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Abstract. Industrial structure systems may have nonlinearity, and are also sometimes exposed to the
danger of random excitation. This paper proposes a method to analyze response and reliability design of a
complex nonlinear structure system under random excitation. The nonlinear structure system which is
subjected to random process is modeled by finite element method. The nonlinear equations are expanded
sequentially using the perturbation theory. Then, the perturbed equations are solved in probabilistic
methods. Several statistical properties of random process that are of interest in random vibration
applications are reviewed in accordance with the nonlinear stochastic problem. 

Key words: response analysis; modal analysis; multi-DOF system; mdeling of complex system; finite
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1. Introduction

Recent developments in jet and rocket propulsion have given rise to new problems in mechanical
and structural vibrations. The pressure fields generated by these devices fluctuated in a random
manner and contain a wide spectrum of frequencies that may result in severe vibration in the
aircraft or missile structure. As more data are gathered in strong motion earthquakes, it is becoming
apparent that earthquakes are examples of random process that may excite severe vibration and even
failure in structure. Measurements of the motion of ships in a confused sea or aircraft flying through
turbulent air reveal that such motions can be described only statistically. The examples given above
have two things in common: (a) they involve the response of mechanical system to random
excitation; (b) in general, they involve nonlinear behavior, since almost all real physical systems
exhibit non-linearity for sufficiently large motion. The theory of linear systems subjected to random
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excitation is well developed. In the case of nonlinear systems, however, the standard techniques of
linear analysis cannot be applied. In many areas of random mechanics, sometimes we need to
analytically obtain the exact probability densities of response processes for non-linear stochastic
systems (Lin 1995, Zhu 1996, Wang 1998, 2000). However, in a general case, no exact solution can
be obtained and numerical methods must be used. Especially for a complex and large structural
system the numerical simulation takes much computation efforts to obtain the response when they
are modeled in multi-degrees of freedom.

Therefore, this study proposes an analytical method for nonlinear vibration of mechanical system
against a random excitation by applying the statistical method and numerical method using finite
element analysis. The actual random excitation is approximated to the corresponding stationary
random process. Then, several statistical properties including reliability analysis that are of interest
in nonlinear random vibration applications are reviewed.

2. Modeling of nonlinear stochastic system using finite element method  

Equations of motion are derived and applied to discrete nonlinear dynamic systems subjected to
random excitation. As a nonlinear system, a nonlinear mechanical system is considered, as shown in
Fig. 1(a), (b). The beam has nonlinear restoring force with respect to its material property. 

The nonlinear restoring forces increase with their nonlinear stiffness coefficient β, as shown in
Fig. 1(c). Nevertheless, the nonlinear displacement decreases with the same restoring force. Thus it
is important to show the nonlinear restoring force in the response of the system. To this end, the
nonlinear restoring force parameters are set to β = 0.0, 0.2 and 0.5.

Mechanical systems, which are excited by strong-motion, show random processes that may excite
severe vibration and even failure in systems. For a simple explanation to show the methodology of
the new approach, a single DOF vibratory system with the nonlinear restoring force is considered. 

(1)

where ς, ω0, ε are damping ratio, natural frequency and a small parameter, respectively.  is a
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Fig. 1 Model of nonlinear system
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random process; hence, it is extremely difficult to obtain an anlytical solution x(t). Because of the
nonlinear characteristic, the output is no longer a Gaussian random process; hence, the statistic
characteristic of its vibration cannot be evaluated easily. Therefore, an adequate method to evaluate
the statistical properties of the response should be developed. For this reason, the random excitation
needs to be approximated to Gaussian stationary process by reasonable procedures. For instance, a
simple stationary representation of ground acceleration can be expressed based on the study of
frequency content of a number of strong ground-motion records (Shin 1982). Input PSD (power
spectrum density) can be expressed as

(2)

where ωg, ςg and S0 are a dominant frequency, damping ratio of filter and spectrum intensity of
random process, respectively. In the case of regarding random excitation as a stationary process, the
dynamic responses of nonlinear system can be obtained by using the perturbation theory. 

(3)

W(t) is a strong motion part of random excitation , which has the PSD function SN(Ω). There is a
method to solve Eq. (3) using perturbation method with white noise as an excitation, which is
proposed by Crandall (1963). He used the power spectrum intensity (S0) of white noise as a random
excitation. However, if the excitation is not white noise as usual, this method cannot be applied to
actual random excitation. Thus, this study proposes a new method using the PSD function and
perturbation method, which can be applied to analysis of nonlinear problem. The nonlinear response
of Eq. (3) is obtained by direct integration method with earthquake data, as shown in Fig. 2(a). And
those PSD of response is compared to show the effectiveness of the proposed method, as shown in
Fig. 2(b). It is shown that the PSD of proposed method calculated relatively in good agreement with
the integration method. 
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Fig. 2 Comparison of nonlinear responses with the direct integration method  
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2.1 Application of finite element method to nonlinear stochastic system

Response and its reliability analysis for failure problem are carried out analytically after modeling
the MDOF nonlinear mechanical system. The mass and stiffness matrix of a uniform beam element
such as the one shown in Fig. 3, which is of length l and mass per unit length ρ and has a bending
stiffness of EI, are formulated. 

The lateral displacement w(x, t), which is a function of displacement in bending vibration time t,
of any section a distance x along the beam element can be expressed as 

(4)

in which φ1(x), φ2(x), φ3(x) and φ4(x) are appropriate shape function, and u1, u2, u3 and u4 are
functions of time t defining the displacements at the ends of the beam element (joint displacements).
The kinetic energy T of the beam element can be obtained and then the time derivative of that
expression will result in mass matrix

(5)

The stiffness matrix for the beam element is determined by considering the strain energy of the
beam. The strain energy can be expressed as 

(6)

where β is nonlinear term. Then, taking the partial derivative of U, the linear stiffness elements kij

can be obtained. 
 

(7)

The second term of the strain energy as stated in Eq. (6), which is equivalently regarded as the
nonlinear restoring force term, can be expressed as 
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Fig. 3 Model of nonlinear system
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(8)

This equation is apparent that all the possible terms for a term-by-term integration have the form
of matrix. It can be seen that the bracketed term above corresponding to the nonlinear stiffness
elements knij and can be determined using . 

(9)

The nonlinear restoring force term, which is expressed in nonlinear stiffness matrix term, is
complex coupled term. This term cannot be assembled easily with the other element. Thereby, in
this study, as a first step of analysis, nonlinear restoring force term is approximated by taking the
term of u3 component. Hence, the nonlinear stiffness matrix is expressed in compact form as   

(10)

Then, the number of finite element and their DOF are described according to nodal point, as
illustrated in Fig. 4. The equation of motion of entire beam is obtained according to just a routine
procedure by superposing each element of mass matrix, linear stiffness matrix, nonlinear stiffness
matrix and forces. When the system is excited by random force, the equation of motion is Moon
(2001)

, (11)

where  are mass matrix, stiffness matrix and nonlinear stiffness matrix of the entire
beam, respectively. {F}, {FE} are a force vector, a random force, respectively. 
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Fig. 4 Comparison of nonlinear responses with the direct integration method
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, where {I} is a vector which shows the direction of the force. The
response of nonlinear random vibration is solved statistically. In order to apply modal analysis,
modal coordinate system is introduced by using the modal matrix [Φ] of the linear system. Then,
the displacement {x} can be transformed into the modal coordinate system {ξ} (Moon 1999, 2001).

, (12)  

where { f (t)} and { fE} are a force, a random force in modal coordinates. The small variant ε can be
regarded as the perturbation parameter, because the variant  is small relative to . The
superscripts (0), (1) denote the perturbation order. Then, the perturbed equations are evaluated. The
equation of motion of order ε(0) is 

(13)

 is the external force term in modal coordinates. The damping of the system is assumed to be
the proportional damping of the eigenvalue. According to the linear random vibration theory, the
solution of the linear differential equation may be readily obtained. Then, the equation of motion of
order ε(1) can be described as 

 (14)

where  is the nonlinear coefficient. Then the response is 

. (15) 

hi(τ) is the impulse response function of the linear system. The covariance of the nonlinear response
can be obtained as

(16)

where  is conjugate function of .  is the spectral density of the excitation.
Then, the spectral density Sηi(Ω) of the nonlinear response is obtained by taking the Fourier
transform of the covariance function as

(17)

where  is the real part of . The corresponding variance can be obtained from the
covariance Rηi(τ) of the system by letting τ = 0.

. (18) 

The stationary variance  is the mean-square value of the linear response. Then, by changing the
modal coordinates into physical coordinates, the response can be obtained.
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2.2 Failure probability and reliability analysis of the system 

Generally, the evaluation of random response of machinery is concerned with the maintenance of
the operating ability against the random excitation. As a case, the possibility of failure is obtained
by assuming that a failure of the system occurs when the response crosses over the safe bound.
Thereby, failure possibility through the crossing theory is considered. The mean r-upcrossing rate is
obtained when r is the constrained amplitude of system.

(19)

where wt0 is the first natural frequency of the overall system.  represents the stationary variance
of first modal displacement when ε = 0.  is the root mean square of the first modal response.
K1/4 is the modified Bessel function of order 1/4. Thereby, failure possibility of the system can be
obtained by supposing that the failure of the system occurs when the system exceeds the limit
amplitude. To consider this, the limit of response (r) at system is regarded, which is constrained to
prevent the damage of the system. This condition can be used to define a safe set. In this case,
performance of the system depends primarily on crossing characteristics of safe set of response.
Thus, the concept for mean crossing rate of safe set is applied to demonstrate the reliability of the
system. The reliability coincides with the mean upcrossing rate that the response belongs to the safe
set. Also, the probability of failure can be obtained by the complement of obtained reliability, which
are defined as 

(20)

3. Results of the analysis 

As an example, nonlinear rotor system, which is shown in Fig. 5, is considered. The rotor is
considered as a uniform beam for the simplicity of calculation. As a support, ball bearing is
considered for the turbine of aircraft engine. The rotor is modeled by the twenty beam elements.
The modal damping ratios of the system is given by ζ = 0.05. Length of shaft is 800 (mm),
Diameter of shaft is 50 (mm). Young’s modulus of shaft is 2.1 × 1011 (N/m2). Density of shaft is
7.81 × 103 (kg/m3). Bearing coefficients is 1.0 × 106 kb (N/m). The rotor has 84 DOF because it has
21 nodes and there are 4 variables per node. For the response analysis, the part of earthquake W(t)
is used as 3-18 seconds of Taft (1952) earthquake (ςg = 0.41, ωg = 18.75 rad/sec, α = 1.75 m/sec2,
S0 = 0.0132 m2/sec4/Hz). And the properties of nonlinear responses are calculated according to the
procedure of nonlinear random vibration analysis, which is computed to the first order perturbation.

In Fig. 6, the PSD of the nonlinear responses of the system at the different position of beam are
presented with various nonlinear parameters. The response is calculated by taking 5 modes. Each
PSD of the system shows a characteristic of seismic response. Investigation of the PSD reveals that
the PSD is smaller when the nonlinear parameter becomes large, which shows the nonlinear
characteristic of response caused by hard spring type restoring force.
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Table 1 shows the variance of the nonlinear response at the middle of beam by changing its
numbers of adopting modes 3, 5 and 10. The values of the nonlinear response are investigated
according to the analytical methods for various values of nonlinear parameter (β = 0.0, 0.2. 0.5). To
prove the computing efficiency, those values are compared with the results of direct integration
method and Equivalent Linearized Method, which are obtained by same calculation condition with
the proposed method. The response of integration is obtained by the direct integration of the

Fig. 5 Model of calculation

Fig. 6 Comparison of PSD of the response
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equation of motion according to the Runge-Kutta method. Investigation of the variance reveals that
the value shows a decreases with β in the spread of displacement about equilibrium point when
β = 0. This is consistent with our intuition, which suggests that stiffer systems exhibit smaller
displacements, and with the observation that the system stiffness increases with nonlinear parameter.
This result also reveals that the variance of displacement of a hardening spring type nonlinear
system is always less than that for the corresponding linear system. 

Calculation accuracy of the proposed method is evaluated to show the effectiveness of the
proposed method. The deviations of the result to the direct integration method are 4.6%, 3.5% and
2.2% by the proposed method where the number of adopting modes 3, 5 and 10, respectively in the
case of (β = 0.2). The deviations of the result to the direct integration method are 3.5%, 4.4%, 3.4%
in the case of the Equivalent Linearized Method when (β = 0.0, 0.2, 0.5). The responses within 6%
deviation error are obtained by the proposed analytical method. It is believed that the accuracy of
the response within 6% deviation error for the vibration analysis of the system is effective analytical
method. As a case, the calculation time for the variances of response in Table 1 is examined to
verify the effectiveness of the proposed method. The response of the direct integration method is
obtained under the strong motion duration (= 3-18 seconds) of excitation. The proposed method
takes 440, 512, 687 seconds to calculate the frequency response within 5% deviation error where
the number of adopting modes are 3, 5, 10, respectively, when (β = 0.2), while the direct integration
method takes 3370 seconds to compute the same response by using the personal computer Logix
IBM Co.. The Equivalent Linearized method takes 653 seconds to calculate the frequency response
within 4.4% deviation error. As a result, it can be observed in this study that a drastic reduction in
computational time can be obtained while retaining the accuracy of the solution. 

3.1 Reliability and failure probability of the system 

Generally, the evaluation of random response of machinery is concerned with the maintenance of
the operating ability against the excitation. This can be verified by the possibility of failure by the
contact between the components. Here, the mean upcrossing rates of stationary nonlinear responses
for several values of nonlinear parameter are considered according to the crossing theory. The
reliability coincides with the mean upcrossing rate that the response belongs to the safe set. Also,
the probability of failure can be obtained by the complement of obtained reliability. In Fig. 7(a), (b),
the failure possibility and its reliability by mean r- upcrossing rate of response according to

Table 1 Comparison of computing efficiency of the methods 

Analysis method Variance/Dev 
β = 0.0

Variance/Dev 
β = 0.2

Variance/Dev 
β = 0.5

Calculation Time
(seconds)

3 mode 0.00531/5.7 0.00472/4.6 0.00272/5.4 440
5 mode 0.00522/3.9 0.00467/3.5 0.00269/4.2 512
10 mode 0.00511/1.9 0.00461/2.2 0.00265/2.7 687

ELM 0.00520/3.5 0.00471/4.4 0.00267/3.4 653
DIM 0.00502 0.00451 0.00258 3370

Each analysis method stands for as 3 modes, 5 modes and 10 modes. ELM (Equivalent Linearized Method),
DIM (direct integration method). Dev stands for the deviation of the calculation accuracy per percentage. 

(%).    Re Hi Ω( )[ ]
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nonlinear parameter are presented. The failure possibility decreases with threshold r. And they
decrease more rapidly when nonlinear parameters become large.

As a result, it is shown that nonlinear random responses could be efficiently calculated according
to the selected number of vibration modes. Several statistical properties of the responses that are of
interest in nonlinear vibration applications are reviewed. The results reported herein will provide a
better understanding of the nonlinear vibration against random excitation. Moreover, it is believed
that those properties of the results can be utilized in the dynamic design of the nonlinear system.

4. Conclusions

In this study, the vibration analysis method of a nonlinear mechanical system was theoretically
formulated when the random excitation is regarded as a stationary process. The formulation is
concerned with reducing the number of DOF by modal substitution. It is shown that nonlinear
random responses could be efficiently calculated according to the selected number of vibration
modes. Several statistical properties of the responses that are of interest in nonlinear vibration
applications are reviewed. The variance value of the nonlinear response which is important in
evaluating the reliability of the system is obtained economically. Failure probability of system is
also reviewed applying the crossing theory.

The results reported herein will provide a better understanding of the nonlinear vibration against
random excitation. Moreover, it is believed that those properties of the results can be utilized in the
dynamic design of the nonlinear system.
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