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Experiment study of structural random loading identification 
by the inverse pseudo excitation method
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Abstract. The inverse pseudo excitation method is used in the identification of random loadings. For
structures subjected to stationary random excitations, the power spectral density matrices of such loadings
are identified experimentally. The identification is based on the measured acceleration responses and the
structural frequency response functions. Numerical simulation is used in the optimal selection of sensor
locations. The proposed method has been successfully applied to the loading identification experiments of
three structural models, two uniform steel cantilever beams and a four-story plastic glass frame, subjected
to uncorrelated or partially correlated random excitations. The identified loadings agree quite well with
actual excitations. It is proved that the proposed method is quite accurate and efficient in addition to its
ability to alleviate the ill conditioning of the structural frequency response functions.

Key words: loading identification; inverse pseudo excitation method; random vibration; computer
simulation.

1. Introduction

Three typical problems exist for a linear structure subjected to multiple stationary random
excitations. The first is the analysis of structural responses due to given excitations, for stationary
random excitations, the power spectral density (PSD) matrices of the responses are usually
computed. This so-called “direct problem” can be solved efficiently by the pseudo excitation method
(PEM) (Lin et al. 1992, 1994). The second is the system identification problem, for which the
properties of a structure are identified from the known PSD functions of both loadings and response.
As viewed from experimental modal analysis, this is to extract structural dynamic properties
(resonant frequencies, mode shapes and modal damping ratios) from the frequency response
functions (FRFs). The FRFs are obtained by measuring the excitations and the corresponding
responses (Ewins 1984). Many publications cover such system identification problems and their
successful applications in engineering (Juang 1994). The third is the so-called loading identification
problem, for which the PSD functions of the responses and the properties of the structure (FRF) are
known as a prior and will be used in the identification of the loadings. This “inverse problem” has
received much less attention in the literature. Some similar work has been done at a high expense,
but quite few results were published because of the poor precision. In fact, loading identification is
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very important, and many loads in engineering applications need be identified. For instance, the
traffic loads of bridges; the seismic excitations of buildings; the interaction forces between moving
machines and their bases, and so on. Such excitations are very difficult or even impossible to
measure directly. However, the excited responses are sometimes more easily to measure, and
therefore, will be used in the identification of the excitations.

Investigations for loading identification are carried out with emphasis in various fields. The
earliest was conducted by Barlett et al. (Barlett and Flannelly 1979) to determine the external
vibratory forces exerted on the rotor hub of a helicopter dynamic model. Subsequently, Giansante et al.
(1982) tested on a real AH-1G helicopter to reconstruct the magnitudes and phase angles of in-flight
rotor vibratory forces acting on the airframe from acceleration responses and mobility calibration
matrix. Hillary and Ewins (1984) tested a simple cantilever beam by using two sinusoidal forces of
the same frequency but different magnitudes. Their experiment results showed that the poor
identification of forces were caused largely by the contamination of measurement noise, and that
strain gauge measurement, instead of accelerometer, will improve the reconstructed excitations in
the lower frequency range to some extent. Moreover, Okubo et al. (1985) tested three different kinds
of real structures: a machine tool, an automobile engine and an air conditioner under operating
conditions, and reached a good agreement between the identified and actual forces. They also
analyzed different influences of noises on the identified results using a synthesized model. In above
tests, the method of direct inversion of FRF, by which the loadings are computed by the
multiplication of the responses and the inverted FRF matrices, is used. 

In addition to the direct inversion of FRF, modal coordinate transformation method was developed
for loading identification. The modal coordinates, derived by several orders of mode shapes, were
first implemented to decouple the governing equations of motion of a structure with multiple degree
of freedoms, then the pseudo-inverse technique was employed to compute the force vector in the
modal space. Finally, the actual loadings were computed by transforming this force vector back into
the original coordinates. Using this method, Desanghere and Snoeys (1985) conducted identification
experiments on a real longitudinal beam of a car frame excited by three electro-magnetic shakers.
They also studied the influences of noise contamination, perturbation of modal parameters and
limited number of modes on the identification results by an analytical model. However, the modal
coordinate transformation method is drastically weakened by the insufficiency of the participating
modes, in particular by the lack of the higher order modes that are hard to obtain accurately for an
actual structure. 

In above experiments, the locations of the input forces are all known, which is prerequisite for
loading identification. Callahan et al. (1994) discussed a situation in which the input locations are
not known and found that the forces are adequately determined when the assumed forces locate
where actual forces act; otherwise, the identified forces are distributed evenly to all the locations in
the assumed set. Moreover, Avitabile and Chandler (2001) studied on how to optimally place
sensors in loading identification. They proposed a Test Reference Identification Procedure for the
selection of multiple reference locations by a pre-modal test with a very limited set of potential
reference locations. This procedure was developed mainly because a finite element model (FEM)
may be inaccurate, and if it is used to identify reference locations for tests, then it may not produce
the best results or even miss modes. 

Besides loading identification in the frequency domain, force identification can also be approached
in the time domain based on the system impulse response function. Adams and Doyle (2002)
developed a recursive formulation to identify impact force time history combined with a finite
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element model, and conducted identification experiments on a cylindrical shell and a one-sided
Hopkinson Bar. Zhu and Law (2002) adopted a regularization method to overcome the ill-conditioning
and to stabilize the unbonded solution for the identification of moving loadings on a continuous
beam from strains and accelerations. Two thorough reviews concerning different methods and existing
problems of loading identification literature can be found in Karl (1987) and Dobson et al. (1990).

However, most of the above explorations dealt only with the identification of deterministic forces,
for instance impact forces. For random excitations, the identified results using these methods are not
satisfactory. The inverse pseudo excitation method (IPEM) is proved effective in identifying such
random loadings in principle (Lin et al. 2001), and will be further justified via experiments in this
paper. Using this method, the response PSD matrix at a given frequency is first decomposed to
produce a pseudo response vector, which will then be used to generate a pseudo excitation vector by
means of a corresponding FRF. Finally, the loading PSD matrices are reconstructed by multiplication
of such pseudo excitation vectors in an appropriate form. 

In this paper, the IPEM method and the associated theory is described. The computer simulation
scheme for the optimal selection of sensor locations, as well as the experiment results for loading
identification are also presented. The IPEM yielded excellent identification results in the
experiments with two cantilever beams with different damping ratios, and a frame made of plastic
glass. The experimental results are used to the analysis of the identification precision. Part of the
work was first appeared in IMAC XXI (Li et al. 2003).

2. Theory of the inverse pseudo excitation method

For a linear structure subjected to stationary random vibrations, the fundamental formula, which
relates the response PSD matrices with the excitation PSD matrices by FRFs in the frequency
domain, is given by (Newland 1984).

(1)

In which [Sxx] is the known excitation PSD matrix, [H] is the FRF matrix, and [Syy] is the response
PSD matrix. The superscripts * and T represent complex conjugate and transpose, respectively.

Eq. (1) is used for computing the responses of a structure subjected to known excitations in the
direct problem. Conversely for an inverse problem of loading identification, the responses of a
structure are already given and are used to compute the unknown excitations. The known response
PSD matrix [Syy] can generally be assumed to be a p × p Hermitian matrix with rank r (≤ p), and
can be decomposed into the following form,

(2)

Eq. (2) can generally be realized in terms of the spectral decomposition scheme or Cholesky
decomposition of the Hermitian matrix. If [Syy] consists of only real quantities, then {b}j is
simplified into the product of the square root of the jth eigen-value and corresponding mass
normalized eigen-vector of the response PSD matrix obtained by a common matrix eigen-value
computation. 

Syy[ ] H[ ] * Sxx[ ] H[ ] T
=

Syy[ ] b{ } j
* b{ } j

T

j 1=

r

∑=
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Assuming the structure is excited by a pseudo excitation, , the pseudo response
vector can be expressed by the pseudo excitation vector as:

(3)

(4)

where the superscript + represents a Moore-Penrose generalized inversion. Clearly,

(5)

Hence, by substituting Eq. (1) into Eq. (5), the excitation PSD matrix [Sxx] can be expressed in
terms of {a}j as

(6)

Eq. (6), i.e., the IPEM, is obviously accurate in theory, and it is quite efficient because each FRF
matrix at a specific frequency need be inverted only once.

In general, the determination of n external excitations requires m (m ≥ n) measured responses, and
the inversion of the m × n FRF matrix may often meet ill-conditioning problem. The singular value
decomposition (SVD) scheme (Golub and Van Loan 1996) is employed in the inversion process of
the FRF matrix as follows,

(7)

where, the superscript H represents a transposed conjugate, [U] represents the left singular matrix
corresponding to the matrix of mode shapes, [S] is the diagonal singular value matrix, and [V ]
represents the right singular matrix corresponding to the matrix of mode participations. 
Thus,

(8)

Consequently, the test steps for experimental loading identification are set up following equations
from Eqs. (2)-(8) in combination with computer simulation for optimal sensor placement.

(1) Computer simulation for sensor placement. Select several candidate sets of different response
measurement points, assume an excitation matrix, and simulate the identification result as well
as the condition numbers of FRF matrices. Choose the best set of sensor locations that has the
smallest discrepancies between the assumed and reconstructed loadings and that has the lowest
overall condition numbers of FRFs. 

(2) System or FRF matrix calibration. Generate the FRF matrices by artificially exciting the
structure at the significant frequency points of external loadings. For each excitation, the force
and the accelerations at selected measurement locations are measured and stored through a data
acquisition card in a laptop computer simultaneously, and are later processed to yield one
column of the FRF matrix in sequence. With all the loading points excited, a complete FRF
matrix is obtained.

x{ } j a{ } je
iωt=

b{ } je
iωt H[ ] x{ } j H[ ] a{ } je

iωt
= =

a{ } j H[ ] + b{ } j=

a{ } j
* a{ } j

T

j 1=

r

∑ H[ ] + b{ } j{ }
*

H[ ] + b{ } j{ }
T

j 1=

r

∑ H[ ] +* b{ } j
* b{ } j

T H[ ] +T

j 1=

r

∑ H[ ] +* Syy[ ] H[ ] +T= = =

Sxx[ ] a{ } j
* a{ } j

T

j 1=

r

∑=

H[ ] U[ ] S[ ] V[ ] H=

H[ ] + V[ ] S[ ] + U[ ] H=
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(3) Responses measuring. Measure all the responses simultaneously under normal vibratory
conditions. Establish the response PSD matrices from measured acceleration time history using
Fast Fourier Transform (FFT) algorithm (Bendat and Piersol 2000). Meanwhile, the actual
excitations, which are used later for the comparison of the identified excitations with the
original ones as references, are also measured by force transducers in the experiments.

(4) Loading reconstruction. Inverse the FRF matrices using the SVD scheme (Eqs. (7) and (8)) at
the discrete frequencies, decompose the measured response PSD matrices to obtain a pseudo
response vector (Eq. (2)), multiply the inversion of the FRF matrix and the pseudo response
vector to get a pseudo excitation vector (Eq. (4)). Reconstruct the excitation PSD matrices by
Eq. (5).

Fig. 3 Plastic glass cantilever beam Fig. 4 Plastic glass frame

Fig. 1 Steel cantilever beam Fig. 2 Finite element model of the steel cantilever
beam
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Three structures were tested in this paper. The first was a uniform steel cantilever beam and its
length, width and thickness are 88.5 cm, 7.5 cm and 1.2 cm respectively (Fig. 1). Fig. 2 shows it’s
analytical model and FEM mesh discretization. The second was an erect uniform plastic glass
cantilever beam with the same size as the steel cantilever beam (Fig. 3). The third was a four-story
frame made of plastic glass, which was the model of a building (Fig. 4). The frame, having
dimensions of 0.9 × 0.48 × 1.37 m (L × W × H), has four floors, and each floor has four bays. This
frame is comparatively complicated and was chosen to test the feasibility of applying IPEM on
complex engineering structures.

3. Selection of measurement locations

Selection of measurement locations before conducting experiments by means of computer simulation
is an efficient approach in improving identification effect. Usually, the initial candidate sensor locations
are based on heurism in Lin et al. (2001). In this paper, however, such initial candidate sensor
locations are selected more rigorously in accordance with the modal kinetic energy (MKE), by which
all the possible candidate locations are ranked in descending order according to their MKE values. The
MKE values of each candidate location are computed using the following relation

MKEin = (9)

Where, MKE is the kinetic energy associated with the ith degree of freedom in the nth target mode,
Φin is the ith component in the corresponding mode, Mij is the term in the ith row and jth column of
the FEM mass matrix, and Φjn is the jth element of the nth mode. The first six target mode shapes,
which are adequate to identify structural loadings as shown in the following experiment section, are
involved in the computation of MKE values. For the first model, all the eleven candidate locations
are ranked in descending order according to their MKE values as follows: 11,6,5,9,7,2,8,3,10,1.

Then in the second step, computer simulation for loading identification is performed to optimally
select sensor locations. By computer simulation, first choose four locations with largest MKE values
and assume to apply excitations at the places where the structure are excited (Point 5, 9). The
assumed excitation PSD matrix at all given discrete frequencies is:

(10)

Compute the corresponding FRF matrices by an FEM program for the four locations preliminarily
selected by MKE method. The response power spectrum density (PSD) matrices are then computed
by implementing PEM. These response PSD matrices are further used to generate the excitation
PSD matrices based on the IPEM. Repeat this process for the preliminary selected combinations of
sensor locations in sequence, compare the identified excitation PSD matrices with the assumed
loading spectrum as well as the condition numbers of the FRF matrices for each set, the best one
with smallest disparities between identified and assumed excitations and overall condition numbers
will be used in later experiments.

The results of computer simulation for the first candidate set (locations at 11,9,8,5) are shown in
Fig. 5(a) and another set of sensor locations at 11,9,6,5 are in Fig. 5(b). Clearly, the first set are

Φin MijΦjn
j

∑

Sxx[ ] 2.0  0

0  1.0
=
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better than that of the second set since the range of abnormal jumps in Fig. 5(b) is much broader
and the amplitude is comparatively higher than that in Fig. 5(a). Obviously, the simulation results
are quite different even though only one measurement location is different. The locations 7 and 2
are excluded in the simulation because the coherence coefficients between the excitation and the
response at these two points are lower than that at location 8 in actual modal tests. As a result, the
optimal sensor locations for loading identification of the steel cantilever beam are 11,9,8,5.

It should be noted that computer simulation may still be usable even if the analytical model of a
structure can not be established properly. The reason for this situation is the inability of
mathematical modeling techniques to adequately describe the structure because of inaccurate
material parameters or impractical boundary conditions. In such cases, FRF matrices are measured
experimentally, and other related procedures remain the same in the simulation process. For the
models of Fig. 3 and Fig. 4, such FRF matrices should be measured experimentally because the
properties of plastic glass are usually unstable, and the joints in the frame are not connected rigidly.

4. Experiment results of random loading identification 

4.1 Experiment system setup

A 16-channel data acquisition system (DAQ), INV306D intelligent signal acquisition and analysis
system, was employed for the measurement of accelerations as well as excitations. The DAQ system
is fully digital, multi-channel and computerized. Electrical signals from the two force transducers
(B&K842424, B&K842425) and four acceleration sensors (YD-70Bs) are converted into digital
forms and stored in the hard disk of a laptop computer, which performs the conventional FFT
procedure, FRF and auto- or cross- power density spectrum computation with the DASP 6.0
software supplied with INV306D. The simulation and later identification computation are based on
Matlab5.0. Moreover, an HP35670A was used for instant experiment setup check for the validation
of reciprocity, initial FRFs and coherence functions analysis to assure the quality of the data
acquired.

Fig. 5 (a) Measured points at 5,8,9,11 Fig. 5 (b) Measured points at 5,6,9,11
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4.2 Steel cantilever beam

Two uncorrelated excitations were applied at points 5,9 vertically and four acceleration responses
were measured at 5,8,9,11 simultaneously (Fig. 1). The significant frequency range is from 0 to 500
Hz, which includes the first four natural frequencies. As a whole, the identified excitations (Fig. 6a
and Fig. 6b) agree with the actual ones quite well.

The reconstructed excitations below 10Hz were poor partly because the sensitivity of the
accelerometers used is low in this frequency range and partly because the resonant frequencies of
the suspension system of the two shakers and the support structures of the beam also fell in this
range. As recommended in Ewins (1984), strain gages were possibly used to make some
improvements. Fig. 6(c) and Fig. 6(d) show the FRFs and coherence functions between the two

Fig. 6 (c) Frequency response function (First column 
corresponds to the 1st excitation)

Fig. 6 (d) Input/Output coherence function (First
column corresponds to the 1st excitation)

Fig. 6 (a) Point 9 reconstructed and actual force Fig. 6 (b) Point 5 reconstructed and actual force
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forces and four acceleration responses of the beam. The falls of coherence coefficients in Fig. 6(d)
near 250 Hz and 411 Hz show that the four acceleration responses are not completely caused by the
two excitations, which also accounts for the abnormal jumps of the actual identified loadings in this
frequency range.

It should also be noted that the damping ratio of the steel cantilever beam is small (0.01)
compared to the damping ratio (0.05) of the plastic glass beam. Because of this, the identified
loadings are very sensitive to the mounting condition of the shakers, especially misalignment of the
two ends of the drive rode having remarkable effects on the test results. In addition, the fixing of the
shaker’s drive rod to a structure is often suffered from accidental perturbations or even from
elongation of the suspension rubber ropes for a period of time. To make sure that the measured
responses are caused strictly by corresponding excitations, following measures have been adopted to
avoid such adverse effects caused by stiffness attachment. When measuring the first column of the
FRF corresponding to excitation 1 (the 1st shaker) in step 2 of section 2, the drive rod of the 2nd
shaker should always keep its connection with the beam as the in-situ tests, and vice versa. In other
words, the test settings while measuring the FRFs must keep the same state strictly as that when
measuring the responses used for loading identification in step 3. This can be easily attained by
switching on or off corresponding signal generators according to what is going to be measured, and
keep the settings of other related facilities unchanged. If the FRFs and coherence functions varied
during experiments, they have to be measured again after adjusting or correcting the misalignment
of the drive rods.

In Fig. 6(d), the discouraging part of the coherence functions (below 10 Hz) also explains why the
identification results in this frequency range are inferior to those in the other part. The quality of
FRFs and coherence functions is critical to the success of loading identification. Before measuring
responses and excitations in each test, FRFs and coherence functions have to be monitored for every
channel by a spectrum analyzer (HP35670 in our laboratory) to make sure that they are in good
status. If not, check the mounting condition of drive rods carefully, adjust them horizontally,
vertically, and fasten them tightly to the structure until the values of coherence function are 1 for
most of the frequency range, which indicates that the measured responses are induced by the
excitations to be identified. Moreover, an adequate number of peaks should appear in the plots of
the FRFs to allow the measured responses containing sufficient participating modes for loading
identification.

4.3 Plastic glass cantilever beam

Similar to section 4.2, two uncorrelated excitations were applied at points 4,5 horizontally and
four acceleration responses were measured at 5,7,8,11 (Fig. 3). The significant frequency range
including the first four natural frequencies is from 0 to 400 Hz. The identified excitations (Fig. 7a
and Fig. 7b) agree perfectly well with the actual excitations. The plastic glass cantilever beam has
more damping than the steel cantilever beam and the coherence functions almost approximately
equal to 1 (Fig. 7c and Fig. 7d), which explains that why the identification results (Fig. 7a and
Fig. 7b) of the plastic glass cantilever beam with the same size are much better than that of the
steel cantilever beam (Fig. 6a and Fig. 6b)
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4.4 Four-story plastic glass frame

The IPEM was applied to the four-story frame, which is a complex structure made of plastic glass
(Fig. 4). Its frequency range of interest is between 0 and 100 Hz, which includes the first five
natural frequencies. Two excitations were applied at points 11,2 horizontally and four acceleration
responses were measured at locations 7,32,40,48. The space frame was additionally excited by fully
correlated excitations to compare the influences of different types of excitations on the loading
identification results in addition to the uncorrelated excitations used in the above mentioned
experiments. 

4.4.1 Identification results for fully correlated excitations
In one case, the two excitations are fully correlated (Fig. 8a). The identified loadings are shown

Fig. 8(b) and Fig. 8(c). Abnormal jumps in identification results appear more frequently, and

Fig. 7 (a) Point 5 identification result comparison Fig. 7 (b) Point 4 identification result comparison

Fig. 7 (c) Frequency response function Fig. 7 (d) Input/Output coherence function
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obvious disparities of identified loadings from their actual values take place in most spectral region.
The correlation function between the two excitations shows that these two forces are fully correlated
in almost all the frequency range of interest as expected. In fact, the two forces were generated by
the same signal generator, which were channeled to two power amplifiers with different amplitudes
simultaneously. 

4.4.2 Identification results for uncorrelated excitations
In the other case, the two excitations are uncorrelated (Fig. 9a). Fig. 9(b) and Fig. 9(c) show the

identified loadings, which agree perfectly well with the actual ones on the whole. The correlation
function between the two excitations in Fig. 9(a) reveals that the two excitations are satisfactorily
uncorrelated in almost all the frequency range of interest except locally within the lower frequency
part. Hence, higher identification precision is achieved for uncorrelated excitations than for fully
correlated ones (Figs. 8c & d and Figs. 9c & d).

Fig. 8 (a) Point 2 reconstructed and actual force Fig. 8 (b) Point 11 reconstructed and actual force 

Fig. 8 (c) Measured correlation coefficients 
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5. Influences of the number of response measurement points and noise contamina-
tion on the precision of identification results

The precision of loading identification is influenced both by the number of response measurement
points and measurement noise. In above experiments, four acceleration responses were measured to
identify the loadings and the redundancy degree, i.e., the number of responses more than the
number of excitations, is two. Actually, six responses had been totally measured during the tests on
the plastic glass space frame in the cased of uncorrelated excitations. The other two measured
responses were at point 11,2, which were called drive points where the drive rod excites the frame
laterally. Thus, it is possible to compare the effects of redundancy degrees on the precision with
which the excitation PSD matrix is identified. 

Fig. 9 (a) Point 11 reconstructed and actual force Fig. 9 (b) Point 2 reconstructed and actual force

Fig. 9 (c) Measured correlation coefficients of two uncorrelated excitations 
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5.1 The influence of the number of response measurement points on the identification
precision

In Fig. 10(a) and Fig. 10(b), only two measured responses at points 11,2 were used in the
identification. Under this circumstance, the number of response measurements (two) equals to the
number of excitations (two), no redundancy exists. The identification results are not so good as the
results obtained from four responses because of the abnormal jumps and disparities. This validates a
common inference that adequate redundancy of response measurement points yields better
experiment results. 

However, more redundancy degree does not always guarantee better identification results. When
five or six response measurements are taken into consideration, the identified loadings are similar to
those by four responses (Fig. 9b and Fig. 9c) without much improvement. In addition, computations
demonstrate that drive points, as 11 or 2 in this example, may probably have better identification
results than the other points.

5.2 The effect of noise in measurement on the identification precision

The precision of loading identification is not only affected by the degree of response measurement
redundancy, but also by the measurement noise. First, consider the effect of noise contamination of
the actual measured response signals when only the responses contain 30% random white noise
with respect to its maximum amplitude and there is no noise contamination in the FRFs and
excitation data. The identification results are shown in Fig. 11(a) and Fig. 11(b). The noise at the
lower frequencies will cause significant errors, whereas the noise at other frequency range does not.

Next, consider that only the FRFs are contaminated by the measurement noise. The identified
loadings shown in Fig. 11(c) and Fig. 11(d) are based on the FRFs with 30% random white noise
and there is no random noise in the measured excitations or responses. In this case, the
identification errors are distributed evenly over the entire frequency range, unlike the above case in
which only the responses are polluted with noise. When measurement noise is involved in both the

Fig. 10 (a) Identification results at point 11 with
only two measurement points 2,11

Fig. 10 (b) Identification results at point 2 with only
two measurement points 2,11
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Fig. 11 (a) Identified result at point 11 Fig. 11 (b) Identified result at point 2

Fig. 11 (c) Identified result at point 11 Fig. 11 (d) Identified result at point 2

Fig. 11 (e) Identified result at point 11 with 10%
calibration error at Ch.6

Fig. 11 (f) Identified result at point 2 with 10%
calibration error at Ch.6
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responses and the FRFs, the identification results are similar to the case of only responses with
random noise. 

After a detailed analysis, it was found that the contaminated response auto PSD matrices only had a
variation of no more than 0.5 percent even when subjected to contamination by 30 percent random
white noise. When calculating the FRF matrices, excitation and response auto PSD matrices from the
time histories, they were all averaged for fifty times. Because of this, the random noise contamination
was almost smoothed out by averaging. This is why the IPEM is robust to random noise.

Finally, consider the accelerometers having ten percent null drift or zero-drift errors, which often
happens during instruments calibration, i.e., all measured acceleration responses will be a hundred
and ten percent of their actual values. Fig. 11(e) and Fig. 11(f) show the identification results in
which the disparities increase even if one accelerometer is subjected to such calibration error. 

6. Conclusions

The inverse pseudo excitation method was implemented for loading identification experiments on
three structures subjected to stationary random excitations. The identified loadings agree quite well
with actual uncorrelated excitations. This method is not only computationally efficient and accurate
to identify unknown random excitations, but robust to random noise. 

Although immune to random noise, the IPEM is severely affected by system calibration errors. A
certain degree of redundancy is beneficial to the precision of loading identification. Moreover, the
accuracy of FRF measurement is critical to the success of loading identification, and more structural
damping leads to better identification results. 

However, the singularity of the FRF matrices near some resonant frequencies is not completely
solved even though SVD is introduced. Epsilon decomposition method is an appealing way to solve
this problem if epsilon could be effectively determined. Other existing problems are that sometimes
the force positions are not known, and that the calibration FRFs (Step 2 of section 2) cannot be
measured in-situ accurately if the mounting places are not accessible or the working conditions
offend in some situations.
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