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Unconditional stability for explicit pseudodynamic testing
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Abstract. In this study, a newly developed unconditionally stable explicit method is employed to solve
momentum equations of motion in performing pseudodynamic tests. Due to the explicitness of each time
step this pseudodynamic algorithm can be explicitly implemented, and thus its implementation is simple
when compared to an implicit pseudodynamic algorithm. In addition, the unconditional stability might be
the most promising property of this algorithm in performing pseudodynamic tests. Furthermore, it can
have the improved properties if using momentum equations of motion instead of force equations of
motion for the step-by-step integration. These characteristics are thoroughly verified analytically and/or
numerically. In addition, actual pseudodynamic tests are performed to confirm the superiority of this
pseudodynamic algorithm.
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1. Introduction

It is generally recognized that experimental testing of a nonlinear structure can provide more
reliable results than those obtained from analytical methods. This is because that the accuracy of the
nonlinear response highly depends upon simplified assumptions used in analytical methods, such as
the discretization of the structure and the mathematical model of the load-displacement relationship.
In general, shaking table tests can give realistic response simulation. However, the size and mass of
a specimen are constrained due to the limitation of electro-hydraulic system since the displacement,
velocity and acceleration of the shaking table are limited in frequency content and magnitude by the
characteristics of the controlling electro-hydraulic system. It seems that the pseudodynamic testing
method can overcome many limitations in the shaking table testing, while using the same facilities
for cyclic loading testing. Therefore, the pseudodynamic testing method is promising in evaluating
dynamic behaviors of structural systems.

Since a step-by-step integration method is required to perform the step-by-step integration in a
pseudodynamic test, the problems of inaccuracy and/or instability (Bathe and Wilson 1973,
Belytschko and Hughes 1983) for an integration method is also experienced in performing a
pseudodynamic test. Consequently, many efforts have been made to improve the accuracy of test
results and to overcome numerical instability for the pseudodynamic testing (Chang and Mahin
1992, Chang 1997, 2001a,b, 2002a,b, 2003, Hilber et al. 1977, Nakashima et al. 1990, Shing and
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Mahin 1987, Shing et al. 1991, Thewalt and Mahin 1995). In order to overcome the conditional
stability for using an explicit integration method to perform a pseudodynamic test some
unconditionally stable implicit pseudodynamic algorithms were proposed (Chang and Mahin 1992,
Nakashima et al. 1990, Shing et al. 1991, Thewalt and Mahin 1995). However, their implementations
are more complicated than that for an explicit pseudodynamic algorithm (Chang 1997, 2001a,
2002a, Chang et al. 1998, Shing and Mahin 1987). Thus, it will be very promising for an explicit
pseudodynamic algorithm if it can have unconditional stability. An explicit pseudodynamic
algorithm with unconditional stability has been implemented by Chang (2002a). The feasibility of
explicit implementation and unconditional stability of this pseudodynamic algorithm were
thoroughly verified through actual pseudodynamic tests. On the other hand, a time integration
technique (Chang 2001a,b, 2002b, Chang et al. 1998) has been also proposed to improve the
accuracy of a pseudodynamic test. The most important aspect of this technique is the application of
a step-by-step integration method to solve the momentum equations of motion, which is the
resultant of the time integration of the force equations of motion.

Another unconditionally stable explicit pseudodynamic algorithm has been further proposed. In
order to have favorable characteristics arising from the time integration, this technique (Chang
2001a,b, 2002b, Chang et al. 1998) is adopted to implement the proposed pseudodynamic
algorithm. The feasibility of the explicitness of each time step will be addressed and an analytical
proof of the unconditional stability is provided. Furthermore, it is analytically proved that it has
superior error propagation properties over those of the previously developed algorithm (Chang
2002a), which is referred to as Chang explicit method herein for convenience. Numerical examples
and verification tests are used to confirm its superior properties for pseudodynamic tests. In this
paper, it is implicitly assumed that force equations of motion are solved by the Newmark explicit
method and Chang explicit method and momentum equations of motion are solved by the proposed
explicit method, as the three methods are mentioned.

2. Proposed explicit method

It has been shown that there are several advantages for the use of the time integration technique.
Details can be found in references (Chang 2001a,b, 2002b, Chang et al. 1998) and will not be
elaborated herein. This technique relies upon the step-by-step solution of the momentum equations
of motion instead of the force equations of motion in conducting pseudodynamic tests. The
momentum equations of motion can be directly derived from the dynamic equilibrium of
momentum or the time integration of the force equations of motion. In general, it can be expressed
as

(1)

where M, C and K are the mass, viscous damping and stiffness matrices;  and  are the
nodal vectors of velocity, displacement, time integral of displacement and time integral of external
force, respectively. 

In this study, the proposed explicit method is applied to solve Eq. (1) in performing a
pseudodynamic test and its general formulation can be written as

Mu· Cu K u+ + f=

u· u u, , f
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(2)

where  and  are the time integrals of the restoring force vector and the external force vector at
the i-th step, respectively; si, di and vi are approximations corresponding to  and 
respectively. In addition, the coefficient matrices β0, β1 and β2 are defined as

(3)

where I is an identity matrix. It is worthwhile to note that K0 is the initial stiffness matrix and will
be employed to determine the coefficient matrices β0, β1 and β2, which remain unchanged for a
whole pseudodynamic test.

3. Explicit pseudodynamic implementation

In order to address that the proposed pseudodynamic algorithm can be explicitly implemented, its
implementation details for the (i + 1)-th time step are presented next. Unlike the conventional
pseudodynamic implementation, the initial stiffness matrix of the specimen must be first determined 

before the pseudodynamic test so that the inverse matrix of  can 

be computed and thus the coefficient matrices β0, β1 and β2 are determined. In general, the direct
stiffness method is usually used to experimentally determine the initial stiffness matrix. In order to
explicitly obtain the displacement vector di + 1 for the next time step the following computing
procedure is adopted. After multiplying the second line of Eq. (2) by the current stiffness matrix K,
one can have

(4)

where . It should be mentioned that the use of the current stiffness matrix K is just to
transform the second line of Eq. (2) into Eq. (4) and it will be eliminated later since it is not
determined in a pseudodynamic test. Substituting this equation and the third line of Eq. (2) into the
first line of Eq. (2), one has

(5)
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Further substitution of this equation into the third line of Eq. (2), the displacement vector for the
next time step is

(6)

In this equation, the current stiffness K is required to determine the displacement vector for the next
time step. Apparently, it is not feasible for a pseudodynamic test since it is very difficult to obtain
accurately in each time step and thus is usually not determined during the test. As a result, an
alternative is applied to overcome this difficulty. In fact, the initial stiffness matrix K0 is used to take
place of the current stiffness matrix K. Consequently, Eq. (6) becomes

  

(7)

It is worth noting that the use of the initial stiffness matrix K0 to replace the current stiffness matrix K
will lead to insignificant errors since it is only a high-order term when compared to the rest terms.

After obtaining the displacement vector di + 1 for the next time step, it can be imposed upon the
specimen through servo hydraulic actuators. During the movement of the actuators the restoring
forces are measured several times and then are integrated to obtain , where the trapezoidal rule
can be simply applied to perform the time integration. It is apparent that linearization errors caused
by the variation of the resistance within the time step can be significantly reduced through the time
integration of the restoring force. Finally, the velocity vector vi + 1 can be obtained by substituting
di + 1 and  into the first line of Eq. (1) and is

(8)

This pseudodynamic test procedure can be repeated until the desired time history is completed. It is
clear that the pseudodynamic implementation of this algorithm is essentially the same as that for the
Newmark explicit method.

4. Numerical characteristics

To obtain numerical characteristics of the proposed explicit method a spectral decomposition
technique (Clough and Penzien 1993, Strang 1986) is often used to analyze the step-by-step solution
of a linearly elastic single degree of freedom system. For this purpose, the single degree of freedom
analogues of Eq. (2) are

(9)
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where m and c are the mass and viscous damping;  and  are the time integrals of the restoring
force and the external force at the i-th step, respectively; si, di and vi correspond to the time integral
of displacement, displacement and velocity. In addition, coefficient matrices β0, β1 and β2 reduce to
scalars for a single degree of freedom system and are

(10)

where  and . Since the system is assumed to be linear
elastic, the stiffness k is constant and is equal to the initial stiffness k0. Therefore, the expression of
Ω can be used to take place of Ω0, where  and . It is worth noting that
the time integral of the restoring force shown in Eq. (9) can be alternatively expressed as

 for a linear elastic system.
For an undamped single degree of freedom system, the step-by-step integration procedure as

shown in Eq. (9) can be rewritten in a recursive matrix form as

(11)

where . Explicit expressions of the amplification matrix A and the load
vector L are found to be

(12)

The characteristic equation for the amplification matrix A can be obtained from  and
is found to be

(13)

This characteristic equation is exactly the same as that for the constant average acceleration method
and Chang explicit method. This implies that they have exactly the same numerical properties, such
as unconditional stability and second-order accuracy (Bathe and Wilson 1973, Belytschko and
Hughes 1983). It should be mentioned that previous studies (Chang 2001a, Chang et al. 1998)
concluded that the basic numerical characteristics of an integration method to solve momentum
equations of motion are exactly the same as those to solve force equation of motion.

The period distortion of an integration method is usually evaluated by the relative period error,
which is defined as . The symbol T represents the true period of the system while 
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denotes the computed period in a numerical procedure. Variations of the relative period errors with
∆t/T for the Newmark explicit method, constant average acceleration method (Bathe and Wilson
1973, Belytschko and Hughes 1983, Newmark 1959), Chang explicit method and proposed explicit
method are plotted in Fig. 1. Apparently, the relative period error for the proposed explicit method
is exactly the same as that of the Chang explicit method and the constant average acceleration
method. It should be mentioned that absolute values of the relative period errors are considered in
this figure for the convenience of comparisons. In fact, the proposed explicit method, Chang explicit
method and constant average acceleration method generally lead to period elongation while the
Newmark explicit method results in period shrinkage.

5. Error propagation properties

Error propagation properties of the proposed pseudodynamic algorithm can be obtained after the
error propagation analysis of the step-by-step solution of a linear elastic system (Shing and Mahin
1987, 1990). In this analysis, errors in displacement and restoring force are introduced into the step-
by-step integration procedure and these errors will be carried over to the subsequent time steps. In
fact, it is impossible to exactly impose computed displacements upon the test structure due to
displacement control errors and thus lead to incorrect restoring forces (Shing and Mahin 1987,
1990). Furthermore, in addition to displacement control errors, measurement errors might be
introduced in measuring the actually developed restoring forces. Thus, error propagation is that
incorrect imposed displacements lead to incorrect restoring forces and these incorrect restoring
forces result in incorrect displacements, which will be imposed upon the test specimen for the next
time step. This step-by-step error propagation procedure can be formulated in a recursive matrix

Fig. 1 Comparison of characteristics of period distortion
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form and be analyzed by a spectral decomposition technique. As a result, a cumulative equation for
displacement error can be achieved. The following notations are defined for the convenience of
subsequent derivations and discussions.

di = exact numerically computed displacement at step i without errors.
= exact displacement at step i, including the effects of errors at previous steps.
= actual displacement at step i, including the effects of previous errors and errors introduced

at the current step.
ri = exact numerically computed restoring force at step i without errors.

= exact restoring force at step i, including the effects of errors at previous steps.
= actual restoring force at step i, including the effects of previous errors and errors introduced

at the current step.
= displacement error introduced at step i.
= force error introduced at step i.

Using the above notations, it is straightforward to obtain the following relationships in performing a
pseudodynamic test

(14)

where the restoring force feedback error  and the time integral of the restoring force feedback
error  can be also expressed as

(15)

It is apparent that the term  is used to represent the amount of displacement error
corresponding to  for a linear elastic system. The second line of this equation indicates that the
displacement error introduced in each time step is constant within the time step. If the actual
restoring forces and displacements, which include the errors introduced in each time step, are used
for an actual test, the recursive matrix form shown in Eq. (11) can be reformulated as

(16)
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for the proposed pseudodynamic algorithm. After subtracting Eq. (11) from Eq. (16), the following
error vector can be obtained

(18)

where  and each element , where j = 1, 2 and 3, are defined as

(19)

In these derivations,  is assumed since no errors will be introduced at the beginning of
the test. The first term on the right hand side of Eq. (18) is the cumulative error due to the
displacement feedback errors and the second term is that due to the force feedback errors.

Substituting the explicit expressions of A, M and N into Eq. (18) and using a spectral
decomposition technique (Shing and Mahin 1990), the cumulative equation to describe the error
propagation of the proposed explicit pseudodynamic algorithm can be derived. In fact, the
displacement cumulative error for the proposed explicit method is found to be

(20)

where
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On the other hand, the displacement cumulative error for using the Newmark explicit method
(Newmark 1959) and the Chang explicit method (2002a) to pseudodynamically solve force
equations of motion has been derived and can be generally expressed as
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Variations of error amplification factors Ed and Er with Ω are shown in Figs. 2 and 3 for the
Newmark explicit method, Chang explicit method and proposed explicit method. It is clear from
Fig. 2 that the error amplification factor Ed for the Newmark explicit method increases from 1 to ∞

Fig. 2 Error amplification factor for displacement feedback error

Fig. 3 Error amplification factor for restoring force feedback error
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as Ω is increased from 0 to its upper stability limit 2 while for the Chang explicit method it is
gradually increased from 1 to  as Ω increases from 0 to . However, for the proposed explicit
method, the amplification factor Ed is always equal to 1 for any value of Ω. On the other hand,
Fig. 3 shows that the error amplification factor Er for the Newmark explicit method increases from
0 to  with the increasing value of Ω from 0 to its upper stability limit 2. However, for the Chang
explicit method and proposed explicit method, it gradually increases from 0 to  as Ω increases
from 0 to . It is also found that the error amplification factor Er for the proposed explicit method
is less than that for the Chang explicit method for any value of Ω. As a summary, error
amplification factors, both Ed and Er, for the proposed explicit method are not only less than those
for the Newmark explicit method for any value of Ω but also for the Chang explicit method. 

6. Numerical examples

Analytical results from previous investigations conclude that the proposed explicit method to solve
momentum equations of motion is unconditionally stable, and its error propagation properties are
superior to those for the Newmark explicit method and Chang explicit method in the solution of
force equations of motion pseudodynamically. In order to confirm these results, some numerical
examples are investigated next. 

6.1 Unconditional stability

Numerical solutions of a 3-story shear-beam type structure subject to a ground excitation of
sin(5t) are used to confirm the unconditional stability of the proposed explicit method. The lumped
mass for each story is assumed to be m1 = m2 = m3 = 1 kg while the stiffness from the bottom story
to the top story is taken as 102, 104 and 106 N/m. As a result, the natural frequencies of this
structure are found to be 5.8, 123 and 1416 rad/sec. Apparently, this structure is intentionally
designed to have a very high third mode so that the unconditional stability of the proposed explicit
method can be indicated. 

Both the Newmark explicit method and proposed explicit method are used to obtain responses to
the ground excitation, and numerical solutions are plotted in Fig. 4. Results obtained from the
Newmark explicit method with a time step of ∆t = 0.001 sec are considered as “exact” solutions for
comparisons. Apparently, numerical explosions occur very early for the use of ∆t = 0.002 sec if
using the Newmark explicit method while the proposed explicit method can still provide stable
solutions even though the time step is as large as ∆t = 0.05 sec. This is because that the Newmark
explicit method is only conditionally stable and its upper stability limit 2 requires the time step to
be less than 0.0014 sec, which is determined from the third mode. On the other hand, unconditional
stability of the proposed explicit method is strongly indicated by the stable computations since the
value of Ω corresponding to the time step of ∆t = 0.05 sec is as large as 70.8 for the third mode.

6.2 Error propagation

Error propagation properties of the proposed explicit pseudodynamic algorithm can be revealed
through numerical simulations. In this example, the displacement error introduced in the imposed
displacement in each time step is considered as a random variable, whose distribution is assumed to

∞ ∞

∞
∞

∞
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be a truncated normal distribution. Simulation details can be found in (Chang 2002a) and will not
be elaborated. To simulate a properly adjusted pseudodynamic test the mean value of the truncated
normal distribution is taken as 0. In addition, its standard deviation is assumed to be one-third of the
tolerance limit, which is taken to be 0.1 mm. A 2-story shear-beam type structure is used to confirm
the error propagation properties of the proposed explicit pseudodynamic algorithm. Lumped masses
of the structure are m1 = m2 = 1 kg; and the stiffness for the top story is 200 N/m while that for the
bottom story is 9000 N/m. Consequently, the natural frequencies of the system are found to be
13.98 and 95.94 rad/sec. This structure is assumed to be linear elastic, and is subjected to the 1952
Taft earthquake with a peak ground acceleration of 0.3 g. A time step of ∆t = 0.02 sec is used in all
the computations.

Simulation results are plotted in Figs. 5 to 8. Fig. 5 shows the bottom story responses of the
structure while those for the top story are shown in Fig. 6. Meanwhile, the cumulative errors for the
bottom story response are plotted in Fig. 7 and those for the top story response are depicted in Fig. 8.
Each figure contains 3 plots, where numerical results for the Newmark explicit method, Chang
explicit method and proposed explicit method are shown from the top plot to the bottom plot,
respectively. It is apparent in Fig. 5 that simulation results obtained from the Newmark explicit
method are entirely destroyed by the simulation errors while those obtained from the Chang explicit
method and the proposed explicit method are slightly contaminated by these errors. This concluding
result is also evident from Fig. 7. Meanwhile, Fig. 6 shows that simulation results obtained from the
three methods are almost unaffected by the simulation errors and Fig. 8 reveals that the three
methods lead to commensurate cumulative errors. These phenomena can be thoroughly explained by

Fig. 4 Forced vibration response to ground acceleration of sin(5t)
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Fig. 5 Displacement responses at bottom story for simulating the pseudodynamic test of a 2-story frame

Fig. 6 Displacement responses at top story for simulating the pseudodynamic test of a 2-story frame
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Fig. 7 Cumulative errors at bottom story for simulating the pseudodynamic test of a 2-story frame

Fig. 8 Cumulative errors at top story for simulating the pseudodynamic test of a 2-story frame
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error amplification factors and the modal contribution of each mode. It is clear from Fig. 5 that the
response contribution from the second mode to the bottom story response is considerable while Fig. 6
reveals that it is insignificant to the top story response. This implies that the bottom story response
might be contaminated by simulation errors while the top story response is not strongly affected. On
the other hand, it is found from Figs. 2 and 3 that error amplification factors Ed and Er for the first
mode of Ω = 0.28 are commensurate and very small for the three methods. However, for the second
mode of Ω = 1.92, Ed = 3.57 and Er = 6.86 for the Newmark explicit method; Ed = 1.39 and Er =
1.92 for the Chang explicit method; and Ed = 1 and Er = 1.33 for the proposed explicit method. As
a result, the large contribution from the second mode response to the bottom story response and
large error amplification factors are responsible for the inaccurate responses of the bottom story
obtained from the Newmark explicit method. Apparently, the slight contamination of the bottom
story responses for the simulation results obtained from the Chang explicit method and proposed
explicit method is due to the small error amplification factors. In Fig. 7, it is also found after
comparing the middle plot to the bottom plot that the cumulative error for the result obtained from
the proposed explicit method is less than that obtained from the Chang explicit method. This is due
to the fact that error amplification factors, Ed = 1 and Er = 1.33, for the proposed explicit method
are less than those Ed = 1.39 and Er = 1.92 for the Chang explicit method. 

7. Actual pseudodynamic tests

A series of pseudodynamic tests were conducted to confirm the unconditional stability of using
the proposed explicit method to solve the momentum equations of motion. Meanwhile, improved
characteristics to capture rapid changes of dynamic loading and to eliminate adverse linearization
errors if using the momentum equations of motion are also illustrated. For this purpose, a simple
cantilever beam is used to simulate a 3-degree of freedom system. In fact, steel members of the

Fig. 9 Test setup for 3-DOF pseudodynamic tests
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shape of H 200 × 200 × 8 × 12 are adopted for these tests. Each member has 3.2 meters long and is
loaded in its minor axis by three servo hydraulic actuators with the spacing about 1 meter. The test
setup is shown in Fig. 9. The Newmark explicit method and Chang explicit method are used to
solve force equations of motion while momentum equations of motion are solved by the proposed
explicit method. The initial stiffness matrix of each specimen can be experimentally measured and is
found to be

(25)

where the unit for each element is in kN/mm. This matrix is employed to compute the coefficient
matrices for the proposed explicit method.

7.1 Unconditional stability

In this example, the lumped masses of the system are taken to be 105, 101 and 104 kg for the first,
second and third degree of freedom. Hence, the natural frequencies of the system are found to be
5.78, 17.20 and 1633 rad/sec. This system is subjected to 1971 San Fernando earthquake with a

K0

47.86  25.32  – 6.60

25.32  – 26.67  10.57–

6.60  10.57  – 5.10

=

Fig. 10 Pseudodynamic responses for the structure subject to 0.03 g San Fernando earthquake
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peak ground acceleration of 0.03 g and an integration time step of ∆t = 0.02 sec is used for the
step-by-step integration. All the pseudodynamic test results are plotted in Fig. 10. It is apparent that
numerical explosions occur very early in the pseudodynamic responses obtained from the Newmark
explicit method, while those obtained from the proposed explicit method are in good agreement
with those obtained from the Chang explicit method and both remain stable. Thus, it is strongly
indicated by this example that both pseudodynamic algorithms implemented by using the Chang
explicit method and the proposed explicit method are unconditionally stable since numerical
solutions remain stable even if the vale of Ω is as large as 32.66. In the middle plot of this figure,
the displacement time histories for the 2nd degree of freedom are plotted only for the first 10
seconds. This is intended to clearly observe the rapid fluctuation of the response, which might be
caused by the significant error propagation of the third mode. This indicated that numerical
dissipation might be needed to suppress the spurious growth of this high frequency response (Chang
1997). Further study of this subject is under way and will be published later.

7.2 Improved characteristics for time integration

Previously published works (Chang 2001a, Chang et al. 1998) have shown that the use of
momentum equations of motion can effectively capture the rapid changes of dynamic loading and
automatically eliminate the averse linearization errors in performing a pseudodynamic test. In order
to experimentally confirm that the proposed explicit pseudodynamic algorithm also has these
improved characteristics a 3-degree of freedom system is chosen for this study. This system is
similar to the one used above. However, the lumped masses corresponding to the first to the third
degree of freedom are specified to be 5 × 105, 3 × 105 and 1 × 105 kg respectively. As a result, the
natural frequencies of the system are found to be 2.86, 6.84 and 15.75 rad/sec. The system is
excited by Kobe earthquake with a peak ground acceleration of 0.1 g. The step sizes of 0.02 and
0.06 sec are used to perform the pseudodynamic tests if using the Newmark explicit method while
for the proposed explicit method only the step size of ∆t = 0.06 sec is tested. It should be
mentioned that the trapezoidal rule is used to perform the time integration of the external force and
the restoring force with a step size of 0.02 sec.

All pseudodynamic results are plotted in Fig. 11 and the results obtained from the Newmark
explicit method with a time step of ∆t = 0.02 sec is considered as “correct” solutions. It is clear
that the displacement responses obtained from the Newmark explicit method with ∆t = 0.06 sec are
significantly deviate from the correct solutions. This is because that the high frequency content of
the accelerogram and the variation of restoring force within each time step cannot be realistically
captured by using a large time step of ∆t = 0.06 sec to pseudodynamically solve force equations of
motion. However, pseudodynamic responses obtained from the proposed explicit method with the
same time step of ∆t = 0.06 sec are still reliable. This drastic difference in pseudodynamic results
is mainly caused by the use of momentum equations of motion instead of force equations of
motion. This is because the use of momentum equations of motion engenders the use of the time
integration of external force and restoring force. Thus, the high frequency content of the
accelerogram can be effectively captured through the time integration of external force and the
linearization errors can be drastically reduced or even entirely eliminated through the time
integration of restoring force.
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8. Conclusions

An explicit integration method with unconditional stability is implemented to solve momentum
equations of motion in performing a pseudodynamic test. Due to the explicitness of each time step
it can be simply implemented as the common implementation for Newmark explicit method where
no iteration procedure or extra hardware is needed as that for implicit pseudodynamic algorithms.
Its unconditional stability enables it to perform the pseudodynamic testing of a specimen having
high frequency modes. Meanwhile, the use of the momentum equations of motion can effectively
capture the rapid changes of dynamic loading and automatically eliminate the adverse linearization
errors due to the time integration of the external force and the restoring force.
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