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Analytical solutions to magneto-electro-elastic beams
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Abstract. By means of the two-dimensional basic equations of transversely isotropic magneto-electro-
elastic media and the strict differential operator theorem, the general solution in the case of distinct
eigenvalues is derived, in which all mechanical, electric and magnetic quantities are expressed in four
harmonic displacement functions. Based on this general solution in the case of distinct eigenvalues, a
series of problems is solved by the trial-and-error method, including magneto-electro-elastic rectangular
beam under uniform tension, electric displacement and magnetic induction, pure shearing and pure
bending, cantilever beam with point force, point charge or point current at free end, and cantilever beam
subjected to uniformly distributed loads. Analytical solutions to various problems are obtained.
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1. Introduction

Due to its excellent piezoelectric/piezomagnetric properties, composites made of piezoelectric/
piezomagnetric materials have found widespread applications. Therefore, it is necessary to make
theoretical analysis and accurate quantitative descriptions of electric, magnetic and stress fields
inside piezoelectric/piezomagnetric composites in the working condition caused by the joint action
of mechanical loads, electric fields and magnetic fields, from the point of view of electro-magnetro-
mechanical coupling. So piezoelectric and magneto-electro-elastic materials have attracted a
considerable amount of research in recent years and many important achievements have been made
for these materials.

In regard to piezoelectric materials, Sosa and Castro (1994) presented the solutions for the cases
of concentrated loads and point charge applied at the line boundary of a piezoelectric half-plane.
Kogan et al. (1996) gave an analytical solution of infinite body with spheroidal inclusion under the
joint action of uniform loads, electric displacement, in-plane shearing and off-plane shearing. Ding
et al. (1997a) obtained the solutions for a piezoelectric wedge subjected to concentrated forces and
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point charge. Ding et al. (1997b) derived Green’s functions for a two-phase infinite piezoelectric
plane, in which all physical quantities are expressed in three harmonic functions. 

Magneto-electro-elastic materials possess simultaneously piezoelectric, piezomagnetic and
magnetoelectric effects. Liu et al. (2001) obtained Green’s functions for an infinite two-dimensional
anistropic magneto-electro-elastic medium containing an elliptical cavity based on the extended
Stroh Formalism. Pan (2001, 2002b) derived the exact solutions for three-dimensional anisotropy
linearly magneto-electro-elastic, simply-supported, and multi-layered rectangular plates under static
loads and analytical solutions for free vibrations, respectively. Pan (2002a) derived three-
dimensional Green’s functions in anisotropic magneto-electro-elastic full space, half space, and bi-
materials based on the extended Stroh formalism by applying the two-dimensional Fourier
transforms. Wang and Shen (2002) obtained the general solution expressed by five harmonic
functions and applied the derived general solution to find the fundamental solution for a generalized
dislocation and also to derive Green’s functions for a semi-infinite magneto-electro-elastic solid.
Wang and Shen (2003) presented analytic solutions for the plane problem of a inclusion of arbitrary
shape in an entire plane, or within one of the two bonded dissimilar half-plane. Hou et al. (2003)
analyzed the elliptical Hertizan contact of transversely isotropic magneto-electro-elastic bodies with
the general solutions in terms of harmonic functions. Chen et al. (2003) obtained analytical
solutions of simply supported magneto-electro-elastic circular plate under uniform loads with a
general solution in forms of harmonic functions.

In this paper, the works of Ding et al. (1997a,b) will be generalized into transversely isotropic
magneto-electro-elastic media. By means of the two-dimensional basic equations of transversely
isotropic magneto-electro-elastic media and the strict differential operator theorem, the general
solution in the case of distinct eigenvalues is derived, in which all mechanical, electric and magnetic
quantities are expressed in four harmonic displacement functions. Then, with the trial-and-error
method, exact solutions to some simple problems are acquired, which include magneto-electro-
elastic rectangular beam under uniform tension, electric displacement and magnetic induction, pure
shearing and pure bending. We also give out the analytical solutions in harmonic polynomials to
cantilever beam with point force, point charge or point current at free end, and subjected to
uniformly distributed loads on upper and bottom surfaces. 

2. General solution to the plane problem of magneto-electro-elastic solid

For the transversely isotropic magneto-electro-elastic bodies, the basic equations have been given
as in Pan (2001) (where xoy plane denotes the isotropic plane). If we introduce such assumptions
for plane problems as the displacements ui, the electric potential Φ and magnetic potential Ψ are
independent of y for the plane-strain problems, the basic equations for two-dimensional magneto-
electro-elastic solid in the xoz coordinates can be simplified as follows: 

(1)

∂σx

∂x
--------

∂τxz

∂z
--------- fx+ + 0,

∂τ xz

∂x
---------

∂σz

∂z
-------- fz+ + 0==

∂Dx

∂x
---------

∂Dz

∂z
---------+ fe,

∂Bx

∂x
--------

∂Bz

∂z
--------+ fm==
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(2)

where σi(τij), ui, Di and Bi are the components of stress, displacement, electric displacement and
magnetic induction, respectively; Φ and Ψ are the electric potential and magnetic potential,
respectively; fi, fe and fm are body force, free charge density and current density, respectively
(According to electromagnetic theorem, fm = 0); cij, eij, dij, εij, gij and µij are the elastic, piezoelectric,
piezomagnetic, dielectric, electromagnetic and magnetic constants, respectively. For the plane-stress
problems, we take the stress component , electric displacement Dy = 0, magnetic
induction By = 0 and the plate width b = 1, then the basic equations can also be simplified and
expressed as Eqs. (1), (2), in which cij, eij, dij , εij, gij and µij shall be replaced with the coefficients

 and , respectively. The coefficients are expressed in terms of material
constants and listed in Appendix A.

Ding et al. (1997a,b) derived the solutions to piezoelectric plane problem, in which all physical
quantities are expressed in three harmonic functions. With the method and the strict differential
operator theorem presented in Ding et al. (1997a,b), the general solutions of two-dimensional
magneto-electro-elastic media in the case of distinct eigenvalues can be easily derived and expressed
in four harmonic functions as follows:

(3)

where the generalized displacements and stresses as follows:

(4)

the functions ψj satisfy the following equations:

(5)
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where ,  are the four roots of the following equations (We take
Re(sj) > 0):

(6)

where the coefficients  in Eqs. (3) and an(n = 1~5) in Eq. (6) are the same
as those listed in Hou et al. (2003). ω4j can be calculated by the following equation:

(7)

3. Discussion about degeneration of the above general solution 

In calculating kmj, ωmj, an in Eqs. (3) and Eq. (6), taking, d15 = d31 = d33 = 0, g11 = g33 = 0, µ11= 0
and µ33 = 1, and making j change from 1 to 3, m from 1 to 2, respectively, we will have a5 = 0,
s4 = 0. Then, it can be seen that the degenerated general solution without magnetic quantities is the
same as that of plane problem of piezoelectric media given by Ding et al. (1997a,b).

Furthermore, taking  and
, then from Eq. (6) we will have  and . Then, taking j in Eqs. (3) from 1

to 2 and m = 1, respectively, we can find that the general solution is generated into that of elastic
problem.

4. Exact solution to some simple problems 

In this section, some simple problems are studied only by use of harmonic polynomials presented
in Appendix B. Because displacement functions ψj satisfy weighted harmonic Eq. (5), all harmonic
polynomials in Appendix B can be chosen as displacement functions simply by replacing z with zj

just as illustrated in the following sections.

4.1 Rigid body displacements, identical electric and magnetic potential

Using  and  in Eq. (B2) in Appendix B, we constitute the displacement
function 

(8)

where A1j, B1j, B2j are unknown constants to be determined.
Substituting Eq. (8) into Eqs. (3) and selecting the suitable constants, we have 

(9)

where  and Ψ0 are unknown constants denoting rigid body displacements, rigid body
rotation, identical electric and magnetic potential. Substituting Eq. (9) into Eqs. (2), we have 

(10)

zj sjz j 1 2 3 4, , ,=( )= sj j 1~4=( )

a1s
8

a2s
6– a3s

4
a4s

2– a5+ + 0=

kmj ωmj m 1~3=  j 1~4=,( ),

ω4 j ω1 jsj
2 j 1 2 3 4, , ,=( )–=

e15 e31 e33 0= = =  d15 d31 d33 0= = =  g11 g33 0= =  ε11 0=  µ11 0=  ε33 1=, , , , ,
µ33 1= a4 a5 0= = s3 s4 0= =

ϕ1
0

x z,( )  ϕ1
1

x z,( ), ϕ2
1

x z,( )

ψj A1jx B1 jzj B2 jxzj j 1~4=( )+ +=

u u0 ω0z+=  w w0 ω0x–=  Φ Φ0=  Ψ Ψ0=, , ,

u0 w0 ω0 Φ0, , ,

σx σz τ xz 0= = =  Dx Dz 0= =  Bx Bz 0= =, ,
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4.2 Uniform tension, electric displacement and magnetic induction and pure shearing

Using  and  in Eq. (B2) in Appendix B, we constitute the displacement function 

(11)

where A2j and B2j are unknown constants to be determined.
Substituting Eq. (11) into Eqs. (3) results in 

 (12a)

(12b)

(12c)

(12d)

(12e)

The above equations contain seven sensible solutions, that is a magneto-electro-elastic rectangular
beam subjected to uniform tension, electric displacement and magnetic induction in x and z
directions and under pure shearing. The boundary conditions are 

, (13)

In additional, we take the condition of no rotation as follows:
 

(14)

Substituting Eqs. (12) into Eqs. (13)-(14) leads to:
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(16)

The exact solution for a magneto-electro-elastic rectangular beam subjected to uniform tension,
electric displacement and magnetic induction and under pure shearing can be obtained by
substituting Eqs. (15)-(16) into Eqs. (12a)-(12e), in which stress components, electric displacements
and magnetic induction are 

(17a)

(17b)

The seven sensible solutions contained of Eqs. (17a)-(17b) are 

4.2.1 Uniform tension in z direction:

(18)

4.2.2 Uniform tension in x direction:

(19)

4.2.3 Uniform electric displacement in x direction:

(20)

4.2.4 Uniform electric displacement in z direction:

(21)

4.2.5 Uniform magnetic induction in x direction:

(22)

4.2.6 Uniform magnetic induction in z direction:

(23)

4.2.7 Pure shearing

(24)

B21

B22

B23

B24 
 
 
 
 
 
  s1ω11  s2ω12  s3ω13  s4ω14

s1ω21  s2ω22  s3ω23  s4ω24

s1ω31  s2ω32  s3ω33  s4ω34

s1 1 k11–( )  s2 1 k12–( )  s3 1 k13–( )  s4 1 k14–( )

1– τ0

D1

B1

0 
 
 
 
 
 
 

=

σx σ1= , σz σ2= , τxz τ0=

Dx D1=  Dz D2=  Bx B1=  Bz B2=, , ,

σ2 0≠  σ1 τ0 0= =  D1 D2 0= =  B1 B2 0= =, , ,

σ1 0≠  σ2 τ0 0= =  D1 D2 0= =  B1 B2 0= =, , ,

D1 0≠  σ1 σ2 τ0 0= = =  D2 0=  B1 B2 0= =, , ,

D2 0≠  σ1 σ2 τ0 0= = =  D1 0=  B1 B2 0= =, , ,

B1 0≠  σ1 σ2 τ0 0= = =  D1 D2 0= =  B2 0=, , ,

B2 0≠  σ1 σ2 τ0 0= = =  D1 D2 0= =  B1 0=, , ,

τ0 0≠  σ1 σ2 0= =  D1 D2 0= =  B1 B2 0= =, , ,
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From the solution Eqs. (9)-(10) to beam with rigid body displacements, identical electric and
magnetic potential, it is found that the variable x in Eqs. (12a,b) can be replaced with x − L or x − L/2
while stress components, electric displacements and magnetic induction remain their values.

4.3 Pure bending 

Using  in Eq. (B2) in Appendix B, we constitute the displacement function 

(25)

where B3j are unknown constants to be determined.
Substituting Eq. (25) into Eqs. (3) results in 

(26a)

(26b)

(26c)

(26d)

The above equations contain the physically sensible solution for a magneto-electro-elastic
rectangular beam under pure bending as described below. 

(27)

Substituting Eqs. (26) into Eqs. (27) gives:
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
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
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∑ 0=



202 Aimin Jiang and Haojiang Ding

(31)

The unknown constants  can be calculated from Eqs. (28)-(31) as follows:

(32)

where .

The analytical solutions for a magneto-electro-elastic rectangular beam under pure bending can be
obtained by substituting Eq. (32) into Eqs. (26a)-(26d), in which displacements, stress components,
electric displacements and magnetic induction are 

(33a)

(33b)

It can be seen from Eqs. (33a,b) that stresses, electric displacement and magnetic induction are
independent of material constants. 

It is apparently that solution of Eqs. (33a,b) is also the analytical solution for a cantilever
rectangular beam under bending moment M at free end while the other end x = 0 is fixed. 

5. Cantilever beam with point force in z direction, point charge and point current
at free end 

Using  and  in Eq. (B2) in Appendix B, we constitute the displacement function 

(34)

where B2j, B4j are unknown constants to be determined.
Substituting Eq. (34) into Eqs. (3) and superposing the rigid body displacements solutions in Eqs. (9)
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 
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(35c)

(35d)

(35e)

(35f)

(35g)

(35h)

(35i)

The boundary conditions of a cantilever beam shown in Fig. 1 with a point force P in z direction,
point charge Q and point current J at free end, are

(36)

Φ Φ0 sjk2 jB2 jx
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4
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∑+
j 1=

4
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4
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





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∂x
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
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
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

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Fig. 1 A cantilever beam
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Substituting Eqs. (35) into Eqs. (36) results in 

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

Then, B2j, B4j( j = 1~4) can be determined from Eqs. (37)-(44) (eight equations altogether). Then,
substituting B2j and B4j into Eq. (45), we can obtain the unknown constants w0. At the same time,
we can calculate Φ0 and Ψ0 through the conditions of Φ = 0 and Ψ = 0 at two appointed points, i.e.,

, respectively. Finally, the solution is solved for a cantilever beam, which
is under point force P in z direction (Q = 0 and J = 0) and the stresses are simplified as 

(46)

The stresses are independent of material constants.

If we replace  in Eqs. (36) with , then Eq. (44) will be changed and the other

solution to the above question can be obtained. These two kinds of solutions are similar to those of
elasticity problem given by Timoshenko and Goodier (1970). 
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∑– P–=

h sjω2jB2 j
j 1=
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6. Cantilever beam under uniform loads

The boundary conditions of a cantilever beam shown in Fig. 1 under uniform loads are

When z = ±h/2: σz = ±q/2, τxz = 0, Dz = 0, Bz = 0 (47)

When x = 0: (48)

At point : (49)

Using  and  in Eq. (B2) in Appendix B, we constitute the displacement function 

(50)

where B3j and B5j are unknown constants to be determined.
Substituting Eq. (50) into Eqs. (3) and superposing the rigid body displacements solutions in

Eq. (9) leads to

(51a)

(51b)

 (51c)

(51d)

(52a)

(52b)

(52c)

(52d)

(52e)

σxzdz
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1
5
---zj
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(52f)

(52g)

where  and  are unknown constants to be determined.
From Eqs. (47), we arrive at 

(53)

(54)

(55)

(56)

(57)

 (58)

(59)

From x = 0: , we have 

(60)

Then, the unknown constants B3j and B5j ( j = 1~4) can be determined from the eight equations
Eqs. (53)-(60). At the same time, we find that the four equations left in boundary condition Eqs. (48)
are satisfied automatically. Then, the three unknown constants u0, ω0 and w0 can be determined from
Eqs. (49), Φ0 and Ψ0 can be obtained through the conditions of Φ = 0 and Ψ = 0 at two appointed
points, i.e., , respectively. Finally, the solution is obtained completely
for a cantilever rectangular beam that is uniformly loaded on the surfaces (z = ±h/2) with ±(q/2),
respectively. 

Superposing this solution on the solution of a rectangular beam under uniform tension in z
direction as discussed in Section 4.2 and letting σ2 = q/2 and replacing x in Eqs. (12a,b) with (x − L)
result in the solution for a cantilever beam fixed at the end x = L, which is loaded with uniform q on
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the upper surface z = +h/2 and free on the bottom one.
Based on Eqs. (51)-(52), all the displacements, stresses, electric and magnetic quantities at any

inner or boundary point of the cantilever beam can be obtained. In the calculation, we treat the
problem as a plane-stress one and set L = 0.30 m, h = 0.02 m, q = −100 Pa, Φ(L, 0) = 0 and
Ψ(L, 0) = 0. Assume that a piezoelectric cantilever beam and an elastic cantilever beam have the
same constants as those of magneto-electro-elastic beam shown in Table 1, and the same geometric
dimensions and boundary conditions. The results of different beam at three reference points, i.e.,
A(0.150, 0.010), B(0.150,0.005) and C(0.150,0.000) are listed in Table 2 for comparison, where
“M”, “P” and “E” denote magneto-electro-elastic, piezoelectric and elastic material beam,
respectively. It is obvious that the displacements caused by distributed load on surface are different,
whereas the stresses exhibit no noticeable difference.

7. Conclusions

Due to material anisotropy and coupling between mechanical deformation, electric field and
magnetic field, analytical solutions for transversely isotropic magneto-electro-elastic materials are
much more difficult to obtain and the process of solution is more complicated, compared with those
in elasticity theory of isotropic materials. In general, stress components and displacements are
dependent on material constants. However, in some solutions, the stresses as shown in Eqs. (10),
(17a), (17b), (33b) and (46) are independent of material constants and in agree with those of the
theory of elasticity for isotropic materials. The analytical solutions obtained in this paper are also

Table 1 Material properties (Pan 2002a)

C11

1.66 × 1011
C12

7.7 × 1010
C13

7.8 × 1010
C33

1.62 × 1011
C44

4.3 × 1010
C66

4.45 × 1010

e31

−4.4
e33

18.6
e15

11.6
d31

580.3
d33

699.7
d15

550

ε11

1.12 × 10−8
ε33

1.26 × 10−8
g11

5.0 × 10−12
g11

3.0 × 10−12
µ11

5 × 10−6
µ33

10 × 10−6

Unit: C−N/m2, e−C/m2, d−N/Am, ε−C/Vm, µ−Ns2/C2, g−Ns/VC.

Table 2 Cantilever beam under uniformly distributed load

Point w Φ Ψ σz Dz Bz σx

A(M) −0.4310E-6 −0.2362E+1 −0.1403E+0 −0.5000E+2 0.0000 0.0000 +0.1685E+5
A(P) −0.4412E-6 −0.3975E+1 _____ −0.5000E+2 0.0000 _____ +0.1685E+5
A(E) −0.4612E-6 _____ _____ −0.5000E+2 _____ _____ +0.1685E+5
B(M) −0.4309E-6 −0.2043E+1 −0.1479E+0 −0.3437E+2 −0.2023E-8 −0.1266E-6 +0.8448E+4
B(P) −0.4411E-6 −0.3674E+1 _____ −0.3437E+2 −0.1895E-8 _____ +0.8447E+4
B(E) −0.4610E-6 _____ _____ −0.3438E+2 _____ _____ +0.8446E+4
C(M) −0.4308E-6 −0.1936E+1 −0.1505E+0 0.0000 0.0000 0.0000 0.0000
C(P) −0.4410E-6 −0.3574E+1 _____ 0.0000 0.0000 _____ 0.0000
C(E) −0.4610E-6 _____ _____ 0.0000 _____ _____ 0.0000
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useful for study of other problems relating to more complicated loads and boundary conditions by
the superposition principle. Moreover, these solutions can serve as benchmarks for numerical
methods such as the finite element method, the boundary element method, etc. 
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Appendix A:
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Appendix B:

Harmonic polynomials for the plane problems can be written in the following form:

(B1)

where  denotes the largest integer . From Eq. (B1), the first seventeen harmonic polynomials

can be written as follows:

 (B2)
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