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The standard deviations for eigenvalues 
of the closed-loop systems with random parameters
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Abstract. The vibration control problem of structures with random parameters is discussed, which is
approximated by a deterministic one. A method for calculating the standard deviations of eigenvalues of
the closed-loop systems is presented by using the random perturbation. The method presented in this
paper will not require the distribution function of the random parameters of the systems other than their
means and variances. Similarly, the distribution function of the random eigenvalues will not be computed
other than their means and variances. The standard deviations of eigenvalues of the uncertain closed-loop
systems can be used to estimate the stability robustness. The present method is applied to a vibration
control system to illustrate the application. The numerical results show that the present method is effective.

Key words: uncertain systems; vibration active control; random parameters; standard deviations of
eigenvalues of the closed-loop systems.

1. Introduction

The vibration control theory for systems with deterministic parameters has been well developed.
For example, the standard methods for vibration control has been developed (Porter and Crossley
1972, Inman 1989, Meirovitch 1990); the modal controllability/observability and modal optimal
control for defective/near defective systems with repeated/close eigenvalues were discussed (Chen
et al. 2001).

However, in actual situations, the structural parameters are often uncertain, such as the inaccuracy
of the measurement, errors in the manufacturing process, invalidity of some components, etc. The
uncertainty can affect the robust stability and performance of the control systems. Therefore, the
uncertain concept plays an important role in the vibration control problems of structures. Many
studies have been done about the control problems of systems with uncertain parameters only from
the viewpoint of mathematics. For example, the sufficient and necessary conditions of the dynamic
stability for the uncertain systems were given (Mori and Kokame 1987, Argoun 1987); the
robustness of control systems with uncertain parameters was discussed (Sobld et al. 1989, Rachid
1989); the interval analysis method was used to deal with the stability of an uncertain matrix (Juang
et al. 1987).
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The most common methods for solving uncertain problems are to model the loads and the
structural parameters as the random vectors. For example, the vibration theory of structures with
random parameters was given (Chen 1992); the probabilistic eigenvalue analysis was discussed
(Lyengow and Manohar 1989); the random finite element theory was given (Liu and Mani 1986,
Liu et al. 1980, Contreras 1980). However, a few papers can be found about the control problems of
systems with random parameters. Hence, it is necessary to develop an effective method to solve the
control problems of systems with random parameters.

In this paper, the random model is used to deal with the vibration control problems of systems
with uncertain parameters. The uncertainties of the structural parameters are described by random
variables. The vibration control problems of the uncertain systems are transformed into ones of the
deterministic systems. At first, by using the method of pole allocation, the state feedback gain
matrix of the systems with deterministic parameters can be obtained, and then it is applied into the
actual uncertain systems. By using the random model of the uncertain parameters and the
perturbation method, the expressions can be developed for calculating the standard deviations of the
real and imaginary parts of the eigenvalues of uncertain closed-loop systems. The present method
will not require the distribution function of the random parameters of the systems other than their
means and variances. Similarly, the distribution function of the random eigenvalues of the closed-
loop systems will not be computed other than their means and variances. A numerical example is
given to illustrate the application of the approach presented in this study.

2. The definition of the problem

Consider the linear vibration control equation in state space

(1)

By using the state feedback law, the input vector is 

(2)

where x(t) is the 2n × 1 state vector, u(t) is an m × 1 input vector, A is the 2n × 2n state matrix, B is
a 2n × m input coefficient matrix, G is an m × 2n state feedback gain matrix. 

The state matrix A and input coefficient matrix B of the uncertain systems can be expressed as

A = A0 + ∆A
(3)

B = B0 + ∆B

where A0 and B0 are the deterministic parts of the state matrix and the input coefficient matrix,
respectively; ∆A and ∆B are the corresponding uncertain parts, respectively. Correspondingly, the
uncertain state vector x, the uncertain gain matrix G, and the uncertain input vector u are also
expressed as 

x = x0 + ∆x
u = u0 + ∆u (4)

G = G0 + ∆G

where x0, u0 and G0 are the deterministic parts of the state vector, the input vector and the gain

x· t( ) Ax t( ) Bu t( )+=

u t( ) Gx t( )=
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matrix. ∆x, ∆u and ∆G are their uncertain parts, respectively.
Substituting Eqs. (3) and (4) to Eqs. (1) and (2) yields

(5)

and

 (6)

Expanding Eqs. (5), (6) and comparing the same order terms of the left and the right side, we
obtain

(7)

and 

(8)

From the above discussion it can be seen that the uncertain system (1) and (2) have been
separated into the deterministic part (7) and the uncertain part (8). The closed-loop system
corresponding to the deterministic one (7) is

(9)

and the corresponding eigenvalue problem is

(10)

3. The gain matrix of the deterministic system

To guarantee asymptotic stability of the vibration control system, it is necessary to impart the
eigenvalues larger negative real parts. Using the pole allocation, the closed-loop poles are selected in
advance. Assume that the closed-loop eigenvalues of Eq. (9) are assigned to be , by
using the pole allocation, the gain matrix G0 of the deterministic system (7) can be determined.

Suppose the right and the left modal matrices  and 
have been obtained and they satisfy the following equations

(11)

where  is the diagonal matrix of the eigenvalues of the deterministic
system.

x· 0 x·∆+ A0 A∆+( ) x0 x∆+( ) B0 B∆+( ) u0 u∆+( )+=

u0 u∆+ G0 G∆+( ) x0 x∆+( )=

x· 0 A0x0 B0u0+=

u0 G0x0=

x·∆ A0 x∆ Ax0∆ B0 u∆ Bu0∆+ + +=

u∆ G0 x∆ Gx0∆+=

x· 0 t( ) A0 B0G0+( )x0 t( )=

λ0 iϕ0 i A0 B0G0+( )ϕ0i i( 1 2 … n ), , ,= =

λ1
* λ2

* … λ2n
*, , ,

U0 u1 u2 … u2n, , ,[ ]= V0 v1 v2 … v2n, , ,[ ]=

V0
TA0U0 Λ0, V0

TU0 I= =

Λ0 diag λ01 λ02 … λ02n, , ,( )=
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With the modal transformation

(12)

the Eq. (7) can be transferred into

(13)

and

(14)

where , (15)

If the single input is used, B0 is a column vector, G0 is a row vector. Substituting Eq. (14) into
Eq. (13) yields

(16)

In Eq. (16), suppose the assigned eigenvalues are , the corresponding
eigenvectors are wi , and they satisfy the following eigenproblem

 (17)

Because  there exists

(18)

Solving Eq. (18), we obtain (Meirovitch 1990)

(19)

thus obtaining the matrix .
Considering Eq. (12), Eq. (14) becomes

where

(20)

If the deterministic gain matrix G0 is applied to the actual uncertain system, there must exist some
errors between the closed-loop eigenvalues and the assigned eigenvalues . Using
the random perturbation method, the expressions for computing the standard deviations of the
closed-loop eigenvalues  can be developed.

x0 t( ) U0ξ t( )=

ξ· t( ) ΛΛ0ξ t( ) B0′ u0 t( )+=

u0 t( ) G0′ ξ t( )=

B0
′ V0

TB0 b1
′ b2

′ … b2n
′, , ,( )T= = G0

′ G0U0 g1
′ g2

′ … g2n
′, , ,( )= =

ξ· t( ) ΛΛ0 B0′ G0
′+( )ξξ t( )=

λ i
*

i 1 2 … 2n, , ,=( )
i 1 2 … 2n, , ,=( )

Λ0 B0′ G0
′+( )wi λ i

*wi= i 1 2 … 2n, , ,=( )

wi 0≠

det Λ0 B0′ G0
′ λ i

*I–+( ) 0=

gi′ λ i
* λ i–( ) bi′ λk λ i–( )

k=1
k i≠

2n

∏
 
 
 
 

i 1 2 … 2n, , ,=( )⁄
k 1=

2n

∏=

G0′ g1
′ , g2

′ , … g2n
′,( )=

u0 t( ) G0′ ξ t( ) G0′ V0
T x0 t( ) G0x0 t( )= = =

G0 G0′ V0
T=

λ i
*

i 1 2 … 2n, , ,=( )

λ i i 1 2 … 2n, , ,=( )
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4. Random eigenvalue analysis of the close-loop systems

If the gain matrix G0 is introduced to the actual uncertain closed-loop system we obtain 

(21)

The corresponding eigenvalue problem is

(22)

Because of the randomness of the system parameters, the state matrix A and input coefficient matrix
B are random, the eigensolutions λ and ϕ are also random. To obtain the mean values and the
variances of eigenvalues, we substitute A, B, λi, ϕi for the summation of two terms. The first term is
deterministic part equal to the mean value of the corresponding random variable, and the second
term is random part with zero mean value. Thus, we have 

(23)

(24)

where ε is a small parameter. The terms with subscript “0” or “d ” are deterministic, the terms with
subscript “r” are random. Here we assume the coefficient matrix B is deterministic. That is Br = 0.
Substituting Eqs. (23) and (24) into Eq. (22) we obtain

(25)

Expanding Eq. (25) and comparing the coefficients of the same power of ε yields

(26)

(27)

From Section 3, we know that the eigenvalues of the matrix (A0 + B0G0) are the assigned
eigenvalues , and the eigenvalue problems are

(28)

According to the perturbation theory (Chen 1992), the perturbations for the eigenvalues of the
closed-loop systems can be expressed as

(29)

The random parameter  of systems can be expressed as

(30)

x· t( ) Ax t( ) BG0x t( )+ A BG0+( )x t( )= =

A BG0+( )ϕ λϕ=

A A0 εAr+= , B B0 εBr+=

ϕ i ϕdi εϕri, λ i λdi
* ελ ri+=+= i 1 2 … 2n, , ,=( )

A0 εAr+( ) B0G0+[ ] ϕdi εϕ ri+( ) λdi
* ελ ri+( ) ϕdi εϕ ri+( ) i 1 2 … 2n, , ,=( )=

ε0: A0 B0G0+( )ϕdi λdi
* ϕdi i 1 2 … 2n, , ,=( )=

ε1: A0 B0G0+( )ϕ ri Arϕdi+ λdi
* ϕ ri λ riϕdi+ i 1 2 … 2n, , ,=( )=

λdi
* i 1 2 … 2n, , ,=( )

A0 B0G0+( )ΦΦ ΦΛ*, A0 B0G0+( )TΨ ΨΛ*==

λ ri ψi( )TArϕ i= i 1 2 … 2n, , ,=( )

bj j 1 2 … m, , ,=( )

bj bdj εbrj j 1 2 … m, , ,=( )+=
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where bdj is the mean value of bj, brj is the random variable with zero mean value. According to the
Taylor series when brj is small (compared with bdj) we can expand A about  as

Comparing with Eq. (23) we get 

(31)

letting , Eq. (29) becomes

 (32)

Expanding λi about bdj  and comparing with Eq. (24) we get

, (33)

The sensitivity of the eigenvalue λi is

(34)

5. The standard deviations for eigenvalues of the closed-loop systems 

Because the eigenvalues of the system are complex, the real and the imaginary parts of the closed-
loop eigenvalues will be discussed, respectively. 

Suppose

(35)

(36)

where the di is real part of λi, the fi is imaginary part , the λi, k, di, k and fi, k are sensitivities of λi, di

and fi respectively.
To compute the standard deviation of the fi, the fi can be expressed as fi = fid + εfir where the fid is

the mean value of the fi and the fir is the random part with zero mean value. The variance of the fi is
given by 

(37)

bdj j 1 2 … m, , ,=( )

A A bd1 bd2 … bdm, , ,( )
∂A b1 b2 … bm, , ,( )

∂bj

-------------------------------------------- 
 

bj bdj=
εbrj

j 1=

m

∑+=

A0 A bd1 bd2 … bdm, , ,( ), Ar

∂A b1 b2 … bm, , ,( )
∂bj

-------------------------------------------- 
 

bj bdj=
brj

j 1=

m

∑==

Ad j,[ ]
∂A b1 b2 … bm, , ,( )

∂bj

-------------------------------------------- 
 

bj bdj=
=

λ ri ψi( )T Ad j,[ ] ϕ ibrj j 1 2 … m, , ,=( )
j 1=

m

∑=

j 1 2 … m, , ,=( )

λdi
* λ i bd1 bd2 … bdm, , ,( )= λ ri

∂λ i b1 b2 … bm, , ,( )
∂bj

-------------------------------------------- 
 

bj bdj=
brj

j 1=

m

∑=

λ i j,
∂λ i b1 b2 … bm, , ,( )

∂bj

-------------------------------------------- 
 

bj bdj=
ψi( )T Ad j,[ ] ϕ i j 1 2 … m, , ,=( )= =

λ i di fi j+= j 1–= i 1 2 … 2n, , ,=( )

λ i k, di k, fi k, j k 1 2 … m, , ,=( )+=  

Var fi( ) E fi( )2[ ] E fi( )[ ] 2– E εfir( )2[ ] i 1 2 … 2n, , ,=( )==
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where fir can be expressed as 

(38)

Thus one has

(39)

where  are the sensitivities of fi with respect to bl, bk,  is the join
probability density function for . From Eq. (39) we obtain

(40)

where  is the covariance between bl and bk given by

(41)

where  is the join probability density function for bl and bk, and ρlk is the correlation
coefficient, and ρbl is the standard deviation for bl. The covariance between two eigenvalues is given
by

(42)

So the covariance matrix of  of the closed-loop systems can be defined as

(43)

From Eq. (40), Eq. (42) and Eq. (43) one gets

(44)

fir

∂fi

∂bj

------- 
 

bj bdj=
  brj

j 1=

m

∑ fi j, brj i 1 2 … 2n, , ,=( )
j 1=

m

∑= =

Var fi( ) … εfir( )2p b1 b2 … bm, , ,( )db1…dbm
∞–

∞

∫
∞–

∞

∫=

ε2 … fi l,( ) fi k,( )
k 1=

m

∑
l 1=

m

∑ brlbrkp b1 b2 … bm, , ,( )db1…dbm
∞–

∞

∫
∞–

∞

∫= i 1 2 … 2n, , ,=( )

fi l,( ), fi k,( ) p b1 b2 … bm, , ,( )
b1 b2 … bm, , ,

Var fi( ) fi l,( ) fi k,( )
k 1=

m

∑
l 1=

m

∑ Cov bl bk,( )=

Cov bl bk,( )

Cov bl bk,( ) ε2 brlbrkp bl bk,( )dbldbk ρlkσblσbk=
∞–

∞

∫
∞–

∞

∫=

l 1 2 … m, , ,=( ) k 1 2 … m, , ,=( ),

p bl bk,( )

Cov fi fs,( ) fi l,( ) fs k,( )Cov bl bk,( ) i 1 2 … 2n, , ,=( ) s 1 2 … 2n, , ,=( )
k 1=

m

∑
l 1=

m

∑=

fi i 1 2 … 2n, , ,=( )

f

 

∑

Var f1( )    

Cov f2 f1,( )  Var f2( )  sym

……
Cov f2n f1,( )  Cov f2n f2,( )  … Var f2n( )

=

f

 

∑
∂f
∂b
------

b

 

∑
∂f
∂b
------

T

=



338 Su Huan Chen, Chun Liu and Yu Dong Chen

where  is the sensitivity matrix for the imaginary parts of eigenvalues and  is the covariance

matrix of the random structure parameters. By using Eq. (41), the  can be expressed as

(45)

where [σb] is the standard deviation matrix and [ρ] is the correlation coefficient matrix, given by

(46)

Substituting Eq. (45) into Eq. (44) yields

(47)

From Eq. (47) the standard deviations for imaginary parts of eigenvalues  can be obtained 

(48)

The similar expressions for real parts of eigenvalues can be derived

(49)

(50)

The standard deviations, , can be used to estimate the stability robustness of the uncertain
control system.

6. Numerical example

In order to illustrate the application of the present method, a numerical example is given as
follows. 

Consider a vibration control system of frame structure shown in Fig. 1. Assume mass (kg),
stiffness (N/m) and damping (N/m.s−1) are given as follow:

m1 = 29, m2 = 26, m3 = 26, m4 = 24, m5 = 17 
k10 = 2000,  k20 = 1800,  k30 = 1600, k40 = 1400, k50 = 1200

c10 = 40, c20 = 40, c30 = 60, c40 = 80, c50 = 80

∂f
∂b
------

b

 

∑
b

 

∑
b

 

∑ σb[ ] ρ[ ] σb[ ]=

σb[ ] diag σb1  σb2  …  σbm[ ] ρ[ ]

1      

ρ21  1  sym  

……       

ρm1  ρm2  …  1

==

f

 

∑
∂f
∂b
------ σb[ ] ρ[ ] σb[ ] ∂f

∂b
------

T

=

σfi

σfi
var fi( )( )1 2⁄ i 1 2 … 2n, , ,=( )=

d

 

∑
∂d
∂b
------ σb[ ] ρ[ ] σb[ ] ∂d

∂b
------

T

=

σdi
var di( )( )1 2⁄ i 1 2 … 2n, , ,=( )=

σdi

k1 k10 bk1
,+= k2 k20 bk2

,+= k3 k30 bk3
,+= k4 k40 bk4

,+= k5 k50 bk5
+=

c1 c10 bc1
,+= c2 c20 bc2

,+= c3 c30 bc3
,+= c4 c40 bc4

,+= c5 c50 bc5
+=
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where the mass parameters are assumed to be deterministic; stiffness parameters, k10, k20, k30, k40

and k50 are deterministic, and , , ,  and  are random with zero means; damping
parameters, c10, c20, c30, c40 and c50 are deterministic, and , , ,  and  are random
with zero means. Assume that a control force, u(t), is input to m5. The mass matrix is 

The stiffness matrix of the system with random parameters is K = Kd + Kr where Kd is the
deterministic part, Kr the random part. The damping matrix of the system with random parameters
is C = Cd + Cr where Cd is the deterministic part, Cr the random part. Suppose the state vector is

Then the state matrix of the system is

where A0 is the state matrix with deterministic parameters and Ar is the state matrix with random
parameters. The input coefficient matrix is B = B0 + Br where B0 is input coefficient matrix with
deterministic parameters, B0 = [0  0  0  0  0  0  0  0  0  1/17]; Br = 0. 

The eigenvalues of A0 are 

λ01 = −0.0963 + 2.5275i  λ02 = −0.0963 − 2.5275i
λ03 = −1.0267 + 6.7292i   λ04 = −1.0267 − 6.7292i
λ05 = −2.3488 + 10.2718i  λ06 = −2.3488 − 10.2718i
λ07 = −5.0397 + 12.5008i   λ08 = −5.0397 − 12.5008i
λ09 = −3.1695 + 13.8673i   λ010 = −3.1695 − 13.8673i

bk1
bk2

bk3
bk4

bk5

bc1
bc2

bc3
bc4

bc5

M diag m1  m2  m3  m4  m5[ ] diag 29  26  26  24  17[ ]= =

x t( ) q1 t( )  q2 t( )  q3 t( )  q4 t( )  q5 t( )  q· 1 t( )  q· 2 t( )  q· 3 t( )  q· 4 t( )  q· 5 t( )[ ] T
=

A
0  I

M 1– K  – M 1– C–

0  I

M 1– Kd  – M 1– Cd–

0  0

M 1– Kr  – M 1– Cr–
+ A0 Ar+= = =

Fig. 1 The frame structure
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To guarantee the stability of the control system, it is only necessary to impart the eigenvalues larger
negative real parts, it is not necessary to alter the frequencies. To this end, if modal damping ratio is
assumed to be 0.4 and the corresponding real parts of eigenvalues can be assigned as follows

= −1.0110 + 2.5275i      = −1.0110 − 2.5275i
= −2.6917 + 6.7292i      = −2.6917 − 6.7292i
= −4.1087 + 10.2718i    = −4.1087 − 10.2718i
= −5.0003 + 12.5008i    = −5.0003 − 12.5008i
= −5.5469 + 13.8673i    = −5.5469 − 13.8673i

Using Eq. (20), the state feedback gain matrix for the system with deterministic parameters can be
obtained

G0 = [4382.7060   −5104.3220    1720.9740     1991.4040    −1566.5190 
         177.6021    −316.7099     384.1323     −107.0294      −227.0397]

If G0, the feedback gain matrix, is applied to the actual system with uncertain parameters, the
closed-loop eigenvalues will have some perturbations. 

The derivatives of A with respect to ki, ci  are calculated. Using Eq. (34), the
sensitivity matrix of the real and imaginary parts of the eigenvalues of the closed-loop system with
uncertain parameters are obtained, respectively.

Assume the standard deviations of the ki and the ci are  and , the
correlation coefficients of the ki and the ci are ,  and 

. That is, the stiffness coefficients of the ki are correlative and damping coefficients
of the ci are also correlative, but the ki and the ci are statistically independent. Now using Eq. (47)
and Eq. (49), we obtain the covariance matrices for the imaginary and real parts of eigenvalues. The
standard deviations for the imaginary parts of eigenvalues are . The standard
deviations for the real parts of eigenvalues are . The sensitivities for the real and
imaginary part of eigenvalues are listed in Table 1. The standard deviations of eigenvalues are listed
in Table 2. The data of the random design variables are listed in Table 3. In the Tables, di, j and fi, j

,  denote sensitivities for the real and imaginary part of
eigenvalues, respectively where the i denotes the ith eigenvalue and the j the jth structural parameter,

λ1
* λ2

*

λ3
* λ4

*

λ5
* λ6

*

λ7
* λ8

*

λ9
* λ10

*

i 1 2 … 5, , ,=( )

σki
0.01 ki×= σci

0.01 ci×=
ρkikj

0.5= ρcicj
0.5= ρkicj

0= i 1 2 … 5, , ,=( )
j 1 2 … 5, , ,=( )

σfi
var fi( )( )1 2⁄=

σdi
var di( )( )1 2⁄=

i 1 3 5 7 9, , , ,=( ) j 1 2 … 10, , ,=( )

 
Table 1 The eigenvalue sensitivities with respect to the structure parameters

k1 k2 k3 k4 k5 c1 c2 c3 c4 c5

d1, j −.0001   −.0002  .0002  .0005  −.0007  −.0016   .0023  −.0029  −.0008   .0013
d3, j −.0002  .0007  −.0023   .0016  −.0006  .0007  −.0072  .0053 −.0230  .0093
d5, j −.0010  −.0034   .0067 −.0060  .0021  −.0090   .0363 −.0421  −.0104   .0076
d7, j .0014  .0013  −.0105 .0046  .0045 −.0144  −.0966  .0657  .1106 −.0641
d9, j −.0002   .0016   .0059 −.0007  −.0054  .0070   .0287 −.0645   −.1165  −.0043
f1, j .0007  −.0008  .0011  .0001  −.0002  −.0010   .0004  −.0006   .0012  −.0014
f3, j .0001  .0008  .0001 .0028  −.0012 −.0011  .0028 −.0157 .0033 −.0008
f5, j .0013   −.0022  .0014  .0034  −.0016  −.0150 −.0263   .0627 −.0754   .0282
f7, j .0006  .0072 −.0010  −.0107   .0033   .0146 −.0201 −.1264 .1111  .0397
f9, j −.0004  −.0027   .0023   .0087   .0025   .0003  .0374   .0698 −.0586  −.0883
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R(λi) and I(λi)  the real and imaginary parts of eigenvalues of the system,
respectively, MV denotes the mean value, SD the standard deviation, DV the design variable, and P
is given by P = (|SD/MV|)*100%. From Tables 1, 2, it can be shown that the standard deviation of
the R(λ7) is 0.160277 which is 3.205353 percent of 5.000292 and standard deviation of the R(λ1) is
0.008878 which is 0.878183 percent of 1.010991. The reason is that the d7, j is larger then the d1, j.
Similarly, standard deviation of the I(λ7) is 0.170464 which is 1.363625 percent of 12.500760 and
standard deviation of the I(λ3) is 0.042796 which is 0.635978 percent of 6.729238. The reason is
that the f7, j is larger then the f3, j. 

7. Conclusions

The vibration control problems of systems with uncertain parameters are discussed in this paper,
which is approximated with the corresponding deterministic one. The uncertain parameters are
modeled to be random variables. The formulas for calculating the standard deviations of eigenvalues
of the closed-loop systems are derived with the random model and the random perturbation. To

i 1 3 5 7 9, , , ,=( )

   
Table 2 Standard deviations of eigenvalues of the closed-loop system

MV SD P(|SD/MV|*100%)

R(λ1)      −1.010991   .008878         .878183
R(λ3)      −2.691697      .036936        1.372217
R(λ5)      −4.108713      .112961        2.749308
R(λ7)      −5.000292     .160277       3.205353
R(λ9)      −5.546924       .143650        2.589731
I(λ1)       2.527472      .021161       .837236
I(λ3)       6.729238      .042796        .635978
I(λ5)      10.271760       .079731         .776216
I(λ7)      12.500760      .170464      1.363625
I(λ9)      13.867290      .156912       1.131527

Table 3 Standard deviations of structure parameters

DV MV SD P(|SD/MV|*100%)

k1 2000.0 20.0 1.0
k2   1800.0 18.0 1.0
k3   1600.0 16.0 1.0
k4   1400.0 14.0 1.0
k5  1200.0 12.0 1.0
c1     40.0 0.4  1.0
c2      40.0 0.4 1.0
c3    60.0 0.6 1.0
c4    80.0 0.8 1.0
c5    80.0 0.8 1.0
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estimate the standard deviations of eigenvalues of the closed-loop systems with random parameters,
the mean values and standard deviations of the random parameters are required, and their
distribution function is not required. This makes the present method easier to implement for the
complex structural control problems in the sense that it does not require the probabilistic distribution
of the random parameters which is often difficult to obtain accurately. The results of the numerical
example of the vibration system show that how the uncertain parameters of systems affect the
stability robustness and that the method is effective for dealing with the vibration control of the
uncertain systems.
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