the structural response is too large. 

On the other hand, if the structural system is under the earthquake excitation, the value of δt
should be controlled within a certain range. Let the characteristic period of soil where the building
located be Tg, δt should be controlled under the range of 0~0.2 Tg.

To simplify the discussion, let

(34)

The above equation is the suboptimal control rule.
Under the earthquake excitation, the motion equation of the system becomes,

(35)

Assuming

(36)

Then, 

(37)

From Eq. (37), it can be seen that U reduces the inertial force, increases the damping of the system
and changes a little in the external disturbance.

For a simple system (a cantilever structure with mass m, stiffness k, damping c), we have 

(38)

Ignoring the high order term in the right hand side of Eq. (38), letting

(39)

in which  are the damping ratio and circular natural frequency of the structural system
described by Eq. (38), respectively; ωg is the characteristic circular natural frequency of the
earthquake excitation.

Then the displacement amplification factor can be deduced from Eqs. (38) and (39) as

(40)

Taking differentiation for Eq. (40) with respect to the parameter β, we have
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Letting the right side of Eq. (41) be zero, then one has

(42)

Therefore, it can be proved that when , µz decreases as β increases. 

4.1 Example 1. Evaluation of dynamic amplification factors

To demonstrate the effectiveness of the suboptimal control algorithm developed in this paper, a
cantilever structure with only one degree of freedom is considered herein as a numerical example.
The characteristic period of the soil on which the cantilever structure is located is specified by the
China Code for Seismic Design of Buildings (GB50011-2001) as: Tg = 0.35 second, ωg = 17.95 rad/s.
Also assuming the cantilever structure has the following structural parameters: ω = 10 rad/s, m = 20
kN · s2/m, ξ = 0.05. The displacement amplification factors for different time delays and β are
determined by the optimal and suboptimal control algorithms, respectively, as shown in Table 1,
while the comparisons of displacement amplification factors under different cases are shown in
Figs. 1, 2 and 3.
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Table 1 Displacement amplification factors 

β
  µz(µ)

   δt
100 500 1000 2000

0.01 0.5792
(0.578)

0.5789
(0.576)

0.5791
(0.575)

0.5792
(0.570)

0.03 0.5792 0.5834
(0.575)

0.5885
(0.576)

0.5796
(0.570)

0.05 0.5801 0.5880 0.5980
(0.575)

0.6173
(0.570)

Note: The data in parenthesis are displacement amplification factors obtained by the optimal con-
trol algorithm. The units for β and δt are kN · s/m and second, respectively.

Fig. 1 Displacement amplification factors for the optimal control algorithm
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Fig. 1 demonstrates that displacement amplification factors decrease as ∆K and ∆C increase,
therefore, the dynamic response of the system reduces with the use of the optimal control method. It
is also shown that the trend of reduction on displacement amplification is very fast for small values
of ∆K and ∆C, but the trend of reduction is very slow for large values of ∆K and ∆C. Therefore, it
is not necessary to select large values of ∆K and ∆C for obtaining certain control effects.

From Fig. 2, it can be seen that when δt is selected to be small than 0.03 second, the suboptimal
control rule makes the displacement amplification factors decrease as β increases. If δt is selected to
be relatively large (e.g. ≥0.05 second), the displacement amplification factors reduce rapidly as β
increases for small values of β. However the displacement amplification factors increase slowly as β
increases for relatively large values of β. Therefore, the time delay of the control force should be as
small as possible, and the selection of β should match that of δt.

From Fig. 3, it can be seen that the displacement amplification factors for the optimal control are
less than those of the suboptimal control. However, for a suitable β, a large value of ∆C and a small
value of ∆K, the displacement amplification factors for these two control algorithms are very close.
It can also be seen that when δt is relatively small, the results are very close for the two control
methods. These results verify that the performance of the suboptimal control rule developed in this
paper is acceptable in structural control implementation.

Fig. 2 Displacement amplification factors for the suboptimal control algorithm

Fig. 3 Comparison of the displacement amplification factors (the solid lines are for the suboptimal control
algorithm and the dotted lines are for the optimal algorithm)



118 J. Y. Xu, Q. S. Li, G. Q. Li, J. R. Wu and J. Tang

4.2 Example 2. Comparison of structural responses with and without vibration control 

The simplified analytical model of an 18-story residential building is shown in Fig. 4. Its design
parameters are given in Table 2.

The structural damping ratio is selected as , and in Table 2, Kl and Kf are the lateral
shear and bending stiffness, respectively; .

The El Centro earthquake record (Naeim 2001) is selected as the earthquake excitation, and it is
simulated by the method developed in this paper with the following results:

(43)
    

Control device: Active Tuned Mass Damper (ATMD) will be installed at the top floor, the associated
parameters are 

k = 3400 kN/m, m = 210 kN · s2/m, c = 265 kN · s/m, β = 1.5×105 kN · s/m

ξ i 0.05=
Ki Kli Kfi+=

x··gt α t εt, α t 1++ eat ac1 bc2+( )cosbt ac2 bc1–( )sinbt+[ ]= =

a 0.0526, b 0.079= , c1 150.1,= c2 99.86–=–=

Fig. 4 Analytical model of an 18-story residential building

Table 2 The design parameters of the 18-story residential building 

Floor level
Mass M (ton)  Stiffness (Kl + Kf)

(105 kN/m)

Control No control Control No control

1 672 670 5.86 3.25

2-12 568 550 4.56 3.05

13-17 556 545 4.56 2.90

18 750 740 3.74 2.50



Suboptimal control strategy in structural control implementation 119

The calculated responses from the two control rules (the optimal and suboptimal) and for the case
without structural control are shown in Table 3 for comparison purposes.

From Tables 2 and 3, it can be seen that 
1. When there is no control system installed in this building, the maximum displacement ∆ =

16.35 mm < H/1000. Under the suboptimal and optimal control system, ∆ = 10.84 mm = H/5166
and ∆ = 9.76 mm = H/5738, respectively. The maximum displacement responses under the
optimal control and suboptimal control systems are only about 66% and 60% of that without
any control system installed.

2. When there is no control system installed on the building, the maximum acceleration is 15.35
mill-g. With the use of the optimal or suboptimal control systems, the maximum accelerations
are 8.23 or 9.15 mill-g, suggesting that the effectiveness of the control systems is satisfactory.

5. Conclusions

A sub-optimal control strategy has been presented in this paper for structural control
implementation and it can be a viable alternative to the optimal control rule. It requires less amount
of processing time when applied to complex structural control systems in comparison with the
optimal control method. The effect of time delay on the reduction of structural response was studied
for the suboptimal control algorithm. The major conclusions of this study are drawn as follows 

1. The GM (2,1) method was adopted in this paper for extracting the deterministic part at from
original earthquake records. To the authors’ best knowledge, this is the first time to apply the
GM (2,1) method in the simulation of earthquake action. From the simulation results with
twenty earthquake record waves, it has been verified that the GM (2,1) method is effective for
the simulation of earthquake excitations.

2. If the suboptimal control strategy is applied to a simple system (a cantilever structure with mass
m, stiffness k, damping c) under earthquake excitation, the displacement amplification factor µz

decreases as β increases when .

3. Normally the optimal control rule is more effective than the suboptimal control strategy.
However, if a suitable β, a large value of ∆C and a small value of ∆K are selected for both
optimal and suboptimal control algorithms, the reduction of structural responses for these two
control algorithms is very close. 

ωg
2

ωz
2

------ 1
c β+( )
kδt

-----------------+<

Table 3 Seismic responses of the 18-story building

Level
Displacement (mm) Acceleration (mill-g)

No control Optimal Suboptimal No control Optimal Suboptimal

10 10.82 6.31 6.73 10.85 6.14 6.57
12 12.51 7.53 8.12 12.23 7.03 7.68
16 14.22 8.87 9.53 13.65 7.68 8.33
18 16.35 9.76 10.84 15.35 8.23 9.15
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4. Numerical results of example 2 show that the reduction percentage of the displacement and
acceleration responses can reach to 30%-40% when the suboptimal control strategy was adopted
for the vibration control of an 18-story building. 

5. Compared with the optimal control algorithm, the proposed suboptimal control strategy is easy
in implementation and is satisfactory in efficiency. It can significantly reduce the time delay in
structural control implementation without significant loss of performance.
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