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Abstract. This paper explores the potential use of neural networks (NNs) in the field of contact
mechanics. A neural network model is developed for predicting, with sufficient approximation, the contact
lengths between the elastic layer and two elastic circular punches. A backpropagation neural network of
three layers is employed. First contact problem is solved according to the theory of elasticity with integral
transformation technique, and then the results are used to train the neural network. The effectiveness of
different neural network configurations is investigated. Effect of parameters such as load factor, elastic
punch radii and flexibilities that influence the contact lengths is also explored. The results of the
theoretical solution and the outputs generated from the neural network are compared. Results indicate that
NN predicted the contact length with high accuracy. It is also demonstrated that NN is an excellent
method that can reduce time consumed. 
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1. Introduction

The human brain is the most sophisticated biological neural network which is often much more
efficient, adaptable and tolerant than conventional computers in the fields of recognition, control and
learning. Neural networks are intended to mimic the behavior of biological learning and decision
making process without trying to be biologically realistic in detail. Artificial neural networks
represent simplified models of human brain.

There are two principal functions of artificial NNs. One is the input-output mapping or feature
extraction. The other is pattern association or generalization. The mapping of input and output
patterns is estimated or learned by the NN with a representative sample of input and output patterns.
The generalization of the NN is an output pattern in response to an input pattern based on the
network memories that function like the human brain. Therefore, a NN can learn patterns from a
sample data set and determine the class of new data based on previous knowledge. NNs derive its
computing power through its massively parallel distributed structure. Important characteristic that
artificial NN share with biological neural system is fault tolerance. NNs can be designed to be
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insensitive to small damage to the network and the network can be retrained in cases of significant
damage.

Because of technology’s enormous potential, an increased number of researchers have
concentrated their efforts on neural networks. Several articles have summarized neural networks and
their potential. Many impressive results have been produced. Several authors have used NNs in
engineering applications.

Anderson et al. (1997) performed a series of tests and results have been used to train an artificial
neural network (ANN) to predict bi-linear moment-rotation characteristics for minor-axis beam-to-
column connections that govern restraint to the columns against buckling. A method to predict 28-
day compressive strength of concrete by using multi-layer feed-forward neural networks was
proposed based on the inadequacy of present methods dealing with multiple variable and nonlinear
problems by Hong-Guang and Ji-Zong (2000). The authors collected the data from extensive and
detailed laboratory work. They chose 14 test parameters (inputs) to be the factors that influence the
concrete strength (output). Another study on concrete strength prediction by means of neural
network is done by Lai and Serra (1997). They developed a model for predicting the compressive
strength of cement conglomerates. Seibi and Al-Alawi (1997) explored the potential use of artificial
neural networks in the field of fracture mechanics. They used an ANN model to predict the fracture
toughness Kc of an aluminum alloy based on experimental data and developed relationships between
Kc and crack geometry, specimen dimensions and operating temperature. A NN approach is
developed to determine the crack opening load from differential displacement signal curves by Kang
and Song (1998). In order to examine the measurement accuracy and precision of the NN method,
they performed computer simulation for various combinations of crack opening levels and signal-to-
noise ratios. Chandrashekhara et al. (1998) developed a method to determine the contact force on
laminated composite plates subjected to low velocity impact using the FEM and a NN. They trained
the NN using the contact force and strain histories obtained from finite element simulation results. 

The effectiveness of different neural network configurations for estimating contact force is
investigated. Goh (1994) presented a neural network to predict the friction capacity of piles in clays.
The neural network was trained with field data of actual case records. Shahin et al. (2000) explored
the possibility of using NNs to predict the settlement of shallow foundations on cohesionless soils.
In this work data records were used for modeling. The results of the ANN were compared with
three of the most commonly used traditional methods. Ural and Saka (1998) used NNs to analyse
liquefaction. A NN model for detection of natural periods of vibrations of prefabricated, medium
height buildings proposed by Ku niar et al. (2000). They also used NN technique to simulate
dynamic response at selected floor of one of the analysed buildings subjected to seismic loading
induced by explosives in a nearby quarry. Both the training and testing patterns were formulated on
the basis of measurements performed on actual structures. Waszczyszyn and Bartczak (2002) used
NNs for predicting the buckling loads for axially compressed cylindrical shells with initial
geometrical imperfections. Study based on the measured imperfections and tests on laboratory shell
specimens gathered in the Imperfection Data Bank at the DELFT University of Technology. Lee and
Han (2002) developed an efficient NN based models for the generation of artificial earthquake and
response spectra. They proposed five NN based models for replacing traditional processes. They
showed that the procedure using NN based models is applicable to generate artificial earthquakes
and response spectra.

In this study, a NN approach is proposed dealing with the solution of frictionless contact problem
of an elastic layer loaded by means of two circular elastic punches. A method is presented to
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determine contact lengths automatically using a NN that is capable of learning by training. First,
contact problem is solved according to the theory of elasticity with integral transformation
technique, then the data set obtained from the first solution is used to train ANN.

2. Contact problem

A way of choosing the patterns representing the characteristics of the structure which are to be used
as the input to neural network is one of the most important subjects in this approach. The patterns for
NN were prepared according to the theory of elasticity with integral transformation technique.

General methods for the solution to the classical contact problems are given by Galin (1961) and
Ufliand (1965). Many researchers also made important contributions to the solution of special
contact problems with improvements in computer technology and developments in new solution
techniques. Contact problems have applications in a variety of structures of practical interests.
Railways, roads, foundations, tanks, silos, rolling mills, balls and rolling bearings are some
application areas of contact problems in engineering mechanics.

A long layer has been one of the most widely studied problems in contact mechanics. The
importance of the problem lies in the fact that its geometry approximates a very common structural
component. The elastic layer which is resting on an elastic or rigid foundation is considered in
(Erdogan and Ratwani 1974, Civelek and Erdogan 1975, Geçit and Gökp nar 1985, Dempsey et al.
1990, Jaffar 1993). The examples for the contact problems which the load is transmitted to the
elastic layer by the rigid or elastic punches can be found in (Civelek and Erdogan 1974, Adams and
Bogy 1976, Artan and Omurtag 2000, Lan et al. 1996). In (Geçit 1986), friction isn’t taken into
account. The separation between contact surfaces are examined in (Birinci and Erdol 2003,
Comez et al. 2003, Birinci and Erdol 2001, Çak ro lu et al. 2001).

i
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Fig. 1 Elastic layer loaded by means of two elastic circular punches 
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A homogeneous, isotropic, elastic layer of thickness h loaded by means of two circular elastic
punches is considered according to the theory of elasticity (Fig. 1). The magnitude of the load
applied to the elastic layer by each punch is 2P. Although the elastic layer lies through the region

, because of a plane of symmetry, the calculations are done in the region . 
The contact problem is solved under the assumptions that the contact along the interfaces are

frictionless and only compressive normal tractions can be transmitted across the contact surfaces,
and the local radii of the curvatures R1 and R2 of the elastic punches are sufficiently large compared
to the length of contacts so that in expressing the surface displacements of the punches in the
contact areas in terms of the contact pressures P1(x) and P2(x), the mediums 2 and 3 may be
approximated by elastic half-planes (Civelek and Erdogan 1974).

Displacements of each elastic media expressed as the Fourier sine and Fourier cosine transforms
of the unknown functions. Necessary derivatives of these functions are substituted into Navier
equations and an ordinary differential equation system is obtained. This equation system is solved
and general expressions for displacements and stresses are determined in terms of unknown
constants. Unknown constants are determined from the following boundary conditions;
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Displacement and stress expressions are substituted into boundary conditions (1)-(8) and unknown
constants are determined in terms of functions P1(x) and P2(x).

After some simple manipulations, one may obtain the following pair of singular integral equations
from boundary conditions (9) and (10).

(13)

(14)

where   are the Fredholm kernels of singular integral
equations and they are given in the Appendix. µi and κi  are the elastic constants,

 for plane strain,  for plane stress, γi is the Poisson’s ratio. γi

is taken 0.2~0.3 in this study. The elastic layer is in equilibrium so one has 

(15)

(16)

As , it is seen that kernels  behave as α−1, therefore Fredholm kernels in
Eqs. (13) and (14) involving the integrals of  are not bounded. On the other
hand, assuming ε to be very small, kernels may be written in the following form.

(17)

and kernels  are replaced by their series expansions around α = 0 in Eqs. (13)
and (14) (Civelek and Erdogan 1974). 

Index of the integral Eqs. (13) and (14) are −1, hence the solution of singular integral equations
may be expressed as 
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replaced by the following algebraic equations
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3. Neural network approach 

The human brain is the most complex computing device known to man. The brain’s powerful
thinking, remembering and problem solving capabilities have inspired many scientists to attempt
computer modeling of its operations. The brain consists of billions of neurons which are densely
interconnected. Each neuron is a micro-processing unit built up of three parts; the cell body, the
dentrites and the axon. The axon splits up and connects to dentrites of other neurons through
junctions referred to as synapses. A neuron receives and combines signals from other neurons
through the dentrites, and if the combined signal is strong enough, it causes neuron to fire producing
an output signal. The output signal travels along the axons to other receiving neurons. The magnitude
of the signal sent depends on the amount of chemicals released by the axon and received by the
dentrites. The synaptic efficiency or strength is what is modified when the brain learns.

In an artificial neural network, the basic unit called the artificial neuron or the processing unit may
have several input paths, corresponding to dentrites. The unit combines, usually by a simple
summation, the weighted values of these input paths. The result is an internal activity level for the
unit. The combined values are then modified by a transfer function. The output value of the transfer
function is generally passed directly to the output path of the unit. The output path of a unit may be
connected to the input path of other units through connection weights which correspond to the
synaptic strength of the biological neural connections. Each connection has a corresponding weight
where the signals on the input lines to a unit are modified or weighted prior to being summed. The
summation function is a weighted summation. Fig. 2 shows the basics of an artificial neuron.

Units are usually organized into groups called layers. Basically, all artificial NNs have a similar
structure of topology. Only two layers bound the network; The input layer consists of neurons that
receive input from the external environment and the output layer where the response of the network
to given input is produced. Layers other than these two are hidden layers. 

As opposed to classical algorithm, a NN is not programmed but is taught. Learning is to modify
the variable connection weights on the inputs of each processing element in order to achieve some
desired results for a given set of inputs. There are two types of learning; supervised and
unsupervised. In the case of supervised learning, the actual output of a NN is compared to the
desired output. Weights are then adjusted by the network so that the next iteration will produce a
closer match between the desired and the actual output. The learning method tries to minimize the
current errors of all processing elements. This global error reduction is created over time by
continuously modifying the input weights until acceptable network accuracy is reached.

Fig. 2 Artificial neuron
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The most popular supervised learning approach is multi layer perceptron (MLP) architecture. The
MLP learns via a process called backpropagation (BP) shown in Fig. 3.

BP is a systematic method for training MLP. Basically the idea is to measure error across the
output units and then to propagate the error backwards through the network making necessary
weight changes at each layer of units, including hidden layers. The learning rule associated with this
model is known as the generalized delta rule.

Training a network by backpropagation involves three stages; the feedforward of the input training
pattern, the backpropagation of the associated error, and the adjustment of weights. The BP
algorithm is given briefly as follows;

Each input unit  receives input signal xi and broadcasts this signal to all units in
the hidden layer. Each hidden unit  sums its weighted input signals as 

 (25)

where vij is the weight on connection from input layer unit Xi to hidden layer unit Zj. v0j indicates
the bias on hidden layer unit j. Bias acts like a weight on a connection from a unit with a constant
activation of 1. Then each hidden unit applies its activation function to compute its output signal

. One of the most typical activation function which is also used in this study is the
binary sigmoid function which has the range [0, 1] and is defined as 

(26)

Hidden layer unit sends this signal to all units in the output layer. Each output unit
 sums its weighted input signals in the following form
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Fig. 3 The architecture of BP network model
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(27)

where wjk is the weight on connection from hidden layer unit Zj to output layer unit Yk. w0k is the
bias. Afterwards, output unit applies its activation function to compute its output signal

. This process is called feedforward.
Each output unit  receives a target pattern  corresponding to

the input training pattern, and computes its error information term as follows,

(28)

Output units calculates its weight correction term using δk as

(29)

and it sends δk to units in the hidden layer. The quantity α is the learning rate and is used to
dampen out predicted changes in weighting factors. Each hidden unit  sums its
delta inputs as follows, 

(30)

and multiplies  by the derivative of its activation function to calculate its error information term
δj as 

(31)

Hidden unit uses δj to calculate its weight correction term in the following form

(32)

This process is called backpropagation.
Then each output unit  and hidden unit  updates their biases and
weights ,   with momentum as follows respectively.
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where η is the momentum parameter. New weights for training step (t + 1) are based on the weights
at training steps t and t − 1. Training process stops when a given number of epochs elapse or when
the error reaches an acceptable level or when the error stops improving. The most common output
error to be minimized is known as the total sum squared error (TSSE) and given as 

(35)

where k is the number of elements in the output layer, and p is the input pattern number (Fausett
1994). The foregoing algorithm used in this study updates the weights after an epoch is presented.
Epoch is one cycle through the entire set of training patterns.
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4. Construction, teaching and testing of neural network

The main objective of the work is to investigate the ability of NNs in predicting contact lengths a/h
and d/h automatically by using the BP paradigm. Data for the purpose of training were obtained
from the theoretical solution previously summarized. 

It is important to choose the proper network size. If the network is too small, it may not be able
to represent the system adequately. On the other hand, if the network is too big, it becomes over-
trained and may provide erroneous results for untrained patterns. In general, it is not straightforward
to determine the best size of the networks for a given system. As shown in Fig. 3, a three-layer
network is selected for the present study. Each layer is connected to the next but no connections
exist between neurons on the same level. The number of neurons in the first and third layers, which
contain input and output data respectively, are predetermined and depends on the problem at hand.
There are 5 nodes in the input layer corresponding to the 5 variables. These variables are the
following:

µ2/µ1 : Ratio of shear modulus of lower elastic punch to elastic layer.
µ3/µ1 : Ratio of shear modulus of upper elastic punch to elastic layer.
µ1h/P : Load factor.
R1/h : Ratio of radius of upper elastic punch to elastic layer height.
R2/h : Ratio of radius of lower elastic punch to elastic layer height.

The input parameter ranges used in this study are presented in Table 1. 
Various combinations of these parameters are used to obtain 400 different patterns from

theoretical solution. They are split into the training, testing and validation patterns of the numbers
L = 237, T = 123, V = 40, respectively. Input values and the desired outputs of the validation set are
given in Table 2.

Data preprocessing is also known as data normalization. Raw data needs to be preprocessed into a
range that can be accepted by the network. A sigmoidal transfer function is used within the
network. Upper and lower limits of output from a sigmoid transfer function are 1 and 0 respectively.
Scaling of the inputs to the range [0,1] greatly improves the learning speed, as these values fall in
the region of the sigmoid transfer function. So each group of input and output values are normalized
into range [0.1, 0.9] as,

Normalised Value = (36)

The definition of network size is a compromise between generalization and convergence.
Convergence is the capacity of the network to learn the pattern on the training set and generalization

Raw Value Minimum Value–
Maximum Value Minimum Value–
-------------------------------------------------------------------------------------- * 0.9 0.1–( ) 0.1+

Table 1 Input parameters used for training and testing in this study

µ3/µ1 µ2/µ1 R1/h R2/h

0.52
1.65
2.8
5

0.52
1.65
2.8
5

10
100

1000

10
100
1000

100
250
500
1000
1500

µ1

P h⁄
---------
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Table 2 Validation patterns 

Input parameters Desired outputs

No µ2/µ1 µ3/µ1 R1/h R2/h a/h d/h

1 0.52 0.52 10 100 250 0.34965 0.91270
2 0.52 0.52 100 1000 500 0.81880 1.50450
3 0.52 0.52 1000 1000 250 3.26270 3.26270
4 0.52 1.65 10 10 1500 0.10814 0.14050
5 0.52 1.65 10 1000 1000 0.13370 1.10000
6 0.52 1.65 100 100 100 1.22697 1.38080
7 0.52 2.8 10 100 500 0.15952 0.69250
8 0.52 2.8 100 1000 100 1.44600 2.11400
9 0.52 2.8 1000 1000 1500 0.89580 1.17770
10 0.52 5 10 10 100 0.32102 0.51860
11 0.52 5 10 1000 250 0.21715 1.51949
12 0.52 5 100 1000 1500 0.27736 1.07203
13 1.65 1.65 10 100 1500 0.10064 0.30234
14 1.65 1.65 100 100 500 0.50150 0.50150
15 1.65 1.65 1000 1000 250 1.97430 1.97430
16 1.65 2.8 10 10 250 0.23870 0.25560
17 1.65 2.8 10 1000 500 0.17523 0.93401
18 1.65 2.8 100 1000 1000 0.38380 0.84900
19 1.65 5 10 10 500 0.16310 0.18400
20 1.65 5 100 100 1500 0.28707 0.32330
21 1.65 5 1000 1000 1000 0.95400 1.01970
22 2.8 2.8 10 100 100 0.34956 0.76440
23 2.8 2.8 10 1000 1500 0.08679 0.66130
24 2.8 2.8 100 100 500 0.45678 0.45678
25 2.8 5 10 10 1000 0.10556 0.11240
26 2.8 5 100 1000 250 0.65375 1.08910
27 2.8 5 1000 1000 100 2.64950 2.66470
28 5 5 10 100 1000 0.10573 0.31108
29 5 5 10 1000 500 0.15002 0.79310
30 5 5 100 100 100 0.83950 0.83950
31 0.52 1.65 100 10 1000 0.38417 0.17196
32 0.52 5 100 10 100 0.75260 0.53750
33 1.65 5 100 10 500 0.44620 0.18510
34 2.8 2.8 100 10 250 0.57090 0.22284
35 2.8 5 100 10 1500 0.26000 0.09213
36 0.52 0.52 1000 100 500 1.50450 0.81880
37 0.52 1.65 1000 100 1000 0.88650 0.53602
38 1.65 5 1000 100 100 1.47000 1.22100
39 2.8 5 1000 100 250 1.02900 0.68020
40 5 5 1000 100 1500 0.62981 0.26816

µ1

P h⁄
---------
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Table 3 Comparison of different neural networks 

Number 
of hidden
layer unit

α η Cycle Epoch
Min Train 

error 
(%)

Min Test 
error
(%)

Max 
Relative 

error (%) in
validation set

Average 
Relative 

error (%) of 
validation set

10 1 1 5 500000 1.03588 1.15154 43.554 8.304
15 1 1 8 11085 0.48099 0.74471 21.578 6.489
20 1 1 10 443975 0.13828 0.58884 45.993 4.177
30 1 1 15 50410 0.05710 0.56878 14.581 3.179
40 1 1 20 22512 0.05538 0.56878 18.032 3.042

10 0.5 1 5 149092 1.03778 0.88653 67.083 10.858
15 0.5 1 8 500000 0.21168 0.84270 5.2390 1.569
20 0.5 1 10 75074 0.18074 0.63826 42.309 4.609
30 0.5 1 15 67109 0.06860 0.84406 26.596 4.075
40 0.5 1 20 145324 0.02364 0.59734 13.975 2.859

10 0.1 1 5 500000 0.80052 1.40933 39.582 8.664
15 0.1 1 8 500000 0.25988 0.86270 29.770 5.579
20 0.1 1 10 205569 0.19789 0.75797 27.755 5.114
30 0.1 1 15 375440 0.04634 0.63018 22.026 3.296
40 0.1 1 20 500000 0.02231 0.80483 16.478 3.141

10 1 0.5 5 500000 0.93049 1.28459 51.062 8.389
15 1 0.5 8 61854 0.33814 0.68933 29.706 6.019
20 1 0.5 10 12619 0.35253 0.81978 31.039 6.159
30 1 0.5 15 61854 0.04308 0.63956 14.654 3.158
40 1 0.5 20 41832 0.03460 0.75345 18.452 1.802

10 1 0.1 5 356231 0.72356 0.97216 33.319 7.232
15 1 0.1 8 168005 0.24018 0.77819 32.641 4.847
20 1 0.1 10 251463 0.12320 0.67559 20.770 3.458
30 1 0.1 15 132071 0.05104 0.67955 21.761 3.687
40 1 0.1 20 67348 0.03211 0.57893 11.947 2.903

10 0.1 0.1 5 71909 1.15616 1.33406 56.612 10.812
15 0.1 0.1 8 453265 0.26353 0.78401 22.114 4.492
20 0.1 0.1 10 500000 0.15294 0.73499 28.600 4.555
30 0.1 0.1 15 169615 0.15938 0.76725 26.482 4.326
40 0.1 0.1 20 500000 0.03792 0.54971 15.892 3.314

10 0.5 0.5 5 258533 1.14453 1.79287 40.186 7.907
15 0.5 0.5 8 187903 0.23228 0.79429 27.137 5.063
20 0.5 0.5 10 281288 0.15075 0.56211 25.216 4.743
30 0.5 0.5 15 81718 0.06993 0.72324 25.729 3.891
40 0.5 0.5 20 33680 0.11831 0.75472 27.631 3.831
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is the capacity to respond correctly to new patterns. The idea is to implement the smallest network
possible, so it is able to learn all patterns and at the same time provide good generalization. As for
the number of hidden layer, it is well said that one hidden layer is sufficient for most usual
applications, Thus only one hidden layer is used in this study. Determining the number of nodes to
include in the hidden layer is not an exact science, so network is tested for different number of
hidden layer nodes. As it is seen from Table 3, 10, 15, 20, 30 and 40 nodes are used in the hidden
layer to find the optimum number of hidden layer nodes. 

During the training process, all the training patterns are introduced to the network and
corresponding outputs are obtained. Then the network error E is computed according to formula
(35) and the increments of generalized weights are computed by formulas (33) and (34). The choice
of initial weights will influence the net reaches a global minimum of the error and, if so, how
quickly it converges. As mentioned earlier the update of the weight between two units depends on
both the derivative of the upper unit’s activation function and the activation of the lower unit. For
this reason, it is important to avoid choices of initial weights that would make it likely that either
activations or derivatives of activations are zero. In this study, the weights are initialized into
random values between −0.5 and 0.5, a procedure commonly accepted.

Factors α and η in Eqs. (33) and (34) also influence the convergence. α, the learning rate, is the
constant of proportionality of the generalized rule. The larger the value is, the greater the changes
are in weights. Three different α values 0.1, 0.5 and 1 are introduced to network for training. η, the
momentum term, which is used to smooth out the weight changes to prevent network training from
oscillating is chosen as 0.1, 0.5 and 1. Different combinations of selected values of α and η are
tried for good convergence of the neural network (Table 3).

The level of convergence in training is monitored using TSSE of training and testing patterns
separately. It is seen from Fig. 4 that, as the TSSE of training patterns falls, the TSSE of testing
patterns initially falls and then rises. The rise is due to the net overfitting where it simply learns the

Fig. 4 Total sum squared error of training and testing patterns of two neural networks: NN 5-15-2 α = 1 η = 1,
NN 5-40-2 α = 1 η = 1 with epochs
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training pattern, but is no longer able to generalize to predict any new patterns. This can be avoided
by making sure that training set is large enough, and by setting some stopping criteria for the
training process. So each of the training patterns is used once first then 5 times in an epoch for each
NN model. Finally NN is trained with a group of training patterns which are nearly 15 times the
total weight number. 4th column (Cycle) in Table 3 shows how many times training set is repeated
in an epoch to get a group of training patterns which are nearly 15 times the total weight number.
The patterns are presented to each epoch in the same order.

After the learning set of data presented to the NN model, we stopped the learning process when
the epochs reached 500000 and determined what epoch number gives the minimum TSSE of testing
set given in 5th column of Table 3 for various NN alternatives. 

5. Results and discussion

It is found that there is a trade off between the performance of a network and time consumed.
Generally, the performance of a network is found to increase with the suitable increase in the
number of samples, epochs (learning time) and the number of hidden layer nodes. Meanwhile, the
increase of these parameters also increases consumed time.

It is seen from the Table 3 that although the smallest train error is obtained from the network 5-
40-2 with α = 0.1 and η = 1, the smallest test error is obtained from the network 5-40-2 with
α = 0.1 and η = 0.1, so it may be said that besides hidden layer nodes, epochs and number of
samples, learning rate α and momentum term η influence network to provide good generalization
too much. Network 5-40-2 with α = 1 and η = 0.5 has quite a good generalization. Even if the
maximum relative error in the validation set is 18.45%, relative errors of the other validation
patterns are smaller than 10% and the average relative error of the validation set is 1.8%. Relative

error listed in Table 3 is calculated as *100 where ONN and Oactual are the computed

and theoretically determined contact lengths, respectively. The smallest maximum relative error in
validation set is obtained from the network 5-15-2 with α = 0.5 and η = 1 as 5.23%. The average
relative error of validation set in this case is 1.56%. It is the smallest network with the best
generalization. Thus network 5-15-2 with α = 0.5 and η = 1 is accepted as the optimum network
model to find contact lengths a/h and d/h. Maximum relative error may be reduced if stopping
criteria, epoch number, is increased. 

Besides, conjugate gradient or scaled conjugate gradient methods may be used to reduce
maximum relative error instead of generalized delta rule in learning. Also different network
structures with one or more hidden layers or nodes with different learning rates and momentum
terms may produce smaller error. 

We used the validation set to evaluate the confidence in the performance of the trained network.
40 validation vectors are used to test the NN model. Fig. 5 is an expression of the learning results
of network 5-15-2 with α = 0.5 and η = 1, each point standing for a validation vector. The nearer
the points gather around the diagonal, the better are the learning results. The relative errors of the
points on the diagonal are zero.

Once trained well, the NN model is able to quickly estimate the corresponding output for any
given input. Although time consumed for learning of network 5-15-2 with α = 0.5 and η = 1 is

erel 1
ONN

Oactual

--------------–=
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18000 seconds in a personal computer (PC), trained network responds any given input in 5 seconds
in the same PC. The trained NN model is used to simulate the effect of some factors on the contact
lengths a/h and d/h, and the results are compared with the theoretical solutions. 

Table 4 shows the effect of load factor µ1h/P on contact lengths a/h and d/h for µ2/µ1 = 1.65 and
µ3/µ1 = 5. Elastic punches radii are equal . As load factor increases contact
lengths a/h and d/h decrease. Load factor values are selected different from those in the test, train
and validation sets. Maximum relative error is obtained as 3.65%.

Table 5 shows the changes in contact lengths a/h and d/h with elastic punches radii R1/h and R2/h.
Flexibilities of the elastic punches are equal . The load factor value is
µ1h/P = 1000. It is seen from the Table 5 that as elastic punch radius increases, while the other

R1 h⁄ R2 h⁄ 100= =( )

µ2 µ1⁄ µ3 µ1⁄ 2.8= =( )

Fig. 5 Comparison of contact lengths obtained from the NN 5-15-2 with α = 0.5, η = 1 and theoretical
solution 

Table 4 Effect of load factor µ1h/P on contact lengths generated by the neural network and from theoretical
solution (µ2/µ1 = 1.65, µ3/µ1 = 5, R1/h = 100, R2/h = 100)

a/h d/h

Actual 
Output

Output 
from the 

NN

Actual 
Output

Output
from the

NN

150 0.794702 0.783145 1.454 0.864697 0.881533 1.947
350 0.548151 0.528094 3.658 0.608997 0.615945 1.140
450 0.491243 0.475700 3.164 0.547638 0.556008 1.528
650 0.417897 0.406901 2.631 0.46800 0.472958 1.059
750 0.392199 0.38188 2.631 0.439902 0.441502 0.363
1250 0.311953 0.309156 0.896 0.350951 0.345152 1.652

µ1

P h⁄
--------- erel 1

ONN

Oactual

-------------– *100= erel 1
ONN

Oactual

-------------– *100=
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punch radius R/h = 1000 is fixed, contact length under that punch increases. Maximum relative error
is 12.7%.

Changing in contact lengths a/h and d/h with different values of elastic constant µ3/µ1 is given in
Fig. 6. Both elastic punches radii are equal . Load factor 
is fixed. As upper punch rigidity increases contact lengths a/h and d/h decrease and approach to
constant values. This situation is more apparent in Fig. 6(b). µ3/µ1 values are selected different from
those in the test, train and validation sets. Maximum relative error is 4.70%.

Variation of the contact lengths a/h and d/h with load factor µ1h/P is also given in Fig. 7. Lower
and upper elastic punch flexibilities are µ2/µ1 = 0.61 and µ3/µ1 = 2 respectively. While upper punch

R1 h⁄ R2 h⁄ 1000= =( ) µ1h P⁄ 1000=

Table 5 Effect of punches radii on contact lengths generated by the neural network and from the theoretical
solution (µ2/µ1 = 2.8, µ3/µ1 = 2.8, µ1h/P = 1000) 

R/h

a/h d/h

Actual 
Output

Output 
from the 

NN

Actual 
Output

Output
from the

NN

R1/h
60 0.27359 0.23884 12.701 0.75220 0.75543 0.429
75 0.30475 0.28011 8.084 0.75674 0.75853 0.236
150 0.42299 0.46570 10.095 0.77630 0.77226 0.468

R2/h
600 0.86410 0.90986 5.295 0.76429 0.84297 10.293
750 0.88560 0.92476 4.422 0.82840 0.87047 5.079
850 0.89724 0.92055 2.597 0.86564 0.89169 3.008

erel 1
ONN

Oactual

-------------– *100= erel 1
ONN

Oactual

-------------– *100=

Fig. 6 Effect of elastic constant µ3/µ1 on contact lengths generated by the neural network and from the
theoretical solution µ2 µ1⁄ 0.61= R1 h R2 h 1000=⁄=⁄ µ1h P⁄ 1000=, ,( )
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radius is R1/h = 750, lower punch radius is R2/h = 900. In this case, none of the variables is same as
those presented to the network training or testing. As mentioned before, contact lengths decrease
with µ1h/P increment. Maximum relative error is 7.38%. 

6. Conclusions

In this paper, a backpropagation neural network with one hidden layer has been developed and
proved to be very sufficient in predicting the contact lengths between the elastic layer and two
elastic circular punches. The training data sets are obtained from elasticity solution. In addition to
the other parameters, it is seen that learning rate and momentum term have significant effects on the
training process. It was found that neural networks reduce the overall time required for
implementations when compared with existing theoretical analysis.

As a result of using the neural network model in the analysis of the relationships between the
contact lengths and the load factor, elastic punches’ flexibilities and radii, following conclusions can
be made:

• If load increases or the elastic layer rigidity decreases, contact lengths a/h and d/h increase.
• Contact lengths a/h and d/h increase if elastic layer rigidity is greater than elastic punches rigidities. 
• Contact lengths also increase with increase in elastic punches radii.
It is shown that the neural network conclusions agree well with that of theoretical analysis. So, the

trained network can be used for on-line prediction of contact lengths. Consequently, application of
neural network models to contact mechanics is practical especially for the time consuming problems
which require iteration in theoretical solution. NNs may be applied to receding and discontinuous
contact problems successfully. 

Fig. 7 Effect of load factor µ1h/P on contact lengths generated by the neural network and from theoretical
solution µ2 µ1⁄ 0.61= µ3 µ1⁄ 2 R1 h⁄ 750=,= R2 h⁄ 900=, ,( )
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Appendix 

Kernels of integral Eqs. (13) and (14) are expressed as follows

(A1)

(A2) 

(A3)

(A4)

where

(A5)

k1 x t,( ) 1
2∆
------

µ2

µ1

----- 2e 2αh–( ) 1 2α2h2+( ) 1 κ3+( ) 2αh
µ3

µ1

-----– 1 κ1+( ) e 4αh–( ) 1–
µ3

µ1

----- 1 κ1+( )+
 –+=

κ3) 1
µ3

µ1

----- 1 κ1+( )–– κ3– 
  1 κ3+( )

2ω
------------------–

1 κ1+( )
2

------------------– sinα t x+( ) sinα t x–( )–[ ]–+

k2 x t,( ) 1
2∆
------

µ2

µ1

----- 1 κ1+( ) e αh–( ) e 3αh–( )–( )
2µ3

µ1

-------- e 3αh–( ) e αh–( )+( )2αh
µ3

µ1

-----+ sinα t x+( ) sinα t x–( )–[ ]=

k3 x t,( ) 1–
2∆
------

µ3

µ1

----- 1 κ1+( ) e αh–( ) e 3αh–( )–( )
2µ2

µ1

-------- e 3αh–( ) e αh–( )+( )2αh
µ2

µ1

-----+ sinα t x+( ) sinα t x–( )–[ ]=

k4 x t,( ) 1–
2∆
------

µ3

µ1

----- 2e 2αh–( ) 1 2α2h2+( ) 1 κ2+( ) 2αh
µ2

µ1

-----– 1 κ1+( ) e 4αh–( ) 1–
µ2

µ1

----- 1 κ1+( )+ κ2– 
 +=

1
µ2

µ1

----- 1 κ1+( )–– κ2– 
 +

1 κ1+( )
2

------------------
1 κ2+( )

2θ
------------------+ sinα t x+( ) sinα t x–( )–[ ]–

∆
µ3

µ1

-----
µ2

µ1

----- 1– 2e 2αh–( ) 4α2h2e 2αh–( ) e 4αh–( )–+ +[ ]–=




