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Abstract. In several design codes and specifications, simplified formulae and diagrams are given for
determining the buckling lengths of frame columns. It is shown that these formulae may yield rather
erroneous results in certain cases. This is due to the fact that, the code formulae utilise only local stiffness
distributions. In this paper, a simplified procedure for determining approximate values for the buckling
loads of multi-storey frames is developed. The procedure utilises lateral load analysis of frames and yields
errors in the order of 10%, which may be considered suitable for design purposes. The proposed
procedure is applied to several numerical examples and it is shown that all the errors are in the acceptable
range and on the safe side.

Key words: buckling load; buckling length; effective length; sway mode; unbraced frames; isolated
subassembly; multi-storey frames; design codes.

1. Introduction

Determining the buckling (effective) lengths of frame columns is one of the significant phases of
frame design. Theoretically, buckling length of an individual column is determined by calculating
the system-buckling load of the frame. Since a full system instability analysis, may be quite
involved for frames met in practical applications, simplified formulae and diagrams are given for
determining the buckling lengths of frame columns in most of the design codes and specifications,
(AISC 1988, ACI 1989). The so-called “Isolated subassembly approach” of specifications has been
originally developed by Galambos (1968). Similar formulae and diagrams exist in other widely
applied specifications such as and DIN 18800 (1990) and Eurocode 3 (2002).

A major limitation of the methods based on isolated subassembly approach is that they do not
properly recognise the interaction effects of adjacent elements other than the ones at immediate
neighbourhood of the joints. Hellesland and Bjorhovde (1996) have showed that this approach may
result in significant errors in certain cases. Efforts to improve the applicability of subassembly
approach include modifications proposed by Duan and Chen (1988, 1989) and an iterative procedure
developed by Bridge and Fraser (1987). Another method of improvement for unbraced frames is the
so-called “Storey buckling approach” which accounts for the horizontal interaction between columns
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in a storey (Yura 1971, LeMessurier 1977). White and Hajjar (1997) have showed that this approach
may result in significant errors in unsymmetrical cases. Storey buckling approach has been the
subject of several papers, among which Lui (1992), Aristizabal-Ochoa (1997) and Cheong-Siat-Moy
(1999) may be stated. The works of Aristizabal-Ochoa and Cheong-Siat-Moy provide solutions for
both braced and unbraced frames as well as “Partially braced frames”. Aristizabal-Ochoa has further
extended his studies to cover three-dimensional structures (Aristizabal-Ochoa 2002, 2003). Another
interesting improvement approach is proposed by Hellesland and Bjorhovde (1997), which involves
a postprocessing procedure using weighted mean values of buckling lengths. It has been stated that,
it is necessary to consider a wider range of unbraced frames in order to confirm the practical
applicability of the proposed method. Recently, in AISC (1999), the isolated subassembly approach
has been abandoned and it has been stated that “…the effective length factor K of compression
members shall be determined by structural analysis.” However in several widely used codes (such as
Eurocode 3) the subassembly approach and related charts and formulae are still being used.

In this study, a practical method is developed for determining the buckling lengths of columns in
unbraced frames. The method is based on computing an approximate value for system buckling load
by using the results of a fictitious lateral loading.

2. System buckling load of unbraced multi-storey frames

A multi-storey frame which is composed of beams and columns made of linear elastic material is
under the effect of vertical loads as shown in Fig. 1(a).

Each axial load may be expressed as

(1)

where nij is a dimensionless coefficient and P is an arbitrarily chosen load parameter. The frame is

Nij nijP=

Fig. 1 Multi storey frame and buckling mode
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in the state of “Stabile Equilibrium” and, if the axial deformations are neglected, all the
displacements and deformations are zero. Internal forces of the frame columns consist of only axial
forces Ni, j while all the internal forces of beams are zero. However, when the load parameter
reaches to a critical Pcr value, another state of “Unstable Equilibrium” may exist. The lateral
displacement diagram corresponding to this new state, which is shown schematically in Fig. 1(b), is
called the “Buckling Mode” of the structure (Horne and Merchant 1965). Once the buckling load
parameter Pcr is determined, the buckling length sij of an individual column can be computed by

(2)

where EIij is the bending stiffness of the column.
In certain simple cases, buckling load parameter may be determined by using the so-called

stability functions (Horne and Merchant 1965). For general cases however, it is necessary to utilise
specially prepared software. In this paper, a practical method will be explained and applied to the
numerical examples. The method, which is developed by using the procedure given by Çakiroglu
(1977) is applied, by applying a simple quotient based on the results of lateral load analysis.

3. Buckling lengths according to design codes

In several design codes and specifications, simplified formulae and diagrams are given for
calculating the buckling lengths of individual columns. These simple formulae have the advantage
of enabling the designer to obtain the buckling lengths, without applying the tedious computations
(or special software) which are necessary for the calculation of the overall-buckling load. In the
following, the formulae of Eurocode 3 (2002) are presented as an example.

In Annex B1 of Eurocode 3 (2002), calculation of the “Buckling of components of building
structures” is supplied as follows. First, the so-called distribution factors co and cu for columns in a
sway mode are computed by

(3)

(4)

Here
Ks, Ks, o, Ks, u are the stiffness coefficients (I/L values) of columns,
Ko and Ku are the stiffness coefficients (I/L values) of beams,
α is a coefficient varying between 1 and 4 depending on the end conditions of beams.

sij π EIij

nij Pcr

-------------=

co
1

1
αKo∑

Ks Ks o,+
---------------------+

-------------------------------=

cu
1

1
αKu∑

Ks Ks u,+
---------------------+

-------------------------------=
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Stiffness coefficients for various members are shown in Fig. 2.
Buckling (effective) length multiplier β is obtained first by solving the following equation for γ

(5)

and then by computing

(6)

(Schneider 1996).
Alternatively, instead of using Eqs. (5) and (6), buckling length multiplier β may also be read

from the diagrams given in the code. The buckling length s of an individual column is computed by

s = β L (7)

where L is the length of the column.
Application of code formulae on several numerical examples have shown that erroneous results

may be encountered for both sway and non-sway modes. This is mainly because, only local stiffness
distributions are considered in these formulae, while the general behaviour of the frame is not taken
into account. Discussion of buckling lengths of non-sway frames is left out of the scope of this
study for the sake of brevity. The erroneous results encountered for sway mode will presently be
demonstrated on several numerical examples.

3.1 Example 1

Dimensions and loading of a simple 5-storey frame is shown on the schematic elevation in Fig. 3.
Using special software prepared by Girgin (1996), which uses the system-buckling approach, the

exact value of the buckling load for the frame is found to be

γ
3 1 co⁄ 1–( )
----------------------------- 1

tanγ
----------–

γ
3 1 cu⁄ 1–( )
----------------------------- 1

tanγ
----------–

1

sin2γ
-----------– 0=

β π
γ
---=

Fig. 2 Stiffness coefficients and distibution factors
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(8)

Substituting this value in Eq. (2) and taking nij = 1

s = 1.54 h (9)

is obtained for all the columns. Buckling length multipliers β calculated by using Eqs. (3), (4), (5)
and (6) yield values of 1.24, 1.32 and 1.16 for topmost, intermediate and lowermost stories,
respectively. Relative errors on β values vary between −24.7% and −11.7%, which may be
considered rather high. Because the structure under consideration is chosen as being as regular as
possible, hence satisfying all the assumptions in deriving the isolated subassembly equations.

3.2 Example 2

Dimensions and loading of another 5-storey frame is shown on the schematic elevation in Fig. 4.
The characteristics of this frame are identical with the frame of Example 1, except that vertical
loads P, exist at every joint.

The exact value of the buckling load for this frame is found to be

(10)

The exact values for buckling length multipliers are found as varying between 1.31 and 2.93.
Relative errors on β values vary between −57.7% and −9.6%, which may be considered as
excessive, i.e., not acceptable for design purposes. It is interesting to note that

Pcr 4.177
EI

h
2

-----=

Pcr 1.153
EI

h2
-----=

Fig. 3 Schematic elevation of Example 1
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• This structure is again as regular as possible, thus satisfying all the assumptions for the isolated
subassembly approach, 

• Buckling length multipliers for Examples 1 and 2 are identical for Eurocode 3 formulae, because
they do not take into account the axial force distribution.

3.3 Other design codes and evaluation

Similar formulae and diagrams for calculating buckling length multipliers are given in other
design codes. The calculations for the above given examples have been carried out using AISC
(1988) charts and ACI (1989) formulae and similar results are obtained. The ranges of errors for the
codes under consideration are shown on Table 1.

It is clearly seen that all the considered codes yield errors, which are almost of the same order.
This is due to the fact that all codes use similar formulae, which consider only the local (isolated)
stiffness distributions. However, investigations carried on a number of numerical examples have
shown that, buckling length multipliers are dependent on

• Axial force distribution,
• Number of stories,
• Position of the individual element

Fig. 4 Schematic elevation of Example 2

Table 1 Error ranges of buckling length parameters (%)

Example 1 Example 2

Eurocode 3 DIN 18800  −24.7~ −14.3  −57.7~ −9.6
AISC (1988)  −16.9~3.2  −50.5~8.9
ACI (1989)  −13.0~1.3  −50.2~6.8
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together with local stiffness distributions. It is concluded that, the buckling length multipliers should
be determined by taking into account all these factors i.e., considering not only the local stiffness
distributions, but also the overall characteristics of the structure.

4. A simplified procedure for determining the buckling load

In the following, a practical method will be explained and applied to the numerical examples. The
method, which is developed by using the procedure given by Çakiroglu (1977), is applied by using a
simple quotient based on the results obtained by standard frame analysis software.

Consider the fictitious lateral loading shown in Fig. 5 applied to the frame shown in Fig. 1. It is
assumed that this loading provides displacements identical to (or proportional with) those
corresponding to the buckling mode.

The buckling load parameter can be determined by using Betti’s Reciprocal Theorem applied to
the states shown in Figs. 1 and 5. According to this theorem, it may be written that

W1 = W2 (11)

where W1 is the virtual work of the force system in Fig. 1(a) in conjunction with the displacements
in Fig. 5(b), and W2 is the virtual work of the force system in Fig. 5(a) in conjunction with the
displacements in Fig. 1(b), (Neal 1964). Since the displacements of Figs. 1(b) and 5(b) are assumed
as being the same, the displacements and deformations corresponding to the lateral fictitious loading
will be used in the following.

4.1 Determination of W1

According to the Principle of Virtual Works, W1 can be computed as the work done by the
internal forces of the loading shown in Fig. 1, in conjunction with the deformations induced by the
fictitious lateral loading. The displacement diagram of an infinitely small portion of one of the

Fig. 5 Multi storey frame and fictitious lateral loading
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columns together with the internal forces is shown in Fig. 6.
If the axial deformations are neglected, the virtual work in this small portion can be computed by

the product of the couple Ndv and the rotation dv/dx. Hence, the virtual work on any column can be
obtained by

(12)

or

(13)

where h denotes the height of the individual column. The total virtual work can be expressed as

(14)

Here the summation will be carried out for all the columns. It must be noted that, the indices are
omitted for the sake of simplicity. In the following, the calculations related to the integral expression
at the right hand side of Eq. (14) will be carried out. Since the integrand contains the derivative of
the lateral displacements, it suffices to consider relative displacements.

The bending moment and relative displacement diagrams of an individual column are shown in
Fig. 7. α is a dimensionless coefficient designating the location of the point of contraflexure and δ
denotes the relative storey displacement.

The deformation expression of the column is

(15)

where the bending moment function M(x) may be expressed as

w N v
vd
xd

-----d
x 0=

h

∫=

w nP
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xd

----- 
  2
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x 0=

h
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xd
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  2
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h

∫∑=∑=

d
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v

dx2
-------- M x( )
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------------–=

Fig. 6 Displacement diagram of a column portion
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(16)

Substituting M(x) into Eq. (15) and integrating twice with the boundary conditions

          v = 0 for x = 0 and
                                                   v = δ for x = h

yields

(17)

After substituting the derivative of v(x) into Eq. (14) and carrying out the integral

(18)

is obtained. Here χ denotes a dimensionless coefficient given by

(19)

The rather interesting variation of χ will be discussed presently.

4.2 Determination of W2

The virtual work of the force system in Fig. 5(a) in conjunction with the displacements in Fig. 1(b)
Fig. 5(b) can simply be written as

(20)

where Hi and di represent the lateral storey loads and storey displacements, respectively. The

M x( ) MA 1
x

αh
-------– 

 =

v x( ) δ
h
---

MAh 3α 1–( )
6EIα

--------------------------------+ 
  x
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12EIαh
-------------------x2 x 3αh–( )+=
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-----χ∑=
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MAh2

EIδ
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12α
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1
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------------+ 
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 Fig. 7 Column bending moment and relative displacement diagrams
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summation will be carried out for all stories. Eq. (20) may more conveniently be expressed in terms
of storey shears Qi and relative storey displacements δi as

(21)

4.3 Simplified buckling load formula

Substituting the expressions for W1 and W2 given respectively by Eqs. (18) and (21) into Eq. (11)
and solving for P (Pcr), the buckling load is obtained as

(22)

It must be noted that, this formula is approximate since the lateral loading corresponding to the
buckling load displacements, are not known initially. However, application on several numerical
examples has shown that, the value of Pcr is not strongly dependent to the initial choice of lateral
loads. It may be recommended that, lateral load at each joint should be selected as proportional to
the vertical load Pij existing at the joint.

4.4 The χ coefficients

It is seen that when applying Eq. (22), it is necessary to compute χij coefficients for each
individual column. As can be seen in Eq. (19), these coefficients are dependent on the bending
moments; hence, a tedious amount of computation is required. However, it can be shown that, χ
values vary in a rather narrow range and can easily be simplified.

Let us consider the basic equation used in the approximate methods of lateral load analysis, which
may be expressed as

(23)

Here Q denotes the shear force of the individual column and k is a dimensionless coefficient
varying between 0 and 1, which depends on the stiffnesses of beams at each end of the column,
(Muto 1964). Eq. (23) can alternatively be written as

(24)

W2 Qiδi∑=

Pcr

Qiδi
stories
∑

nij

δi
2

hi

------χ i j
Columns
∑

----------------------------------=

δ Q

k
12EI

h
3

------------
---------------=

δ
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αh
-------

k
12EI

h
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MAh2

12kαEI
-------------------= =
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from which

(25)
is obtained. Substituting this into Eq. (19)

 (26)

is found. It is seen that this new expression is dependent only to the two dimensionless variables,
namely k and α . The variation of χ is shown on the diagrams in  Fig. 8.

It is well known that, when k approaches to unity, α assumes values near 0.50. Moreover,
calculations carried out on the columns of several numerical examples, have yielded the results
shown as dots on Fig. 9.

MAh
2

EIδ
------------- 12kα=

χ 1 144k
2α2 1

12
------ 1

12α
----------–

1

45α2
------------+ 

 +=

Fig. 8 Theoretical variation of χ values

 Fig. 9 Variation of χ values for numerical examples
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It may be concluded that, approximately lower half of the figure is valid for practical purposes.
Considering this narrow range for values of χ , it is reasonable to assume a constant and
conservative value of

χ = 1.20

for practical purposes. Thus, Eq. (22) takes the rather practical form of

(27)

4.5 Analysis procedure

Buckling lengths of frame columns can be determined as follows:
• Apply lateral forces proportional to the vertical loads at each joint,
• Compute relative storey displacements using any existing software,
• Compute the critical load Pcr by using Eq. (27),
• Determine the buckling lengths of columns by using Eq. (2).

5. Numerical examples

In the following, the procedure outlined above will be applied to several numerical examples and
the results will be discussed.

Pcr

Qiδi
stories
∑

1.20 nij
δ2

i

hi

------
columns
∑

--------------------------------------=

 Fig� 10 Fictitious lateral loading for Example 1
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5.1 Example 1

Dimensions and loading of the first example is the same as shown on the schematic elevation in
Fig. 3 of Section 3.1. The fictitious lateral loading is shown in  Fig. 10.

After carrying out lateral load analysis for the fictitious loading, storey relative displacements δ
are obtained. The terms used for the application of Eq. (27) is shown on Table 2.

Applying Eq. (27) yields

which has an error of −11.1%. Computing the buckling lengths of columns by using Eq. (2) gives

s = 1.63 h

for all the columns. This value has an error of 6.1%, which is on the safe side. It is interesting to
note that the buckling lengths (and errors) of all the columns are the same due to the fact that they
are computed by using the same equation used for exact calculations, namely Eq. (2).

Buckling load calculations are repeated by using wind and earthquake loadings for the same
frame, and the errors on buckling lengths are found as 1.5% and 4.5%, respectively. It can be
deduced that, any lateral loading can be used in determining the approximate buckling load value,
without largely effecting the results.

5.2 Example 2

Dimensions and loading of the second example is the same as shown on the schematic elevation
in Fig. 4 of Section 3.2. The fictitious lateral loading is shown in Fig. 11, where loads are chosen as
being proportional to vertical loads at the joints.

The terms used for the application of Eq. (27) are shown on Table 3.
Applying Eq. (27) yields

Pcr
2.1910

1.20 2 0.24592××
---------------------------------------------EI

h
2

------ 3.712
EI

h
2

------= =

Pcr
21.7914

1.20 2 8.4045××
------------------------------------------=

EI

h
2

------ 1.080
EI

h
2

------=

Table 2 Buckling load calculations for Example 1

Storey Q n

5 2.00 0.2090 0.4180 1.00 0.04368
4 2.00 0.2446 0.4892 1.00 0.05983
3 2.00 0.2478 0.4956 1.00 0.06140
2 2.00 0.2380 0.4760 1.00 0.05664
1 2.00 0.1561 0.3122 1.00 0.02437

Sum 2.1910 0.24592

EI

h3
------δ EI

h3
------Qδ EI( )

h5
----------

2

n
δ2

h
----
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which has an error of −6.3%. Buckling length multipliers β, which are calculated by means of Eq. (2),
are shown and compared with the exact values on Table 4.

Here again, all the buckling length parameters have the same error and are on the safe side.
Buckling load calculations are repeated by using wind and earthquake loadings for the same

frame, and the errors on buckling lengths are found as 4.1% and 1.6%, respectively.

Fig. 11 Fictitious lateral loading for Example 2

Table 3 Buckling load calculations for Example 2

Storey Q n

5 2.00 0.2635 0.5270 1.00 0.0694
4 4.00 0.5007 2.0028 2.00 0.5014
3 6.00 0.7419 4.4514 3.00 1.6512
2 8.00 0.9344 7.4752 4.00 3.4924
1 10.00 0.7335 7.3350 5.00 2.6901

Sum 21.7914 8.4045

EI

h3
------δ EI

h3
------Qδ EI( )

h5
----------

2

n
δ2

h
----

Table 4 Buckling length multipliers for Example 2

Storey β 
(Exact)

β 
(Prop. Method)

Relative error
 (%)

5 2.93 3.02 3.3
4 2.07 2.14 3.3
3 1.69 1.75 3.3
2 1.46 1.51 3.3
1 1.31 1.35 3.3
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5.3 Example 3

Dimensions and loading of the last example, which is adopted from Lui (1992), is shown in
Fig. 12(a). Fictitious lateral loading is chosen as shown in Fig. 12(b).

The exact value of the buckling load for the frame is found to be

according to Girgin (1996). The terms used for the application of Eq. (27) are shown on Table 5.
Applying Eq. (27) yields

Pcr 5.191=
EI

h2
------

Pcr
2.7215

1.20 0.4344×
---------------------------------EI

h2
------ 5.221

EI

h2
------= =

Fig. 12 Schematic elevation and loadings of Example 3

Table 5 Buckling load calculations for Example 3

Storey Q hi Column n

2 3.668 h 0.0966 0.3543
Left 1.050 0.0098

Middle 1.834 0.0171
Right 0.784 0.0073

1 12.090 1.158h 0.1958 2.3672
Left 3.525 0.1167

Middle 6.045 0.2001
Right 2.520 0.0834

Sum 2.7215 0.4344

EI

h3
------δ EI

h3
------Qδ EI( )

h5
----------

2

n
δ2

hi

----
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which has an error of 0.58%. Buckling length multipliers β are shown and compared with the exact
values on Table 6. As for the previous examples, all the buckling length parameters have the same
error of −0.3%.

Buckling load calculations are repeated by using wind and earthquake loadings for the same
frame, and the errors on buckling lengths are found as −0.4% and −2.3%, respectively.

The errors of the results obtained by using the proposed method have been found less than the
errors in the original paper (Lui 1992). The same example has been solved by using the methods
proposed by Aristizabal-Ochoa (1997) and Hellesland and Bjorhovde (1997) as well. It is found that
the errors of the proposed method are less than the ones found by both.

6. Conclusions

In this paper, determination of buckling lengths of multi-storey frame columns is investigated. The
main conclusions derived, may be summarised as follows:

1. It is shown that, simplified formulae and diagrams, which are given in several design codes and
specifications, may yield rather erroneous results for buckling lengths of the columns. This is
due to the fact that the code formulae refer only to local stiffness distributions, instead of the
overall behaviour of the structures.

2. A simplified procedure for determining the approximate value for the system buckling load of
multi-storey frames is developed. Buckling lengths of columns may then be calculated by
means of a simple formula.

3. The procedure, which utilises lateral load analysis of the frames yields errors, which are less
than 10% for all the examples. This order may be considered acceptable from the designer’s
point of view.

4. The buckling load value is not strongly dependent on the choice of lateral loading. Hence any
existing lateral loading on the frame under consideration may be used without losing a
significant amount of accuracy.

5. The proposed procedure is applied to several numerical examples and it is seen that all the
errors are in the acceptable range and on the safe side.

Table 6 Buckling length multipliers for Example 3

Storey Column β
 (Exact)

β
(Prop. Method)

2
Left 2.063 2.057

Middle 1.561 1.556
Right 1.557 1.553

1
Left 1.360 1.356

Middle 0.857 0.854
Right 1.152 1.149
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