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Abstract. The vibration control problem of structures with random parameters is discussed, which is
approximated by a deterministic one. A method for calculating the standard deviations of eigenvalues of
the closed-loop systems is presented by using the random perturbation. The method presented in this
paper will not require the distribution function of the random parameters of the systems other than their
means and variances. Similarly, the distribution function of the random eigenvalues will not be computed
other than their means and variances. The standard deviations of eigenvalues of the uncertain closed-loop
systems can be used to estimate the stability robustness. The present method is applied to a vibration
control system to illustrate the gpplication. The numerical results show that the present method is effective.

Key words: uncertain systems; vibration active control; random parameters, standard deviations of
eigenvalues of the closed-loop systems.

1. Introduction

The vibration control theory for systems with deterministic parameters has been well developed.
For example, the standard methods for vibration control has been developed (Porter and Crosdey
1972, Inman 1989, Meirovitch 1990); the modal controllability/observability and modal optimal
control for defective/near defective systems with repeated/close eigenvalues were discussed (Chen
et al. 2001).

However, in actua situations, the structural parameters are often uncertain, such as the inaccuracy
of the measurement, errors in the manufacturing process, invalidity of some components, etc. The
uncertainty can affect the robust stability and performance of the control systems. Therefore, the
uncertain concept plays an important role in the vibration control problems of structures. Many
studies have been done about the control problems of systems with uncertain parameters only from
the viewpoint of mathematics. For example, the sufficient and necessary conditions of the dynamic
stability for the uncertain systems were given (Mori and Kokame 1987, Argoun 1987); the
robustness of control systems with uncertain parameters was discussed (Sobld et al. 1989, Rachid
1989); the interval analysis method was used to deal with the stability of an uncertain matrix (Juang
et al. 1987).
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The most common methods for solving uncertain problems are to model the loads and the
structural parameters as the random vectors. For example, the vibration theory of structures with
random parameters was given (Chen 1992); the probabilistic eigenvalue anaysis was discussed
(Lyengow and Manohar 1989); the random finite element theory was given (Liu and Mani 1986,
Liu et al. 1980, Contreras 1980). However, a few papers can be found about the control problems of
systems with random parameters. Hence, it is necessary to develop an effective method to solve the
control problems of systems with random parameters.

In this paper, the random model is used to dea with the vibration control problems of systems
with uncertain parameters. The uncertainties of the structural parameters are described by random
variables. The vibration control problems of the uncertain systems are transformed into ones of the
deterministic systems. At first, by using the method of pole alocation, the state feedback gain
matrix of the systems with deterministic parameters can be obtained, and then it is applied into the
actual uncertain systems. By using the random model of the uncertain parameters and the
perturbation method, the expressions can be developed for calculating the standard deviations of the
real and imaginary parts of the eigenvalues of uncertain closed-loop systems. The present method
will not require the distribution function of the random parameters of the systems other than their
means and variances. Similarly, the distribution function of the random eigenvalues of the closed-
loop systems will not be computed other than their means and variances. A numerical example is
given to illustrate the application of the approach presented in this study.

2. The definition of the problem

Consider the linear vibration control equation in state space

X(t) = Ax(t) +Bu(t) @
By using the state feedback law, the input vector is
u(t) = Gx(1) )

where X(t) is the 2n x 1 state vector, u(t) isan mx 1 input vector, A is the 2n x 2n state matrix, B is
a 2n x minput coefficient matrix, G is an mx 2n state feedback gain matrix.
The state matrix A and input coefficient matrix B of the uncertain systems can be expressed as

A =Ap+ AA
B =By+ AB &)

where Ay and By are the deterministic parts of the state matrix and the input coefficient matrix,
respectively; AA and AB are the corresponding uncertain parts, respectively. Correspondingly, the
uncertain state vector X, the uncertain gain matrix G, and the uncertain input vector u are also
expressed as

X = Xg + AX
U= U+ Au (4)
G =Gy +AG

where Xq, Ug and Gg are the deterministic parts of the state vector, the input vector and the gain
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matrix. Ax, Au and AG are their uncertain parts, respectively.
Substituting Egs. (3) and (4) to Egs. (1) and (2) yields

Xo+tAX = (Ag+AA)(Xy+ Ax) + (Bg + AB)(ug + Au) 5)
and
Ugt+Au = (Gy+ AG)(xg + AX) (6)

Expanding Egs. (5), (6) and comparing the same order terms of the left and the right side, we
obtain

Xo = AgXo+ Bolg

Up = GoXo Y
and
AX = ApAx + AA Xy + BoAu + ABuU,
AU = GoAX + AGXO (8)

From the above discussion it can be seen that the uncertain system (1) and (2) have been
separated into the deterministic part (7) and the uncertain part (8). The closed-loop system
corresponding to the deterministic one (7) is

Xo(t) = (Ao + BoGo)Xo(t) ©
and the corresponding eigenvalue problem is

Aoidoi = (Ag+ BoGo) oy (i=1212..,n) (10)

3. The gain matrix of the deterministic system

To guarantee asymptotic stability of the vibration control system, it is necessary to impart the
eigenvalues larger negative real parts. Using the pole alocation, the closed-loop poles are seected in
advance. Assume that the closed-loop eigenvalues of Eq. (9) are assigned to be A}, Ay, ..., Ay, by
using the pole alocation, the gain matrix G, of the deterministic system (7) can be determined.

Suppose the right and the left modal matrices Uy = [uy, Uy, ..., Uy ] @d Vg = [Vy, Vy, ...y Vol
have been obtained and they satisfy the following equations

VoAqUg = Ag,  VoUg = | (12)

where Ay = diag(Agy, Agps -+-» Agan) i the diagona matrix of the eigenvalues of the deterministic
system.
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With the modal transformation

Xo(t) = Uo&(t)
the Eq. (7) can be transferred into

E(1) = A& (1) + Bouo(t)
and

Uo(t) = Go&(1)

where By = VoBo = (by, by, ...,b5)", Go = GoUp = (1,03, -, 0an)

(12)

(13)

(14)

(15)

If the single input is used, By is a column vector, G, is a row vector. Substituting Eq. (14) into

Eq. (13) yidlds

E(t) = (Ao+ BgGo)E(1)

(16)

In Eg. (16), suppose the assigned eigenvalues are /\:(i =12,...,2n), the corresponding

eigenvectorsare w;(i = 1, 2, ..., 2n), and they satisfy the following eigenproblem

(Ao + B{Go)W; = A w; (i=12,...,2n)
Because w; # 0 there exists
det(Ag+ B5Gg — A1) = 0

Solving Eq. (18), we obtain (Meirovitch 1990)

2n R D 2n D
o = [N =AWV [TA-AH  (=12..,2n)
k=1 O k=t 0
thus obtaining the matrix Gy = (91, Uz, ---» Oon) -
Considering Eq. (12), Eq. (14) becomes

Uo(t) = Go&(t) = GoVoXo(t) = GoXolt)

where

Go = Gg Vg

(17)

(18)

(19)

(20)

If the deterministic gain matrix G, is applied to the actual uncertain system, there must exist some
errors between the closed-loop eigenvalues and the assigned eigenvalues A, (i = 1, 2, ...,2n). Using
the random perturbation method, the expressions for computing the standard deviations of the

closed-loop eigenvalues Ai(i = 1,2, ...,2n) can be developed.
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4. Random eigenvalue analysis of the close-loop systems
If the gain matrix G, is introduced to the actual uncertain closed-loop system we obtain
X(t) = Ax(t) + BGox(t) = (A +BGy)x(t) (22)
The corresponding eigenvalue problem is

(A+BGg)¢ = A9 (22)

Because of the randomness of the system parameters, the state matrix A and input coefficient matrix
B are random, the eigensolutions A and ¢ are also random. To obtain the mean values and the
variances of eigenvalues, we substitute A, B, A;, ¢; for the summation of two terms. The first term is
deterministic part equal to the mean value of the corresponding random variable, and the second
term is random part with zero mean value. Thus, we have

A=Ay + €A, B = By+ €B, (23)

= a*tedi,  A=Agted;  (i=12...2n) (24)

where € is a small parameter. The terms with subscript “0” or “d” are deterministic, the terms with

subscript “r” are random. Here we assume the coefficient matrix B is deterministic. That is B, = 0.

Substituting Egs. (23) and (24) into Eq. (22) we obtain

[(Ag+ €A;) + BoGo] (9ai + €¢1i) = (A;i + €M) (Pai + €911) (i=12..,2n) ()
Expanding Eg. (25) and comparing the coefficients of the same power of ¢ yidds

& (Ao +BoGo)bui = Agia (i=1,2,..,2n) (26)

€7 (Ag+BoGo)fi + Ada = A+ Aids  (1=12,...,2n) (27)

From Sectioq 3, we know that the eigenvalues of the matrix (Aq + BoGo) are the assigned
eigenvalues A4(i = 1, 2, ..., 2n), and the eigenvalue problems are

(Ag+BoGo)® = DA,  (Ay+ByGy) W =WA (28)

According to the perturbation theory (Chen 1992), the perturbations for the eigenvalues of the
closed-loop systems can be expressed as

Ai=(@)'Ag (=12 ..,2n) (29)
The random parameter b;(j = 1, 2, ..., m) of systems can be expressed as

b= by+eb, (j=12 ...,m) (30)
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where by is the mean value of by, by; is the random variable with zero mean value. According to the
Taylor series when by; is small (compared with by) we can expand A about by(j = 1,2,...,m) as

m rﬁA(bly bz; ey bm)ﬂ

A= A(bdl! bdZ! ey bdm) + . 0 db Db- -b Sbl'j
j=1 J i Pdj
Comparing with Eqg. (23) we get
_ _ 3 PA(by, by, ..., by
Ay = A(bdll bdzv R bdm)a A = jZlD dbj Dbj _ bd,brj (31)
. _ rﬁA(bl’ b2, seey bm)|_|
letting [Ag;] = 0 b Db, b, Eq. (29) becomes
A= S (W) TAgIeb;  (1=12...m) (32)
=1

Expanding A; about by (j = 1, 2, ..., m) and comparing with Eq. (24) we get
_ m EﬁAi(bl’ b2, fany bm)D

Ay = A(Bgy, By o byr), Ay = b, 33
d ( dly Md2 dm) r j=l|:| ab] DbJ:de r ( )
The sensitivity of the eigenvalue A; is
_ PAi(by, by, ..., by _ T .
A =g db, Oy b, = (¢r) [Aq ] 9 (i=12,....m) (34)

5. The standard deviations for eigenvalues of the closed-loop systems

Because the eigenvalues of the system are complex, the real and the imaginary parts of the closed-
loop eigenvalues will be discussed, respectively.
Suppose

A=d+fj  j=J-1 (=12 ..,2n) (35)

A = At find (k=1,2,...,m) (36)

where the d; is real part of A;, the f; is imaginary part , the A; i, d; x and f; , are sensitivities of A;, d;
and f; respectively.

To compute the standard deviation of the f;, the f; can be expressed as f; = fiy + &f;, where the fq is
the mean value of the f; and the f;, is the random part with zero mean value. The variance of the f; is
given by

Var(f) = E[(f)"] -[E(f)]* = E[(¢f)]  (i=1,2,...,2n) (37)
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where f;, can be expressed as

_ < ¥ip R _
f, = J.ZlEBb-Db= by = 3 fiby  (i=12,...,2n) (39)

j b; = by i=1
Thus one has

00

Var(f) = [ ... [ (¢f,)?p(by, by, ..., by)dby...dby,

= 52_[0...; :iki(fi,l)(fi,k)brlbrkp(bl, by, ...,b)dby...db,, (i=1,2..,2n)  (39)

—00 |

where (f; ), (f;,) are the sensitivities of f; with respect to by, by, p(by, by, ..., by,) is the join
probability density function for by, b,, ..., b,,. From Eq. (39) we obtain

m

Var(f) = z i(fi,l)(fi,k)cov(bla by) (40)

I'=1k=1

where Cov(b,, by) is the covariance between b, and by given by

Cov(by, by) = 5ZI I by brp(by, by)dbdby, = 0y, Ty, Ty

—00 —00

(1=12..,m),(k=12,...,m) (41)

where p(b,, b,) is the join probability density function for b, and by, and py is the correlation
coefficient, and p, is the standard deviation for b,. The covariance between two eigenvalues is given

by

Cov(f,f.) = i g(fi,.)(f&k)Cov(b.,bk) (i=1,2,...2n)(s=1,2,...2n) (42

I'=1k=1

So the covariance matrix of f,(i =1, 2, ...,2n) of the closed-loop systems can be defined as

Var (f,)

T _ | Cov(f,, 1) Var(f,) sym

DA i @
Cov( o f1) CoV(fop fo) ... Var(fy)

From Eq. (40), Eq. (42) and Eq. (43) one gets

3)=[&l3

T

I3 “
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where [%b} is the sengitivity matrix for the imaginary parts of eigenvalues and [ ZbJ is the covariance

matrix of the random structure parameters. By using Eqg. (41), the [ zb} can be expressed as

b
DARIIGIES 5
where [agy] is the standard deviation matrix and [p] is the correlation coefficient matrix, given by
1
. 1 m
[0,] = diag[0y, Opy ... Opnl [p] = P21 Sy (46)
pml pmz 1

Substituting Eg. (45) into Eq. (44) yields

[i} - [%J[Ub][p][ab] :%JT 47

From Eq. (47) the standard deviations for imaginary parts of eigenvalues o; can be obtained

o = (var(f))"?  (i=12..,2n) (48)

The similar expressions for rea parts of eigenvalues can be derived

5| = [Fieatere[ 2] 9
oy = (var(d))”?  (i=12..,2n) (50)

The standard deviations, 0y, Can be used to estimate the stability robustness of the uncertain
control system.

6. Numerical example

In order to illustrate the application of the present method, a numerical example is given as
follows.

Consider a vibration control system of frame structure shown in Fig. 1. Assume mass (kg),
gtiffness (N/m) and damping (N/m.s™) are given as follow:

m=29 m=26 my=26, my=24, ms=17
kl() = 2000, k20 = 1800, k30 = 1600, k40 = 1400, k50 = 1200
Cio =40, Cxp=40, c3p=60, €»=80, c50=80
ki=kp+b, Ko=kyptb,, ks=kp+b, Ki=Kyo+b, ks=Ke+Dby
Ci=Cpthb,, C=Cyp+b,, C3=Cypt+b,, C4=Chptb,, C5==Csthy
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1M+

U(t) ——=

Cs iACJ LJI:’ P kji_ﬂks
Ci ic& |_J|:| m, kci_blﬁ
Cs iAC3 IJl‘—' m. k3idk3
C: _*—_1502 ==t m, kziakz
Ci iz!.Cl J_ k1_+—_£l.k1

FLl’ YRR

Fig. 1 The frame structure

where the mass parameters are assumed to be deterministic; tiffness parameters, kig, koo, Kao, Kao
and ksp are deterministic, and b, , b, , b, b, and b, are random with zero means; damping
parameters, Cio, Coo, Cao, C4o @Nd Csp are deterministic, and b, be,, b, b, and b, are random
with zero means. Assume that a control force, u(t), is input to ms. The mass matrix is

M = diaglm; m, my m, mg] = diag[29 26 26 24 17]

The diffness matrix of the system with random parameters is K = Ky + K, where Ky is the
deterministic part, K, the random part. The damping matrix of the system with random parameters
is C = C4 + C, where Cy is the deterministic part, C, the random part. Suppose the state vector is

X(1) = [aa(t) Q) Ga(t) du(t) As(t) Gu(t) Ga(t) As(t) Au(t) as(t)]’

Then the state matrix of the system is

N R 2 I o D V¥
MK -M7c] |-MTK, -MT'c| |-MTK, -M7'c,

where Aq is the state matrix with deterministic parameters and A, is the state matrix with random
parameters. The input coefficient matrix is B = By + B, where By is input coefficient matrix with
deterministic parameters, Bo=[0 0 0 0 0 0 0 0 0 1/17]; B, =0.

The eigenvaues of Ag are

Ao = —0.0963 + 2.5275i Aoz = —0.0963 — 2.5275i
Aoz = —1.0267 + 6.7292i Aos = —1.0267 — 6.7292i
Aos = —2.3488 + 10.2718i Aos = —2.3488 — 10.2718i
Aoz = —5.0397 + 12.5008i Aog = —5.0397 — 12.5008i

Aog = —3.1695 + 13.8673i Aoo = —3.1695 — 13.8673i
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To guarantee the stability of the control system, it is only necessary to impart the eigenvalues larger
negative real parts, it is not necessary to alter the frequencies. To this end, if modal damping ratio is
assumed to be 0.4 and the corresponding real parts of eigenvalues can be assigned as follows

Ay =-10110 + 252751 A, =-1.0110 - 2.5275i
Ay =-2.6917 + 672921 A, =-2.6917 - 6.7292i
As =-4.1087 + 1027181 Ag =-4.1087 - 10.2718;
A7 =-5.0003 + 125008  Ag =-5.0003 — 12.5008i

Mg =-5.5469 + 13.8673i Ay, = —5.5469 — 13.8673i

Using Eq. (20), the state feedback gain matrix for the system with deterministic parameters can be
obtained

Go = [4382.7060 -5104.3220 1720.9740 1991.4040 -1566.5190
1776021 -316.7099 384.1323 -107.0294 —227.0397]

If Gy, the feedback gain matrix, is applied to the actual system with uncertain parameters, the
closed-loop eigenvalues will have some perturbations.

The derivatives of A with respect to k, ¢ (i =1,2,...,5) are caculated. Using Eq. (34), the
sensitivity matrix of the rea and imaginary parts of the eigenvalues of the closed-loop system with
uncertain parameters are obtained, respectively.

Assume the standard deviations of the ki and the ¢, are g, = 0.01xk; and o, = 0.01x¢;, the
correlation coefficients of the k; and the ¢; are P, = 0.5, pee = 05 and Prc, = 0 (i=12..,5)
(j=1,2,...,5). That is, the stiffness coefficients of the ki are correlative and damping coefﬂuents
of the ¢, are also correlative, but the k; and the ¢; are statistically independent. Now using Eq. (47)
and Eqg. (49), we obtain the covariance matrices for the imaginary and real parts of eigenvalues. The
standard deviations for the imaginary parts of eigenvalues are oy = (var(f))"?. The standard
deviations for the real parts of eigenvalues are g = (var(d )) . The sensitivities for the real and
imaginary part of eigenvalues are listed in Table 1. The standard deviations of eigenvalues are listed
in Table 2. The data of the random design variables are listed in Table 3. In the Tables, d; ; and f; ;
(i=12,357,9), (j=1,2,...,10) denote sendtivities for the rea and imaginary part of
eigenvalues, respectively where the i denotes the ith eigenvalue and the j the jth structural parameter,

Table 1 The eigenvalue sengitivities with respect to the structure parameters

ki k ks Kq Ks C1 C2 C3 Cs Cs
dy | -.0001 -.0002 .0002 .0005 -.0007 -.0016 .0023 -.0029 -.0008 .0013
ds | -.0002 .0007 -.0023 .0016 -.0006 .0007 -.0072 .0053 -.0230 .0093
ds -.0010 -.0034 .0067 -.0060 .0021 -.0090 0363 -.0421 -.0104 .0076
dy .0014 .0013 -.0105 .0046 0045 -.0144 -.0966 .0657 1106 -.0641
dg | -.0002 .0016 .0059 -.0007 -.0054 .0070 .0287 -.0645 -.1165 -.0043
f1 ] .0007 -.0008 .0011 .0001 -.0002 -.0010 .0004 -.0006 .0012 -.0014
f3 ] .0001 .0008 .0001 .0028 -.0012 -.0011 .0028 -.0157 .0033 -.0008
fs, | .0013 -.0022 .0014 .0034 -.0016 -.0150 -.0263 .0627 -.0754 .0282
f7,; .0006 .0072 -.0010 -.0107 .0033 .0146 -.0201 -.1264 J111 .0397

fo j -.0004 -.0027 .0023 .0087 .0025 .0003 .0374 .0698 -.0586 -—.0883
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Table 2 Standard deviations of eigenvalues of the closed-loop system

MV sD P(ISD/MV [ 100%)
R(AY) ~1.010991 008878 878183
R(As) ~2.691697 036936 1.372217
R(As) -4.108713 112061 2.749308
R(A7) —5.000292 160277 3.205353
R(Ag) 5546924 143650 2580731
1(A) 2.527472 021161 837236
1(As) 6.729238 042796 635978
1(As) 10.271760 079731 776216
1(Ay) 12.500760 170464 1.363625
1(Ao) 13.867290 156912 1.131527

Table 3 Standard deviations of structure parameters

DV MV SD P(ISD/MV [* 100%)
ke 2000.0 20.0 10
ko 1800.0 180 10
ks 1600.0 16.0 10
K 1400.0 140 1.0
ke 1200.0 120 1.0
& 40.0 04 1.0
& 40.0 0.4 10
C 60.0 06 10
G 80.0 0.8 10
G 80.0 0.8 1.0

R(A) and 1(A) (i=1,3,5,7,9) the real and imaginary parts of eigenvalues of the system,
respectively, MV denotes the mean value, SD the standard deviation, DV the design variable, and P
is given by P = (|[SD/MV|)*100%. From Tables 1, 2, it can be shown that the standard deviation of
the R(A;) is 0.160277 which is 3.205353 percent of 5.000292 and standard deviation of the R(A,) is
0.008878 which is 0.878183 percent of 1.010991. The reason is that the d; ; is larger then the dy ;.
Similarly, standard deviation of the 1(A;) is 0.170464 which is 1.363625 percent of 12.500760 and
standard deviation of the 1(A3) is 0.042796 which is 0.635978 percent of 6.729238. The reason is
that the f; ; is larger then the f; ;.

7. Conclusions

The vibration control problems of systems with uncertain parameters are discussed in this paper,
which is approximated with the corresponding deterministic one. The uncertain parameters are
modeled to be random variables. The formulas for calculating the standard deviations of eigenvalues
of the closed-loop systems are derived with the random model and the random perturbation. To
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estimate the standard deviations of eigenvaues of the closed-loop systems with random parameters,
the mean values and standard deviations of the random parameters are required, and their
distribution function is not required. This makes the present method easier to implement for the
complex structural control problems in the sense that it does not require the probabilistic distribution
of the random parameters which is often difficult to obtain accurately. The results of the numerical
example of the vibration system show that how the uncertain parameters of systems affect the
stability robustness and that the method is effective for dealing with the vibration control of the
uncertain systems.
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