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Analytical solutions to magneto-electro-elastic beams
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Abstract. By means of the two-dimensional basic equations of transversely isotropic magneto-electro-
elastic media and the dstrict differential operator theorem, the general solution in the case of distinct
eigenvalues is derived, in which al mechanica, electric and magnetic quantities are expressed in four
harmonic displacement functions. Based on this general solution in the case of distinct eigenvalues, a
series of problems is solved by the tria-and-error method, including magneto-electro-elastic rectangular
beam under uniform tension, electric displacement and magnetic induction, pure shearing and pure
bending, cantilever beam with point force, point charge or point current at free end, and cantilever beam
subjected to uniformly distributed loads. Anayticd solutions to various problems are obtained.

Key words: genera solution; magneto-dectro-elastic plane; harmonic function; analytical solution.

1. Introduction

Due to its excellent piezoelectric/piezomagnetric properties, composites made of piezoelectric/
piezomagnetric materials have found widespread applications. Therefore, it is necessary to make
theoretical analysis and accurate quantitative descriptions of dectric, magnetic and stress fields
inside piezoelectric/piezomagnetric composites in the working condition caused by the joint action
of mechanical loads, electric fields and magnetic fields, from the point of view of e ectro-magnetro-
mechanical coupling. So piezoelectric and magneto-electro-elastic materials have attracted a
considerable amount of research in recent years and many important achievements have been made
for these materials.

In regard to piezoelectric materials, Sosa and Castro (1994) presented the solutions for the cases
of concentrated loads and point charge applied at the line boundary of a piezoeectric haf-plane.
Kogan et al. (1996) gave an andytical solution of infinite body with spheroidal inclusion under the
joint action of uniform loads, electric displacement, in-plane shearing and off-plane shearing. Ding
et al. (1997a) obtained the solutions for a piezoelectric wedge subjected to concentrated forces and
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point charge. Ding et al. (1997b) derived Green's functions for a two-phase infinite piezoelectric
plane, in which al physical quantities are expressed in three harmonic functions.

Magneto-electro-elastic materials possess simultaneously piezoelectric, piezomagnetic and
magnetoelectric effects. Liu et al. (2001) obtained Green's functions for an infinite two-dimensiona
anistropic magneto-electro-elastic medium containing an eliptica cavity based on the extended
Stroh Formalism. Pan (2001, 2002b) derived the exact solutions for three-dimensiona anisotropy
linearly magneto-electro-elastic, simply-supported, and multi-layered rectangular plates under stetic
loads and analytical solutions for free vibrations, respectively. Pan (20028) derived three-
dimensional Green's functions in anisotropic magneto-electro-elastic full space, half space, and bi-
materials based on the extended Stroh formalism by applying the two-dimensional Fourier
transforms. Wang and Shen (2002) obtained the general solution expressed by five harmonic
functions and applied the derived general solution to find the fundamental solution for a generalized
dislocation and also to derive Green's functions for a semi-infinite magneto-electro-elastic solid.
Wang and Shen (2003) presented analytic solutions for the plane problem of a inclusion of arbitrary
shape in an entire plane, or within one of the two bonded dissimilar half-plane. Hou et al. (2003)
analyzed the dliptical Hertizan contact of transversely isotropic magneto-electro-elastic bodies with
the general solutions in terms of harmonic functions. Chen et al. (2003) obtained analytica
solutions of simply supported magneto-electro-elastic circular plate under uniform loads with a
general solution in forms of harmonic functions.

In this paper, the works of Ding et al. (1997ab) will be generdized into transversely isotropic
magneto-electro-elastic media. By means of the two-dimensional basic equations of transversely
isotropic magneto-electro-dlastic media and the strict differential operator theorem, the genera
solution in the case of digtinct eigenvalues is derived, in which al mechanical, electric and magnetic
quantities are expressed in four harmonic displacement functions. Then, with the tria-and-error
method, exact solutions to some simple problems are acquired, which include magneto-electro-
dagtic rectangular beam under uniform tension, electric displacement and magnetic induction, pure
shearing and pure bending. We aso give out the analytical solutions in harmonic polynomials to
cantilever beam with point force, point charge or point current a free end, and subjected to
uniformly distributed loads on upper and bottom surfaces.

2. General solution to the plane problem of magneto-electro-elastic solid

For the transversely isotropic magneto-electro-elastic bodies, the basic equations have been given
as in Pan (2001) (where xoy plane denotes the isotropic plane). If we introduce such assumptions
for plane problems as the displacements u;, the electric potential @ and magnetic potential W are
independent of y for the plane-strain problems, the basic equations for two-dimensional magneto-
electro-elastic solid in the xoz coordinates can be simplified as follows:

90, , 01, o1, , 0,

1) o"'z+fx=0’ X o"'z+fz=0
oDy, 9D, _ 9By, 9B, _
ox | 9z fe. 0x+az_fm (1)
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where gi(t;), u, D; and B; are the components of stress, displacement, electric displacement and
magnetic induction, respectively; @ and W are the electric potentiadl and magnetic potentid,
respectively; f;, fo and f,, are body force, free charge density and current density, respectively
(According to electromagnetic theorem, f,, = 0); ¢;, &, dj, &, g; and ; are the elastic, piezoelectric,
piezomagnetic, dielectric, electromagnetic and magnetic constants, respectively. For the plane-stress
problems, we take the stress component o, = 1, = T,, = 0, electric displacement D, = 0, magnetic
induction B, = 0 and the plate width b = 1, then the basic equations can aso be smplified and
expressed as Egs. (1), (2), in which ¢;, e;, d;, &, g; and L4 shall be replaced with the coefficients

Cij» &, dij, &j,0;; and p;;, respectively. The coefficients are expressed in terms of materia
constants and listed in Appendix A.

Ding et al. (1997a,b) derived the solutions to piezoelectric plane problem, in which al physical
quantities are expressed in three harmonic functions. With the method and the strict differentia
operator theorem presented in Ding et al. (1997ab), the general solutions of two-dimensiona
magneto-electro-elastic media in the case of distinct eigenvalues can be easily derived and expressed
in four harmonic functions as follows:

u-;—‘ W—qum,dz J-Zw4,

On = . wm—lp‘ T, = : s]wm-@j- (m=1,2,3) 3
m j:Z lo"'ij m j; )9z,

where the generalized displacements and stresses as follows:

W, =w, W, =@, w;=W¥
o,=0, 0,=D, 03=8B,

I = Tyy I = Dx’ I3 = Bx (4)
the functions ; satisfy the following equations:

O O
giJr%qJ,_ (j=1,23,4) ®)
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where z = sz(j =1,2,3,4), s(j=1~4) are the four roots of the following equations (We take
Re(s) > 0):

8 6 4 2
Qs —a,s tags —quSs ta; = 0 (6)

where the coefficients Ky, Wy, (m=1~3, j=1~4) in Egs. (3) and a,(n=1~5) in Eq. (6) are the same
as those listed in Hou et al. (2003). wy can be calculated by the following equation:

wy = —wys  (j=1,2,3,4) @

3. Discussion about degeneration of the above general solution

In calculati ng km]', Wy, an in Egs. (3) and Eq. (6), taklng, Ois =d3; =dzs =0, 011 = O3 = O, =0
and Lz = 1, and making j change from 1 to 3, m from 1 to 2, respectively, we will have as =0,
s4=0. Then, it can be seen that the degenerated general solution without magnetic quantities is the
same as that of plane problem of piezoelectric media given by Ding et al. (1997ab).

Furthermore, taking es=€3=633=0, d;5=0d3;=d33=0, g1, =033=0, &,=0, t;;=0, £55=1 and
Uz = 1, then from Eq. (6) we will have a,=a;=0 and s;=s,=0. Then, taking j in Egs. (3) from 1
to 2 and m=1, respectively, we can find that the genera solution is generated into that of eastic
problem.

4. Exact solution to some simple problems

In this section, some ssimple problems are studied only by use of harmonic polynomias presented
in Appendix B. Because displacement functions ; satisfy weighted harmonic Eg. (5), all harmonic
polynomials in Appendix B can be chosen as displacement functions simply by replacing z with z
just as illustrated in the following sections.

4.1 Rigid body displacements, identical electric and magnetic potential

Using ¢3(x, 2), ¢1(x, 2) and @3(x, ) in Eq. (B2) in Appendix B, we constitute the displacement
function

P; = AyX+ Byzj+ Byxz (1 =1~4) ®

where Ay, Byj, By are unknown constants to be determined.
Substituting Eq. (8) into Egs. (3) and selecting the suitable constants, we have

U= Up+ WhZ, W= Wo—wpX, P =Dy, W=, 9)

where ug, Wo, ay, ®o and W, are unknown constants denoting rigid body displacements, rigid body
rotation, identical electric and magnetic potential. Substituting Eq. (9) into Egs. (2), we have

0,=0,=1,=0 D,=D,=0, B,=B,=0 (10)



Analytical solutions to magneto-electro-elastic beams

199

4.2 Uniform tension, electric displacement and magnetic induction and pure shearing

Using ¢3(x, z) and ¢3(x, Z) in Eq. (B2) in Appendix B, we constitute the displacement function

where Ay and By are unknown constants to be determined.

2 2
W = Ay(X =Z) + ByXxz

Substituting Eq. (11) into Egs. (3) results in

4 4
u= (2A,x + B,;z), w = Ky (Byix—2A,2)
j; J 1 ];% J J 1
4 4
1= =

4 4 4
Ox = -2 0)4~A2-, 0, = -2 wl'AZ'! 0= Sj Wy BZ'
jZl 1774 jZl I j:zl 174

D,

4
B,= 2% wyA,;, B, =
z ]Zl ] ] X

J

(i = 1-4)

—Zjiwszzja Dy = jiSijiBZJ

4

lej Wy By

(11)

(129)

(12b)

(12¢)

(12d)

(12¢)

The above equations contain seven sensible solutions, that is a magneto-electro-elastic rectangular
beam subjected to uniform tension, electric displacement and magnetic induction in x and z
directions and under pure shearing. The boundary conditions are

In additional, we take the condition of no rotation as follows:

Substituting Egs. (12) into Egs. (13)-(14) leads to:

0o, = 0, 0o, =
L Otz T h, Ot =
iz: Xle, 22152 EDZZ
=B, = B, HB, =

du_ow _

0z 0x

EIAZ% Wy Wp W3 Wy —15025
g’*ﬁa _ lwn wy wn ED%
ot 20wy wp wn Wy B
Poq] Wy Wy Wiz Wil O]

03
To
D, (13)
B
(14)
(15
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S S, Wy, S3y3 Sy ETOE
S101 S, Wy S3ly3 Sy oy ED 1
S Wy S Wsp S3Ws3 Siws | OB4

O
Si(1-Kp) S(1-Kpp) S3(1-Kyz) Ss(1-Ky)| O

(16)

The exact solution for a magneto-electro-elastic rectangular beam subjected to uniform tension,

eectric displacement and magnetic induction and under pure shearing can be obtained by
substituting Egs. (15)-(16) into Egs. (12a)-(12€), in which stress components, electric displacements

and magnetic induction are

Oy= 01, 0,= 05 Ty =T (179)
D,=D, D,=D,, B,=B,, B,=B, (17b)
The seven sensible solutions contained of Eqgs. (17a)-(17b) are
4.2.1 Uniform tension in z direction:
0,20, 0,=17,=0, D, =D,=0, B,=B,=0 (18)
4.2.2 Uniform tension in x direction:
0,#20, 0,=1,=0, D, =D,=0,B,=B,=0 (19
4.2.3 Uniform electric displacement in x direction:
D,#0, 0,=0,=1,=0, D, =0, B, =B,=0 (20
4.2.4 Uniform electric displacement in z direction:
D,#0, 0,=0,=17,=0, D, =0, B;=B,=0 (2D
4.2.5 Uniform magnetic induction in x direction:
B,#20, 0,=0,=1,=0, D,=D,=0, B,=0 (22)
4.2.6 Uniform magnetic induction in z direction:
B,#20, 0,=0,=1,=0, D,=D,=0, B, =0 (23)
4.2.7 Pure shearing
7,20, 0,=0,=0, D,=D,=0, B, =B,=0 (24)
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From the solution Egs. (9)-(10) to beam with rigid body displacements, identical electric and
magnetic potentia, it is found that the variable x in Egs. (12a,b) can be replaced with x—L or x— L/2
while stress components, eectric displacements and magnetic induction remain their values.

4.3 Pure bending

Using ¢§(x, 2) in Eq. (B2) in Appendix B, we congtitute the displacement function

1 .
= Bys(x ) = By{'z-3737 (1=1-4) (25)

where Bg are unknown constants to be determined.
Substituting Eqg. (25) into Egs. (3) resultsin

4 4 4
u=2Y% Bgx, w= sjkljB3j(x2—zj2), b= sjksz3j(x2—zjz) (269)
2 2 2
Y = ¥ sk,B (xX*-2) 25 w,B (26b)
= ) SKgBglX —Z), Ox=—2 ) WyibsZ
2 2
4 4 4
= -2\ wy;Byz, D,=-2Y w,;Byz, B,=-2F wyB;z (26¢)
iZ1 j; j:zl :
4 4 4
T, = Z_Zq w;BgX, Dy = Z-ZS] w,;Bgx, B, = Z-Zsj 3 B4;x (26d)
1= = =

The above equations contain the physically sensible solution for a magneto-electro-elastic
rectangular beam under pure bending as described below.

Eo-x = 0pZ EO—Z =0
|:| TXZ = O DTXZ = O
X =zL/2: O , Z=%h/2: O (27
0Dy=0 M, =0
4B, =0 B, =0
Substituting Egs. (26) into Egs. (27) gives:
4
Zsﬁwljsm =0 (28)
]' =
4
Zsjwsz3j =0 (29)
j =

4
_Zsj wyBy = 0 (30)
i€
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4 o]
Zq Wy By = _EO (31
j =
The unknown constants Bg;(j = 1~4) can be calculated from Egs. (28)-(31) as follows:

1

%BS% SiWy SWy; S3lhz Sy

EB32‘E — M st S0 S3lhz S0y
3

3] h™ sy SWp S S0y

O
%33@ S1Wy  SWirp Sglyz  Sply

(32)

dBEhEC

3
_ Gl
where M = 1
The analytical solutions for a magneto-electro-elagtic rectangular beam under pure bending can be
obtained by substituting Eq. (32) into Egs. (26a)-(26d), in which displacements, stress components,
electric displacements and magnetic induction are

4 4

Uu=2S5Byx, W,= S sk;Bsi(X-2) (m=1273) (333)
J_:Zl 3j m j;% mj =3 ]

lef]_:iv" O-zz.[xz:Ol DX:DZ:O’ BX:BZ:0 (33b)

It can be seen from Egs. (33a,b) that stresses, dectric displacement and magnetic induction are
independent of material constants.

It is apparently that solution of Egs. (33ab) is also the analytical solution for a cantilever
rectangular beam under bending moment M at free end while the other end x = 0 is fixed.

5. Cantilever beam with point force in z direction, point charge and point current
at free end
Using ¢5(x, z) and ¢(x, Z) in Eq. (B2) in Appendix B, we constitute the displacement function
g, = Byxz + B4](x3zj —xzjs) (j =1~4) (34
where B, B4 are unknown constants to be determined.

Substituting Eg. (34) into Egs. (3) and superposing the rigid body displacements solutions in Egs. (9)
results in

4 4
u-= B,z + B4J-(3xzzj - 213) (359)
PREEAPY

4 4
W= w,+ nglj Byx + _ZsﬁkljB4j(x3—3xzf) (35h)

] ]
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4 4
® = D+ ngzjszjw quzjsq(xtsxzf) (35¢)
i< i<
4 4 3 2
W= Y,+ Zsjksszjx+ lejk3jB4j(X —-3xZ) (35d)
i i
4 4
O, = =6y wyByxz, 0,=-6Y w;Byxz (35€)
2, 2,
4 4
D, = 6Y wyByxz, B,=-6Y w;B,xz (35f)
2, 2,
. B, + % B, (3x°—3%) (350)
Tz = ) S0 By+ ) §B4(3X° — 37 g
2 2
D S B, + S B, (3x° —32°) (35h)
x T ) Wbyt K §0pB,(SX — 37
2 2
B = B, + % B, (3X° —32) (35i)
x = ) S3By T A §0siB,(3X — 37 |
2 2

The boundary conditions of a cantilever beam shown in Fig. 1 with a point force P in z direction,
point charge Q and point current J at free end, are

Oo, = 0
5% 7 7 gz = - p4="0
T, = O |j[—h/2 L0z = = Oow
z=zh/2: O v X=0: Ounoe , (x=Lz=0):=— =0 (36)
P, =0 %[_h/szdz = +Q 09X
EBZ:O D+h/ZBd = +] DW:O
g[—h/z x0Z =
h/2
X
h/2
L
V4

Fig. 1 A cantilever beam
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Substituting Egs. (35) into Egs. (36) results in

4
W, By = 0 (37)
];% 1j 24
4
(0, B, = 0 (39)
];% j 24
4
sw;B, =0 (39)
j;J j =4
4 3h° & 3
2 9@By =775 §By = 0 (40)
i= i=
hs B e o B P (41)
S§Wijby— 77 3 § Wby = —
j:zl J J 4]; J ]
hs B h' e o B Q (42)
§WBy =7 S S wBy = +
j; J ] 4]; J ]
hs B L B J (43)
SWyBy — 7 Y S wyBy = +
j;l j 2 41_; j 4]
4 2 4
i< i<
4 3 4
)= ] =

Then, By, B4(j = 1~4) can be determined from Egs. (37)-(44) (eight equations altogether). Then,
substituting By and By into Eq. (45), we can obtain the unknown constants wy. At the same time,
we can calculate @y and W, through the conditions of @ =0 and W =0 at two appointed points, i.e.,
d(x',2')=0,¥Y(x",Z") =0, respectively. Finaly, the solution is solved for a cantilever beam, which
is under point force P in z direction (Q =0 and J = 0) and the stresses are simplified as

_12P _6Ph° 1 B
_sz, TXZ—FSZ——ZD, g,=0 (46)

X

The stresses are independent of material constants.

If we replace g—"xv = 0 in Egs. (36) with %Z‘ = 0, then Eq, (44) will be changed and the other
solution to the above question can be obtained. These two kinds of solutions are similar to those of

elagticity problem given by Timoshenko and Goodier (1970).
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6. Cantilever beam under uniform loads

The boundary conditions of a cantilever beam shown in Fig. 1 under uniform loads are
When z=zxh/22 o,=z%¢?2, 1,=0, D,=0, B,=0 (47)

+h/2

When x=0: [} 0zdz =0, [”0dz=0, 1,=0, D=0, B,=0 (48)

ow

Atpoint (x=L,z=0): u=0, w=0, &zo (49)
Using ¢§(x, z) and ¢é(x, Z) in Eq. (B2) in Appendix B, we congtitute the displacement function
1 1 .
g; = By, %(sz - ézj:% + B %(421- - 2x221-3 + gz% (j =1~4) (50)

where By and Bs; are unknown constants to be determined.
Substituting Eqg. (50) into Egs. (3) and superposing the rigid body displacements solutions in
Eqg. (9) leads to

4 4
U= Up+yz+25 Bgxz +45 Bs(X°z —xZ 51
0 ("')O jZl 3j N5 jzzl SJ( i ]) ( a)
4 4
W = Wy— WX + 'lej Ky B3j(x2—zj2) + .zls‘k” B51(x4—6xzzj2 + zj4) (51b)
1= 1=
4 4
D = P+ _Zs]kzj st(xz—zjz) + _Zq Ky BSJ(X4—6XZZ]-2 + zj4) (51¢)
= 1=
4 4
Y = wo+_zqk3j53j(x2—zf) +_Zs]k3jBSj(x4—6xzzf+z;‘) (51d)
1= =
o, = —2 : Wy Bgz + . Wy;Bs;(— 12xzzj +4zj3) (52a)
5T,
o, = =2 . w,;Byz + : wyBsj(— 12X’z + 4Z”) (52b)
25T,
D, = -2 : w,;Byiz, + : W, Bs (— 12X°z + 4Z) (520)
j; TS| | j; ]9l ] ]
B, = -2 s 5By 7 + . s Bs; (— 12X°7, + 4Z°) (52d)
jZl ] o1 jZl ]9l ] ]

4 4
T, = 25 §@;Byx+ § 5w;Bs(4x - 12x2) (52¢)
2,55 2 S
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O
x
1

4 4
2 W, By X + 0, B (4X3 - 12XZ-2) (52f)
j;s] b Bs; j;% 2j P25 i

By

4 4
25 sw;Byx+ § sw;By (4x3 - 12xz-2) (529)
j; j 3] j; j =5 i

where Ug, Wo, @y, Po, W, Bs; and Bsj(j = 1~4) are unknown constants to be determined.
From Egs. (47), we arrive at

4
3
Z%‘*’lj By = —ﬁ (53)
j:
4, _q
'Zsﬂ w;Bg = on (54)
]:
4
zlqwljssj =0 (55)
J':
. B LR By =0 (56)
=) §Wybsit T N §WyBg =
350833
4
zls,a)szsj =0 (57)
i=
. B L By = 0 (58)
= ) SWybgt TN S Wy =
29459732
4
qumst =0 (59
j:
+h/2
From x = 0: J’_h/z o,zdz = 0, we have
24 h>4 5
i= i=

Then, the unknown constants By and Bg; (j = 1~4) can be determined from the eight equations
Egs. (53)-(60). At the same time, we find that the four equations left in boundary condition Egs. (48)
are satisfied automatically. Then, the three unknown constants ug, ay and wy can be determined from
Egs. (49), d, and W, can be obtained through the conditions of @ = 0 and W =0 at two appointed
points, i.e., d(x',Z') = 0, W(x", z") = 0, respectively. Finaly, the solution is obtained completely
for a cantilever rectangular beam that is uniformly loaded on the surfaces (z=+h/2) with £(g/2),
respectively.

Superposing this solution on the solution of a rectangular beam under uniform tension in z
direction as discussed in Section 4.2 and letting 0, = ¢/2 and replacing x in Egs. (12a,b) with (x - L)
result in the solution for a cantilever beam fixed at the end x = L, which is loaded with uniform g on
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Table 1 Material properties (Pan 20024)
Cu Cp Cis Cas Cu Ces
1.66 x 10" 7.7 x 10 7.8 x 10 1.62 x 101 4.3 x10% 4.45 x 10%°
€1 €33 €is s a3 dis
-4.4 18.6 116 580.3 699.7 550
&1 &3 Ou Ou M1 Hs3
112x10°® 1.26x 1078 50x107% 30x10%? 5x10°° 10x10°®
Unit: C-N/m?, e-C/m?, d-N/Am, e-C/Vm, u-Ns%/C? g-Ns/VC.
Table 2 Cantilever beam under uniformly distributed load
Point w ) Y o, D, B, Oy
A(M) -0.4310E-6 -0.2362E+1 -0.1403E+0 -0.5000E+2 0.0000 0.0000 +0.1685E+5
A(P) -0.4412E-6 -0.3975E+1 -0.5000E+2  0.0000 +0.1685E+5
A(E) -0.4612E-6 -0.5000E+2 +0.1685E+5
B(M) -0.4309E-6 -0.2043E+1 -0.1479E+0 -0.3437E+2 -0.2023E-8 -0.1266E-6 +0.8448E+4
B(P) -0.4411E-6 -0.3674E+1 -0.3437E+2 -0.1895E-8 +0.8447E+4
B(E) -0.4610E-6 -0.3438E+2 +0.8446E+4
C(M) -0.4308E-6 -0.1936E+1 -0.1505E+0 0.0000 0.0000 0.0000 0.0000
C(P) -0.4410E-6 —0.3574E+1 0.0000 0.0000 0.0000
C(E) -0.4610E-6 0.0000 0.0000

the upper surface z=+h/2 and free on the bottom one.

Based on Egs. (51)-(52), dl the displacements, stresses, electric and magnetic quantities at any
inner or boundary point of the cantilever beam can be obtained. In the calculation, we treat the
problem as a plane-stress one and set L=0.30m, h=0.02m, q=-100 Pa, ®(L, 0)=0 and
W(L, 0) = 0. Assume that a piezoelectric cantilever beam and an elastic cantilever beam have the
same constants as those of magneto-electro-elastic beam shown in Table 1, and the same geometric
dimensions and boundary conditions. The results of different beam at three reference points, i.e.,
A(0.150, 0.010), B(0.150,0.005) and C(0.150,0.000) are listed in Table 2 for comparison, where
“M”, “P" and “E” denote magneto-electro-elastic, piezoelectric and elastic material beam,
respectively. It is obvious that the displacements caused by distributed load on surface are different,
whereas the stresses exhibit no noticeable difference.

7. Conclusions

Due to materid anisotropy and coupling between mechanical deformation, electric field and
magnetic field, analytical solutions for transversely isotropic magneto-electro-elastic materials are
much more difficult to obtain and the process of solution is more complicated, compared with those
in elagticity theory of isotropic materials. In genera, stress components and displacements are
dependent on material constants. However, in some solutions, the stresses as shown in Egs. (10),
(17a), (17b), (33b) and (46) are independent of material constants and in agree with those of the
theory of elasticity for isotropic materials. The analytical solutions obtained in this paper are also
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useful for study of other problems relating to more complicated loads and boundary conditions by
the superposition principle. Moreover, these solutions can serve as benchmarks for numerica
methods such as the finite element method, the boundary element method, etc.
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Appendix A:
2 2 2
~ _Cy—Chp _ _(Cu—Cp)Ciz . _CuCxp—Cy - _
un = ——, Ci= — —, Cxn= ~—, Cu =Cy
Cu Cu Cu1

— _(cu—Cples - _Cu€ip—Cu€y - _ Ot = (C1i —Cyp)dy

€y = T, expx=——_— -, €5=e;s, =
Cu Cu1 Cu

2
< _Culyp—Cudy < _ - _ = _Cufptey - _
dyg=——"—"—, dis=di, €u=6€y Ep=——, QJu=0u

Cu1 Cu1



Analytical solutions to magneto-electro-elastic beams 209

2

_  _CuQstendy - _ —  _ CuMg+ dy

O3 = - —, Hun=Huy, Hs=—"TT_—""
Cll Cll

Appendix B:

Harmonic polynomials for the plane problems can be written in the following form:

heal
(% 2) = X"y (1)

ih=m)(n—-—m-=1)...(n=m—=2i +1) n-si-m_zi+m
(21 +m)! oz

(B1)

(m=0,1;n=1,2,...)

where [D:Z—m} denotes the largest integer < =1

can be written as follows:

. From Eq. (B1), the first seventeen harmonic polynomials

Po(x,2) = 1
$i(x,2) =%, ¢i(x2)=2
$(x,2) = X' -2, ¢5(x 2) = xz
(% 2) = X’ =3xZ, P5(x,2) = XZZ_%f
$Ux 2) = X' —6XZ+7, $i(x 2) = Xz-xZ

92(x, 2) = X’ —10X°7 +5x2",  @5(x, 2) = x'z—2x°F + %25

do(x,2) = xX°—15x'Z7 +15x°2' - 2°, ¢s(x, 2) = X'z~ -1?(?)x3z3 +x2°
3% 2) = X' =21x°Z +35x°2 = 7x2°,  ¢i(x, 2) = x°z2—5X"Z + 3’2 — %27
Pa(x, 2) = X°—28x°2" + 70x"Z' = 28x°2° + 2°

Ps(x, 2) = X'z=7XZ + 71X —x7' (B2)





