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Abstract. Modified virtua crack closure integral (MVCCI) technique has become very popular for
computation of strain energy release rate (SERR) and stress intensity factor (SIF) for 2-D crack problems.
The objective of this paper is to propose a numerical integration procedure for MVCCI so as to
generalize the technique and make its application much wider. This new procedure called as numericaly
integrated MVCCI (NI-MVCCI) will remove the dependence of MV CCI eguations on the type of finite
element employed in the basic stress analysis. Numerical studies on fracture analysis of 2-D crack (mode
| and Il) problems have been conducted by employing 4-noded, 8-noded (regular & quarter-point), 9-
noded and 12-noded finite eements. For non-singular (regular) elements at crack tip, NI-MVCCI
technique generates the same results as MVCCI, but the advantage for higher order regular and singular
elements is that complex equations for MVCCI need not be derived. Gauss numerical integration rule to
be employed for 8-noded singular (quarter-point) element for accurate computation of SERR and SIF has
been recommended based on the numerical studies.

Key words: fracture mechanics, finite element method; stress intensity factor; strain energy release
rate; numerical integration.

1. Introduction

The fracture behaviour of structural components under fatigue loading or during static overload
can be estimated through linear eagtic fracture mechanics (LEFM) principles, and SIF is the
influencing design parameter. A detailed review of fatigue and fracture behaviour of structurd
components has been presented by Cotterell (2002) and Schijve (2003). Using the finite element
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method (FEM) for basic stress analysis (Zienkiewicz and Taylor 2000), SIF can be computed
through post-processing of finite eement analysis (FEA) results (Liebowitz and Moyer 1989). The
techniques based on displacement extrapolation, strain energy release rate, virtual crack extension,
modified virtual crack closure integral, equivalent domain integral and Jintegral are generaly
preferred (Owen and Fawkes 1982), for computing SIF through post-processing of FEA results. The
major disadvantage in the extrapolation methods is that the accuracy in evaluating SIF depends on
the accuracy of displacement and stress distribution in the vicinity of crack tips. As such, these
methods are not suitable with conventional finite elements and generaly require stress anaysis
using singular elements only. The dtrain energy release rate and the virtual crack extension
techniques require two runs of analysis for evaluating SERR. Considering the merits and demerits
of these techniques, it is observed that for LEFM problems, MV CCI technique in combination with
FEM is an efficient tool for evaluating SERR from which SIF can be calculated. One of the popular
post-processing techniques is MV CCI developed by Rybicki and Kanninen (1977) based on Irwin's
crack closure integra (CCI) technique (Irwin 1958) with appropriate modifications for computation
of SERR and SIF. The advantage of MV CCI technique is its simplicity and aso the ease with
which individual mode SERR/SIF can be estimated in mixed-mode problems.

Rybicki and Kanninen (1977) expressed Irwin’s CCI technique in a form consistent with the finite
element (FE) formulation and evaluated SERR for mode | and |1 (G, and G,)) in terms of nodal forces
and displacements. Further, these computations can be carried out from a single FEA, as against from
two analyses with crack lengths differing by an infinitesmally small crack length as conceived
originally. Buchholz (1984) redlized the element dependence of MVCCI equations and presented
appropriate equations for 8-noded quadrilateral elements, but did not establish a formal procedure for
deriving them. Badari Narayana and Dattaguru (1996) and Badari Narayana et al. (1990) presented
the generalised MVCCI equations for conventional and singular quadrilateral elements for 2-D
problems with cracks. Raju (1986) also derived MV CCI equations for 6-noded and 8-noded quarter-
point singular elements. Young and Sun (1993) demonstrated the application of MV CCI technique to
plate bending problems. Buchholz et al. (2001) and Dhondt et al. (2001) conducted fracture analysis
to study the 3-D and mode coupling effects by employing MV CCI method.

For the successful application of MV CCI technique, it is essentia (Badari Narayana 1991) to
derive element dependent MV CCI eguations for computation of SERR. The derivation of MV CCI
equations involves evaluation of constants used in the polynomial assumed to represent displacement
and stress variation and evaluation of many integrals. In view of these, the derivation of MV CCI
equations becomes a tedious exercise for higher order and singular 2-D and 3-D finite elements.
Therefore, a need is felt to develop a generadlized MV CCI technique involving numerical integration
for computation of the required constants and to evaluate the associated integrals. Towards this, NI-
MV CCI technique has been proposed in this paper for computation of SERR and SIF for 2-D crack
problems. NI-MVCCI is a generdized technique and removes the dependence on the type of finite
elements employed. NI-MVCCI technique has been demonstrated for 4-noded bilinear, 8-noded
Serendipity (regular & quarter-point), 9-noded Lagrangian and 12-noded cubic isoparametric finite
elements. Numerical studies on fracture analysis of 2-D crack (mode | and I1) problems have been
conducted. Gauss numerica integration rule to be employed for 8-noded singular (quarter-point)
element for accurate computation of SERR and SIF has been recommended based on the numerical
studies. It may be noted that no results have been reported in the literature using MV CCI technique
for 9-noded and 12-noded elements. In this paper, NI-MVCCI technique has been used for the first
time for this purpose.
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2. Formulation of NI-MVCCI technique

Irwin (1958) proposed CCI technique for evaluation of SERR. CCl was derived using a
fundamental concept that when crack extension takes place, the energy required to close this part of
crack in a solid is same as energy released during crack extension. The rate of change of this energy
with crack extension is SERR, which is generally denoted as G. Fig. 1 shows a crack tip in an
infinite isotropic media subjected to remote tensile loading causing mode | crack deformation.

The normal stress distribution ahead of the crack tip is oy,. Let the crack of length, ‘a’ be
extended by a small virtual increment of ‘Aa’. The crack opening displacement (COD) behind the
new crack tip is U, (haf of the total COD). The energy required to close the extended crack ‘Aa’
can be estimated as the work done by forces corresponding to the stress distribution, gy, on COD,
Uy. This can be expressed as

1Aa
Wzéjc:a U, dx @

oyy (r=x, 6=0)

U, (r=Aa-x, 6=n)

»x, Uy

1

E(nyuy)

(b) Closure of Virtual Crack (c) Work Done for Closure of
Virtual Crack

Fig. 1 Schematic of virtual crack extension (Mode I)
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The above CCI can be used to compute SERR, as

1 Aa
G = AaLE v2ra !)’ a,,U,dx ()]
Taking polar coordinate system (r, 8) with the origin at the crack tip in a 2-D domain and using

Eg. (2), SERR for mode | and Il cracks (G, and G;;) can be expressed as
Aa

G = AaLjoﬁgayy(r =X, 8=0)U,(r = da—x, 8= mdr ()

Aa

G, = AaL_FOZ_Aa-g Oy(r =%, 6=0)U,(r = Aa—x, 6= mdr 4

where g, (r = x, 6 =0) and gy, (r = x, 6 = 0) are distribution of stresses ahead of the crack tip.
Ux(r=Aa-x 6=m and U, (r =Aa-x, 6= r) are the relative sliding and opening displacements
between the crack faces and Aa is the virtual crack increment.

The problem is basically to evaduate SERR, represented as G = (dU/da). If one could do two
stages FEA, SERR can be obtained from the difference in strain energies for the configuration
corresponding to crack sizes ‘a’ and ‘a + Aa’. However, if ‘Aa’ is kept very small, one could use
the stress distribution ahead of crack tip and COD behind crack tip derived from single FEA to
evaluate MV CCI using Egs. (3) and (4). The evaluation of CCI by using the results obtained from
single FEA as a post-processing approach is known as MV CCI technique. The derivation of the
element dependent MV CCI equations for computing G, and G, involves evaluation of constants
used in the polynomia assumed to represent displacement and stress variation and evaluation of
many integrals. In view of these, the derivation of MV CCI equations becomes a tedious exercise for
higher order and singular 2-D and 3-D finite elements. NI-MV CCI technique proposed in this paper
involves numerical integration for computation of the constants and to evaluate the crack closure
integrals for G, and G, as given by Egs. (3) and (4). The numerical integration has to be carried out
in two stages. one for evaluating constants representing the stress distribution ahead of crack tip in
terms of nodal forces and the second to evaluate SERR itself.

Consider a typical FE mesh a the crack tip as shown in Fig. 2. The mesh shown consists of
quadrilaterals with n number of nodes on edge OA. For mode | crack, G, can be evaluated by
multiplying the stress distribution along OA (ahead of crack tip) with the corresponding
displacement distribution along OB (behind crack tip) and integrating this product over Aa. For
evaluation of G, the stress distribution along OA is expressed in terms of the nodal forces Fy,j, Fy, j:1,
etc. acting at the nodes |, j + 1, etc. respectively. The COD distribution aong OB is expressed in
terms of the nodal displacements a j, j — 1, (j — 1), etc. G, is derived by evaluating the energy
required to close the crack over alength ‘Aa’ in terms of these nodal forces and displacements. The
shape functions for elements (D and (2 along OB can be obtained by substituting n = -1, in the
respective element shape functions. Let these shape functions be N; and the general formulation for
any value of n would be as follows.

The COD distribution along OB can be expressed in terms of nodal displacements {(Uy)i} as

U, = [NJ{(U)} i1=1,..n (5)
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Fig. 2 Typical FE mesh of crack tip region

n = number of nodes on edge OA/OB

where n is the number of nodes on edge OA or OB of the respective element. Consistent with the
isoparametric formulation, coordinate of any point X(x, y) is given by

X=[INH{(X)} i=1...n (6)

where {(X);} are nodal coordinates. The transformation between the global and natural coordinate
system for the respective element can be obtained by using Eq. (6). Consistent with the element
shape functions, the displacement variation along OB can be expressed as function of &' for non-
singular elements as

U&) = ap+ané'+... +ap & " (78)

where Uy(¢') is a polynomial of order (n — 1). For 8-noded quarter-point element (QPE), the
displacement variation along OB can be expressed as

U(&) = ag+ay(1+ &) +ay(l+ &) (7h)

The congtants a, ay,...., &n-1y Can be evauated by matching the displacements at the nodes j, (j -1),
v =N+ 1) inelement . A set of Ssimultaneous equations of order n is formed, which can be
solved for obtaining the constants ag, ay,...., an-1)-

Considering element (2), stress (ay,) distribution dong OA can be expressed as a function of & for
non-singular elements as

0, (E) = bo+by &+ ... +by_yy E"Y (8a)

where gy,(¢) is a polynomial of order (n — 1). For 8-noded QPE element, stress distribution along
OA can be expressed as

Oy (&) = Do/ (1+ &)+ by+by(1+ ) (8b)
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The consgtants by, by,...., bn-1y can be computed by matching the nodal forces with the derived
consistent load vector from FE analysis. The nodal forces Fy j, Fy, (j+1),-..- Fy,(j+n-2 ShOWN in Fig. 2
are the forces exerted a node j, (j + 1),....., (j + n — 1) by the structure below OA on the structure
above OA. In FEA, these forces are obtained by summing up the forces a nodes j, (j + 1),...., (j +
n — 1) from the elements on the edge above OA. These forces should be consistent with the stress
distribution given in Eq. (8), which can be expressed as

Aa

Fi= [IN] 0 (dx i=1..,n ©)
0

where N; are shape functions of the respective element obtained by substituting n = -1. By using
the transformation between the global and natural coordinate system, dx can be expressed in terms
of d¢ (Eq. 6).

By substituting the expressions for displacement and stress variation given by Egs. (7) and (8)
respectively in CCI Egs. (3) and (4), G, and G, can be expressed as

1

G, 2AaI

ay(§)Uy(¢")dx (10)

Gy = Lt = j AOULE) o CEY

Hitherto, these integrals given are evauated in closed form for severa simple elements. But the
procedure becomes complicated for higher order elements and in particular for 3-D problems with
Hexa8, Hexa20 and Hexa27 solid elements. So, in the present study, Gauss integration technique
has been proposed for evaluating these integrals. For different finite elements employed in the basic
stress analysis, one may use different rules for integration. For non-singular elements the rule of
integration for accurate evauation of these integrals can be easily worked out depending on the
value of n. For example, Guass integration rule of 2, 3 and 4 will be required for 4-noded, 8-noded/
9-noded and 12-noded elements respectively. However, for 8-noded QPE, in view of the function
chosen for ay,(¢€) (Eq. 8(b)), the required Guass integration rule has to be arrived at by conducting
numerical studies.

As it can be observed from Egs. (5)-(11), the proposed NI-MVCCI is a generdized technique and
is independent of the type of finite elements used, except for assuming the appropriate expressions
for displacement and stress variation (Egs. (7) and (8)). In the present study, this new procedure is
demonstrated for 4-noded, 8-noded (regular and quarter-point), 9-noded and 12-noded elements.
Closed form MVCCI equations for computing G, and G,, for 4-noded and 8-noded (regular and
guarter-point) are presented in Table 1. It may be noted that the MVCCI equations for 9-noded
element will be same as that of regular 8-noded element. Closed form MV CCI equations for 12-
noded elements can easily be developed by procedures similar to that for 8-noded element. The
expressions for these elements for appropriate substitution in Egs. (5)-(11) for computation of SERR
using NI-MV CCI technique have also been presented in Table 1.
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Table 1 MV CCI equations and expressions required for evaluation of NI-MV CCI

fuittag?ws Displace- Stress
Relation ment - Displacement  |Relation
along edge - variation MVCCI
Element between | variation and force between -
OB(for edge (a(&)) - equations
x& & | (U(E) conditions £&E
OA replace aong OB along OA
&by )
U=0a é=-1 1
y_ ¢ y G = E[Fy‘j(Uy,J—l_Uy‘(l—l)’)]
1 , Aa , , U=U,,a é&=1 . a
4-noded 5(1+E &) —-5(1+E) atad bo+b:& F=F g é= §==£
e Gy = Se={Fu(Ug=Usgon)]
Fy = wal at 5 =1 " 20qt M R
liveayee Uy=0at &=-1
=(1+ i i y
2( i = "= — _1_ Fy,](Uy‘J—Z_Uy‘(J—Z)')+
(end nodes) Uy= U, &=0 G=5n] ]
8-noded/ —%(1‘%") a,+a,é’ by+b& | U,=U,a &=1 £t 2Aal F ;.4 (Uy,;1—U, )
9-noded 1(1_5,2) 2 +a,& +b,& Fyf F, a E:_—l G = L[F*'(U*‘J’Z_UX*I*Z)')T
(r2n|d node) Ey : :zyml 2 g:g ' 2nd Frjer(Usjor=Usgoy)
y y.j+2 -
V=17 Yy (-1
1 (¥4l d = =
§(1+5 &)¢é UUy_ U0 at ; . _10 +(C21|:yvl+C22Fyvj+1+C23FW2)J**
end nodes by/(1+ e B 1+8&y Uy, =Uy g
8-noded ( ) _A__a(1+5’)2 ata(1+<&) O/(+bl 9 U=U,_a&=1 +((1+?’)2 Uy v.6-21)
QPE | 1 soy |4 *a(l+d) | g BERead= T 1 [(CuFy*CuF, i+ CuF1.0)
(1-¢7) b.(1+8) 4 g =L
2 Fysz,Hlat{:O "7 2Ma U, ,—-U
(mid node) F=F,.aéf=1 (Usja=Usgoy)
+(C21Fx,]+C22FX,J+1+C23FX,J+Z)}**
(Ux‘le_Ux‘(rZ)’)
1 e U,=0at &=-1
—(1+ ! y
16( ¢ U,=U,, at §'=-1/3 1 Fyi(Uyis=Uygg)+
(_1+95’2) b.+b { Uy = Uy,l*Z at 5' =13 G = EZE Fy,1+1(Uy‘le_Uy,(rZ)‘)+
(end nodes) ! o™ Dy — - E.. _ ‘
12'n0ded —A_a(l"'f') aﬂtalf . +b252 Uy Uy,]*3 at 5 1 E - _E Y.i Z(Uy‘lfl Uy,(rl))
9 2 +a,¢" +a,¢' 3 F,=F,aé=-1
Ié(1+95'6') +b,& F.=F a&=-1/3 1 F.i(Usjs=Usg-g)+
y = Pyj+1 - __+ _ )
(1-&7) F,=F,..aé=13 G = ong| rinilUnieUeg-a)*
— - waz(ux‘rl_ux‘(lfl)’)
(mid nodes) F,=Fjaé=1

"~ Cy =332 - 52; Cpp = 17 — 21714; Cy3 = 2172 — 32; Cyy = 14 — 3371/8; Cpp = 217716 — 7/2; Cp3 = 8 — 21778

3. Numerical studies

Fracture analysis of 2-D crack (mode | and Il) problems has been conducted to vaidate the
proposed NI-MVCCI technique. Basic stress analysis of the plate has been carried out by employing
4-noded, 8-noded (regular and quarter-point), 9-noded and 12-noded finite elements. SERR has been
evaluated by using NI-MVCCI technique. For evaluating the integrals associated with NI-MVCCI
technique, Gauss integration technique has been used with rules of 2, 3 and 4 for 4-noded, 8-noded/
9-noded and 12-noded elements respectively, while for 8-noded QPE different rules have been
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employed. Plane gtrain conditions have been assumed at the crack tip to compute SIF by using
SERR value obtained using NI-MV CCI technique.

3.1 Example-1: Rectangular plate with center crack under uniaxial tension

A rectangular plate with center crack subjected to uniaxia tensile loading (mode 1) as shown in
Fig. 3 has been analysed to compute SERR and SIF at the crack tip. One quarter of the plate with
symmetric boundary conditions has been idedlized. FE idedlization of the plate usng 4-noded
element is shown Fig. 4. Table 2 presents SERR and SIF values obtained in the present study along
with the results obtained by usng MVCCI technique (closed form equations) and the finite plate
solution available in the literature (Rooke and Cartwright 1976). The variation of SIF with respect to
Aa/a and W/a is shown in Fig. 5.

tHtteeers tPHErtEIeEe
E=10000.0
v =20.0
2a t=1.0 a
s 20
a=2
VY
A Addadddds
(a) Center Crack (b) Edge Crack

Fig. 3 Rectangular plate under uniaxial tension

Fig. 4 FE Idedlization of rectangular plate (Quarter symmetry)
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Table 2 SERR and SIF for rectangular plate with center crack under uniaxial tension (Comparison for
different rules of Gauss integration for NI-MVCCI) (Aa/a = 0.05 and W/a = 5)

12-noded element

4-noded element | 8-noded element | 9-noded € ement 8-noded QPE

Gauss _ —
rule Aala =0.15 Aala = 0.05
G K G K, G K, G K, G K, G K
> 0.06529| 25.5524 | 0.10303 [32.09787| 0.09473 | 30.7777 | 0.04675 | 21.6224 | 0.33447 | 57.8336 | 0.36255 | 60.2120
(0.15)*
0.06531 | 25.5559 | 0.06539 | 25.5708 | 0.06612 | 25.7138 | 0.13197 | 36.3271 | 0.14124 | 37.5824
3 * *
(0.13) (0.08)
4 0.06578 | 25.6480 | 0.06579 | 25.6505 | 0.07160 | 26.7588
(0.24)* (4.57)*
5 0.06567 | 25.6253
6 0.06561 | 25.6151
7 0.06559 | 25.6097
8 0.06557 | 25.6069
9 0.06556 | 25.6050
10 0.06556 | 25.6038
(0.05)*
MVCCI|0.06529| 25.5524 | 0.06531 | 25.5559 | 0.06539 | 25.5708 | 0.06554 | 25.6005 | 0.06579 | 25.6505 | 0.07160 | 26.7588

K;: 25.59 — with finite plate correction (Rooke and Cartwright 1976), 25.07 — infinite plate solution.
* — 9% deviation from analytical K,

2800 — 28.00 —
4-noded

4-noded
8-noded

4'7
%
—>&—  8-noded
—3—  gnoded QPE
node N ~—K— &noded QPE
—&O— S-noded
—&—  g-noded
——  12-noded
—3—  12-noded

Infinite plate ;
Infinite plate

— e Rocke & Cartwright, 1976 -
26.00 o 26.00 -+ Rooke & Cartwright, 1976

K — & - ——
2400 — 24.00 —
W/a=5.0 Aa/a=0.05
2200 T T I T T ] 22.00 T T T ]
0.05 0.10 0.15 0.20 0.25 5.00 10.00 15.00 20.00
Aala Wra
(a) Variation w.r. to Aa/a (b) Variation w.r. to W/a

Fig. 5 Variation of SIF for rectangular plate with center crack (Mode 1)



740 G. S Palani, B. Dattaguru and Nagesh R. lyer

Table 3 SERR and SIF for rectangular plate with edge crack under uniaxial tension (Comparison for different
rules of Gauss integration for NI-MVCCI) (Aa/a = 0.05 and W/a = 5)

12-noded element
Gauss 4-noded dement | 8-noded element | 9-noded element |  8-noded QPE
rue Aala=0.1 Nala=0.05
G K G K G K G K G K G Ki
2 0.10917| 33.0411 | 0.20508 | 45.2856 | 0.17188 | 41.4578 | 0.07813 | 27.9509 | 0.52002 | 72.1124 | 0.76660 | 87.5558
(3.98)*
0.11529 | 33.9546 | 0.11577 | 34.0254 | 0.11724 | 34.2339 | 0.72711 | 85.2706 | 0.13669 | 36.9716
3 * “
(1.32) (1.12)
4 0.11666 | 34.1548 | 0.11839 | 34.4072| 0.12368 | 35.1681
(0.01)* (2.20)*
5 0.11646 | 34.1253
6 0.11636 | 34.1122
7 0.11632 | 34.1051
8 0.11629 | 34.1015
9 0.11628 | 34.0991
10 0.11626 | 34.0975
(0.92)*
MVCCI|0.10917| 33.0411 | 0.11529 | 33.9546 | 0.11577 | 34.0254 | 0.11623 | 34.0932 | 0.11839 | 34.4072 | 0.12368 | 35.1681

K): 34.41 — with finite plate correction (Rooke and Cartwright 1976), 28.08 — semi-infinite plate solution
* — 0% deviation from analyticd K

3.2 Example-2: Rectangular plate with edge crack under uniaxial tension

A rectangular plate with an edge crack subjected to uniaxial tensile loading (mode I) as shown in
Fig. 3(b) has been analysed to compute SERR and SIF at the crack tip. FE idealization as shown in
Fig. 4 has been used in the studies, considering half symmetry, with appropriate changes for the
boundary conditions. Table 3 presents SERR and SIF values obtained in the present study along
with the results obtained by using MV CCI technique and the finite plate solution available in the
literature (Rooke and Cartwright 1976). The variation of SIF with respect to Aa/a and W/a is shown
in Fig. 6.

3.3 Example-3: Rectangular plate with center crack under shear load

A rectangular plate with a center crack subjected to shear load (mode 11) has been analysed to
compute SERR and SIF at the crack tip. The plate geometry and attributes are the same as that of
example-1. FE idedlization as shown in Fig. 4 has been used in the studies, considering quarter
symmetry, with appropriate changes for the loading and boundary conditions. Table 4 presents
SERR and SIF vaues aobtained in the present study along with the results obtained by using
MVCCI technique and the finite plate solution available in the literature (Rooke and Cartwright
1976). The variation of SIF with respect to Aa/a and W/a is shown in Fig. 7.
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36.00 —

34.00

3200 —
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=
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—o—
e

Semi-infinite piate

Wa=50 . Rocke & Cartwiight, 1976 %

—+— 4-noded
—>&—  g-noded
Aala=0.05 —3K— &noded QPE
—&—  S-noded
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K; 4 NN e Rooke & Cartwright, 1976

28.00 —

26.00 T T T
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(a) Variation w.r. to Aa/a

\ 26.00 1 ' T ' r
0.25 5.00 10.00 15.00 20.00

Wia

(b) Variation w.r. to W/a

Fig. 6 Variation of SIF for rectangular plate with edge crack (Mode I)

Table 4 SERR and SIF for rectangular plate with center crack under shear load (Comparison for different
rules of Gauss integration for NI-MVCCI) (Aa/a = 0.05 and W/a = 20)

Gauss | 4-noded element 8-noded element 9-noded element 8-noded QPE 12-noded eement

e | g, K Gy Ky Gy K Gy Ky Gy Ky

2 0.06123 %11158;1*1 0.10205 | 31.9454 | 0.09863 | 31.4059 | 0.07965 | 28.2225 | 0.33862 | 58.1913

3 0.06101 | 24.7001 | 0.06206 | 24.9109 | 0.06108 | 24.7152 | 0.25891 | 50.8831

(L.48)* (0.63)*

4 0.06095 | 24.6894 | 0.05874 | 24.2372

(3.32)*
5 0.06089 | 24.6768
6 0.06087 | 24.6719
7 0.06086 | 24.6691
8 0.06085 | 24.6677
9 0.06085 | 24.6668
10 0.06084 | 24.6662
(L61)*

MVCCI| 0.06123 | 24.7441 | 0.06101 | 24.7001 | 0.06206 | 24.9109 | 0.06083 | 24.6645 | 0.05874 | 24.2372

Kii: 25.10 — with finite plate correction (Rooke and Cartwright 1976), 25.07 — infinite plate solution

* — 0p deviation from analytical K,
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------------- Rooke & Cartwright, 1976
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24.00 —| \\ 24.00 —
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W/a 20.0
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0.05 0.10 015 0.20 0.25 5.00 10.00 15.00 20.00
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(a) Variation w.r. o Aa/a (b) Variation w.r. to W/a
Fig. 7 Variation of SIF for rectangular plate with center crack (Mode I1)

3.4 Discussion of results

It is observed from the studies that SIF computed in the present study by employing NI-MV CCI
technique along with 4-noded, 8-noded, 9-noded and 12-noded elements are generaly in close
agreement with the reference solutions for all the problems considered. In all the cases, except for
singular QPE, NI-MVCCI technique serves the purpose of performing MVCCI exactly with
appropriate rules of Gauss integration. NI-MV CCI technique using 9-point integration along with 8-
noded QPE at the crack tip produced results within 1% of the reference solution for all the cases.
For this element, lower order of integration is acceptable if one is willing to accept higher deviation
with respect to reference solution.

NI-MV CCI technique shows excellent convergence for 4-noded, 8-noded and 9-noded elements as
Aala - 0. It isinteresting to note that 9-noded element performs well and cornverges faster than the
other two elements to the reference solution as Aa/a — 0. 9-noded Lagrangian element was not used
much in the past, but the present study shows that it performs better than 8-noded Serendipity
element. This can be attributed to better stress recovery with 9-noded element. 12-noded element
shows a significant deviation (3 to 4 percent) from reference solution as Aa/a — 0. Here too, the
reason appears to be inaccurate stress recovery in 12-noded isoparametric element. In al the cases
the infinite plate solutions are achieved for W/a is of the order of 20.

4. Conclusions

NI-MVCCI technique for computing SERR and SIF using for 2-D crack problems has been
proposed. NI-MVCCI is a generalized technique and will remove the dependence of MVCCI
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equation on the type of finite elements employed in the basic stress analysis. NI-MVCCI is a post-
processing technique to FEA for computing SERR and SIF. The efficacy of NI-MVCCI technique
has been demonstrated for 4-noded bilinear, 8-noded Serendipity (regular & quarter-point), 9-noded
Lagrangian and 12-noded cubic isoparametric finite elements. Based on the numerical studies
conducted on cracked plate panels the following conclusions are drawn:

» SIF computed in the present study by employing 4-noded, 8-noded (regular & quarter-point), 9-
noded and 12-noded elements generally compare well with the reference solutions.

* For 8-noded QPE Gauss integration rule of 9 is recommended for evaluation of SERR and SIF
within 1% accuracy using NI-MVCCI technique.

» As Aa/a - 0, results with 8-noded (regular and QPE) and 9-noded elements converge well to
the reference solution. Post-processing from the results with 9-noded element is superior
compared to 4-noded, 8-noded (regular) and 12-noded elements.

* In genera SIF obtained employing 8-noded (regular and QPE) and 9-noded elements converge
to the analytical solution for an infinite plate as W/a is of the order of 20. SIF obtained
employing 4-noded element has about 2% deviation from the infinite plate solution for Wa =
20.

* There is scope for development of NI-MVCCI technique for 3-D crack problems and cracked
gtiffened and unstiffened plate/shell structural components subjected to bending and shear loads.
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