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Abstract. The paper presents a numerical method for the limit analysis of structures made of a rigid
no-tension material. Firstly, we formulate the constrained minimum problem resulting from the application
of the kinematic theorem, which characterizes the collapse multiplier as the minimum of all kinematically
admissible multipliers. Subsequently, by using the finite element method, we derive the corresponding
discrete minimum problem in which the objective function is linear and the inequality constraints are
linear as well as quadratic. The method is then applied to some examples for which the collapse
multiplier and a collapse mechanism are explicitly known. Lastly, the solution to the minimum problem
calculated via numerical codes for quadratic programming problems, is compared to the exact solution.
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1. Introduction

In Kooharian (1952) and Heyman (1966)  the methods of the limit analysis usually employed for
structures made of an ideally plastic material were extended to the study of masonry arches. This
extension is based on the hypotheses that the masonry does not withstand tension and has infinite
compressive strength.

Subsequently, many authors have addressed the problem of modelling the mechanical response of
masonries (Del Piero 1989). One of the main results of this research has been the constitutive
equation for masonry-like or no-tension materials. This equation is based on the hypotheses that the
infinitesimal strain is the sum of an elastic part and of a positive semidefinite inelastic part (also
called fracture strain), and that the stress is negative semidefinite, depends linearly on the elastic
part and is orthogonal to the inelastic strain. As it is extremely difficult to determine explicit
solutions to equilibrium problems involving solids made of such materials, methods that would
enable determining the value of the collapse load (if any) for an assigned class of loads would be of
great value in applications.

Recently, Del Piero (1998) has shown that the classical static and kinematic theorems of limit
analysis, already proved for ideally plastic materials (Drucker et al. 1952), also hold for a broader
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class of materials, including masonry-like materials. Definition of the collapse and subsequent proof
of the limit analysis theorems provided in Del Piero (1998) are based on two hypotheses, which are
specific not only to ideally plastic materials, but to masonry-like materials as well. In fact, both
these material types share two distinguish features: they both have a constraint on the stresses, in
particular the set of admissible stresses is convex, as well as an orthogonality property linking these
admissible stresses to the fracture strains.

In Lucchesi et al. (1997) and (1999) the collapse load and corresponding collapse mechanism
have been determined for two different cases: the first deal with circular arches subjected to their
own weight and a point load applied somewhere along the extrados, while the second analyses a
toroidal tunnel subjected to its own weight and a vertical load acting on its top circle.

The approach followed in such works cannot however be applied when the problems involved are
more complex in terms of either geometry or loads distribution. In these more difficult cases it may
thus be useful to resort to a finite-element formulation in order to solve the problem of limit
analysis of masonry structures numerically, as performed in Capsoni and Corradi (1997) for ideally
plastic structures.

In this paper we set forth the minimum problem resulting from the application of the kinematic
theorem to a structure made of a rigid no-tension material. The collapse multiplier, which is the
minimum of all kinematically admissible multipliers, is determined by solving a constrained
minimum problem in which we must minimize a linear functional defined on the set of virtual
displacements, under the constraint that the infinitesimal strain tensors associated to these
displacements, are positive semidefinite. We then consider a discretization of the structure into finite
elements and derive the corresponding discrete minimum problem. In the case of rigid ideally
plastic materials (Capsoni and Corradi 1997), the kinematic theorem is formulated as a convex
minimum problem with equality constraints, whose solution is calculated via the Lagrange
multiplier method. On the contrary, in the case of rigid no-tension materials we obtain a minimum
problem in which the objective function is linear and the constrains, both linear and quadratic, are
inequalities. As both the objective function and the admissible region are convex, any local
minimum is also a global minimum (Cea 1978).

The method has been applied to some examples for which the collapse multiplier and a collapse
mechanism are explicitly known. The solution to the minimum problem has been calculated via
numerical codes for non-linear programming problems and then compared to the exact solution, as
well as to the solution obtained via an incremental static analysis performed with the finite element
code NOSA (Lucchesi et al. 2000).

2. The constitutive equation

Let �k be a k-dimensional linear space, and Link the space of all linear applications from �k into
�k (second-order tensors) with the inner product A · B = tr(ABT), where A, B Link and BT is the
transpose of B. Let Symk be the subspace of Link of all symmetric tensors; we denote by  and

 the convex cones of Symk of all positive and negative semidefinite tensors, respectively. Let
T Sym3 be the Cauchy stress tensor and E Sym3 the infinitesimal strain tensor, E = 1/2

 where u is the displacement vector.
A rigid no-tension material is a material in which the Cauchy stress T is constrained to be

negative semidefinite,

∈
Symk

+

Symk
−

∈ ∈
u∇ uT∇+( )
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(1)

Moreover, the infinitesimal strain E satisfies the following condition of normality

(2)

in other words, E is zero, if T belongs to the interior of , while it must belong to the normal
cone to  at T, if T lies on the boundary of . 

It is simple matter to prove that (1)-(2) are equivalent to the conditions

(3)

If E and T satisfy (3), then they are coaxial. Tensor E can be interpreted as fracture strain. In fact,
if E is non-null in any region of a structure made of a no-tension material, then we can expect
fractures to be present in that region.

Now, let us consider a body Ω (a closed region of the Euclidean space with piecewise C1

boundary ) made of a material having constitutive Eq. (3). Moreover, let us assume that
, with  and that volume-force field b and surface-force field f

are assigned on Ω and , respectively. Finally, we require that

(4)

Here we briefly recall the definitions and results described in Del Piero (1998), where the problem
of the choice of  functional spaces for stress and displacement fields has been discussed in detail.
Let � denote a suitable normed vector space consisting of tensor fields A: Ω�Sym3 and let � be
the subset of � constituted by negative semidefinite tensor fields

(5)

it should be noted that � is a convex cone of �, whose elements are called admissible stress fields.
Let � be the dual space of �, for each T belonging to the boundary  of �, let us consider

the normal cone to  at T

(6)

If the fields are sufficiently smooth, then E satisfies the constitutive Eq. (3) in each point of Ω if
and only if E belongs to �(T).

For � the set of virtual displacement fields, namely, the infinitesimal displacement fields u that
satisfy (4), let D(�) be the set of the infinitesimal strains associated to displacements belonging to
�, via the operator

T Sym3
−∈

T T*–( ) E⋅ 0, T*∀ Sym3
−∈≥

Sym3
−

Sym3
− Sym3

−

T Sym3
−∈

E Sym3
+∈

T E⋅ 0=

∂Ω
∂Ω ∂Ωu ∂Ωf∪= ∂Ωu ∂Ωf∩ ∅=

∂Ωf

u 0 on ∂Ωu=

� A � A x( ) Sym3
− x∀ Ω∈ ∈ ∈{ }=

∂�
∂�

� T( ) B �∈ T T̃–( ) BdV⋅ 0 T̃∀ �∈,≥
Ω
 ∫{ }=
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(7)

An element Tc belonging to  is a collapse stress field if

(8)

The non-null elements Ec belonging to  are collapse strains, and the displacement
field uc belonging to �, such that Ec = 1/2 , is a collapse mechanism associated to Tc.

Now, let us consider the volume-force field b and the surface-force field f acting on . The
stress field  is equilibrated with the load (b, f) if 

(9)

Let us consider the following loading process f = f(λ)= fp + λfv, where fp is the permanent part of
the load, fv the variable part and  is the loading multiplier. The multiplier λ is safe if there
exists a stress field T equilibrated with (b, f) that belongs to the interior of �. λ is statically
admissible if there exists a stress field T equilibrated with (b, f) belonging to �. Finally, λ is a
collapse multiplier if there is a collapse stress field T equilibrated with (b, f).

In this paper we assume that for the given volume-force field b and the loading process f(λ), a
collapse multiplier  exists. The static theorem dictates that if λ = 0 is a safe multiplier, then
the collapse multiplier is the maximum of all statically admissible multipliers.

Let us consider a collapse stress field T* and let u* be an associated collapse mechanism, such that 

(10)

The scalar

(11)

is a kinematically admissible multiplier. According to the kinematic theorem, then, the collapse
multiplier is the minimum of all kinematically admissible multipliers.

3. Finite element modelling and kinematic theorem

Let λc and uc denote the collapse multiplier and a collapse mechanism, respectively (note that the
collapse multiplier is unique, while the collapse mechanism can be not unique). Our aim is to
determine λc and uc numerically by using the kinematic theorem. To this end, let us introduce the
linear functional 

(12)

defined on �.

D u( ) 1
2
--- u∇ uT∇+( )=

∂�

D �( ) � Tc( )∩ 0{ }≠

D �( ) � Tc( )∩
uc∇ uc

T∇+( )
∂Ωf

T �∈

T
Ω∫ EdV⋅ b

Ω∫ udV⋅ f∂Ωf
∫ udS  u∀ �∈ E,,⋅+ D u( )= =

λ 0≥

λ c 0>

fv u*dS⋅∂Ωf
∫ 0>

λ*
b u*dV⋅

Ω∫ fp u*dS⋅∂Ωf
∫+

fv u*dS⋅∂Ωf
∫

--------------------------------------------------------------–=

Φ u( ) b udV⋅
Ω∫ fp udS⋅∂Ωf

∫––=



A numerical method for the limit analysis of masonry structures 5

In view of Eq. (10), in order to determine λc and uc, we must solve the following constrained
minimum problem

(13)

(14)

(15)

(16)

The set of all displacement fields u belonging to � such that  and D(u)(x)
 is a convex set.

In order to numerically solve the problem (13)-(16), it has to be discretized. For a sake of
simplicity, we shall limit ourselves to the case in which Ω is a plane region, subdivided into m four-
nodes isoparametric finite elements with four Gauss points, having bilinear shape functions

(17)

(18)

(19)

(20)

with  Hinton and Owen (1977). For , the nodal displacements
vector of the i-th element, the displacement (u, v) of a point of the i-th element, with co-ordinates
(ξ, η), is

(21)

where uj and vj denote the horizontal and vertical displacements of the j-th node.
For n the number of nodes of the finite element mesh, we denote by , the vector of nodal

displacements, and cb, cp and  as the vectors of the equivalent nodal loads corresponding to
b, fp and fv, respectively. The vector of the engineering components of the strain tensor at the Gauss
point (ξk, ηk) of the i-th element is

(22)

MinΦ u( )
u �∈

fv udS 1=⋅∂Ωf
∫

D u( ) x( ) Sym3
+  x∀ Ω∈ ∈

u x( ) 0 x∀ ∂Ωu∈=

fv udS 1=⋅∂Ωf
∫ ∈ Sym3

+

x∀ Ω ,∈

N1 ξ η,( ) 1
4
--- 1 ξ–( ) 1 η–( )=

N2 ξ η,( ) 1
4
--- 1 ξ+( ) 1 η–( )=

N3 ξ η,( ) 1
4
--- 1 ξ+( ) 1 η+( )=

N4 ξ η,( ) 1
4
--- 1 ξ–( ) 1 η+( )=

ξ η,( ) 1– 1,[ ] 1– 1,[ ]× ,∈ a i( )
�8∈

u ξ η,( ) Nj ξ η,( )uj, v ξ η,( ) Nj ξ η,( )vj
j 1=

4

∑=
j 1=

4

∑=

a �2n∈
cv �2n∈

h i( ) ξk η k,( )

∂u
∂x
------

∂v
∂y
-----

∂u
∂y
------ ∂v

∂x
-----+ 

 
 
 
 
 
 
 

B i( ) ξ k η k,( )a i( )= =
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where u and v are the components of the displacement vector, and B(i)(ξk, ηk) is the matrix of the
Cartesian derivatives of the shape functions, calculated in the Gauss point (ξk, ηk) of the i-th
element

(23)

The positive semidefiniteness constraint on the strain tensor field (15) can be expressed by the
conditions

(24)

which must be satisfied in each Gauss point of each mesh element. For each fixed element i,
conditions (24) can be expressed in terms of the nodal displacements vector a(i) and the matrix B(i).
Let us put

(25)

(26)

(27)

(28)

where the derivatives of the shape functions are calculated in the current Gauss point of the i-th
element; thus, conditions (24) can be rewritten as

(29)

Finally, discretizing the minimum problem (13)-(16) leads to the following problem

(30)

(31)

B i( )

∂N1

∂x
---------   0  

∂N2

∂x
---------  0  

∂N3

∂x
---------   0  

∂N4

∂x
---------  0

0  
∂N1

∂y
---------  0  

∂N2

∂y
---------   0  

∂N3

∂y
---------  0  

∂N4

∂y
---------

∂N1

∂y
---------   

∂N1

∂x
---------  

∂N2

∂y
---------  

∂N2

∂x
---------   

∂N3

∂y
---------   

∂N3

∂x
---------  

∂N4

∂y
---------  

∂N4

∂x
---------

=

∂u
∂x
------ 0≥ ∂v

∂y
----- 0≥ ∂u

∂x
------∂v

∂y
----- 1

4
--- ∂u

∂y
------ ∂v

∂x
-----+ 

 
2

– 0≥, ,

q1
i( )T ∂N1

∂x
---------   0  

∂N2

∂x
---------  0  

∂N3

∂x
---------  0  

∂N4

∂x
---------  0 

 =

q2
i( )T 0  

∂N1

∂y
---------   0  

∂N2

∂y
---------   0  

∂N3

∂y
---------   0  

∂N4

∂y
--------- 

 =

q3
i( )T ∂N1

∂y
---------  

∂N1

∂x
---------   

∂N2

∂y
---------  

∂N2

∂x
---------   

∂N3

∂y
---------   

∂N3

∂x
---------   

∂N4

∂y
---------   

∂N4

∂x
--------- 

 =

A i( ) 1
2
--- q1

i( ) q2
i( )⊗ q2

i( )+ q1
i( )⊗( ) 1

4
---q3

i( )– q3
i( )⊗=

q1
i( ) a i( )⋅ 0≥ q2

i( ) a i( )⋅ 0≥ a i( ) A i( )a i( )⋅ 0≥, ,

Min cb cp+( ) a⋅–
a �2n∈

cv a⋅ 1=
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    (32)

    (33)

(34)

with the further constraint that the displacements of nodes belonging to the boundary portion 
are zero.

Let us now introduce the connectivity matrices L(i), linking the nodal displacements vector a of
the structure with the nodal displacements a(i) of the i-th element,

(35)

The inequalities (32), (33) and (34) become 

(36)

(37)

                   (38)

Now, we want to prove some properties of tensor  defined in Eq. (28). To this end, it
should be noted that vectors  and  are orthogonal, that , and

 = . From (28) it follows that for each , we have
; thus  has a zero eigenvector with multiplicity of at least five. To determine the

remaining eigenvalues of A(i), we must account for the fact that the corresponding eigenvectors
belong to the subspace . By using the relations 

(39)

(40)

(41)

simple calculations reveal that the remaining eigenvalues of A(i) are the three real roots 
and  of the third-degree polynomial 

(42)

or, in particular, 

q1
i( ) ξ k ηk,( ) a i( )⋅ 0, k≥ 1 … 4, i, , 1 … m, ,= =

q2
i( ) ξ k ηk,( ) a i( )⋅ 0, k≥ 1 … 4, i, , 1 … m, ,= =

a i( ) A i( )⋅ ξ k η k,( )a i( ) 0, k≥ 1 … 4, i, , 1 … m, ,= =

∂Ωu

a i( ) L i( )a=

L i( )Tq1
i( ) ξ k η k,( ) a⋅ 0, k 1 … 4, i, , 1 … m, ,= =≥

L i( )Tq2
i( ) ξ k η k,( ) a⋅ 0, k 1 … 4, i, , 1 … m, ,= =≥

a L i( )T⋅ A i( ) ξ k η k,( )L i( )a 0, k 1 … 4, i, , 1 … m, ,= =≥

A i( ) Sym8∈
q1

i( ) q2
i( ) q1

i( ) q3
i( )⋅ q2

i( ) q3
i( )⋅=

q1
i( ) 2

q2
i( ) 2

+ q3
i( ) 2

n Span q1
i( ) q2

i( ) q3
i( ), ,{ }

⊥
∈

A i( )n 0= A i( )

Span q1
i( ) q2

i( ) q3
i( ), ,{ }

A i( )q1
i( ) 1

2
--- q1

i( ) 2
q2

i( ) 1
4
--- q1

i( ) q3
i( )⋅( )q3

i( )–=

A i( )q2
i( ) 1

2
--- q2

i( ) 2
q1

i( ) 1
4
--- q1

i( ) q3
i( )⋅( )q3

i( )–=

A i( )q3
i( ) 1

2
--- q1

i( ) q3
i( )⋅( ) q1

i( ) q2
i( )+( ) 1

4
--- q3

i( ) 2
q3

i( )–=

ω1
i( ) ω2

i( ),
ω3

i( )

p ω( ) ω3 1
4
--- q3

i( ) 2
ω2 1

4
--- q1

i( ) q3
i( )⋅( )

2
( q1

i( ) 2
q2

i( ) 2
)ω–+ +=

1
16
------ q3

i( ) 2
q1

i( ) q3
i( )⋅( )

2
( q1

i( ) 2
q2

i( ) 2
)–
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(43)

(44)

(45)

for which it holds that . Let us now calculate the eigenvectors 
of A(i) corresponding to  and . In order to simplify calculation of the eigenvectors, it is
convenient to distinguish the following four cases.

Case 1: = 0.

Thus,  and A(i) = 0.

Case 2: , or .

In this case, , , and the eigenvectors corresponding to ,
,  are 

(46)

 mutually orthogonal and orthogonal to (47)

Case 3: .

From (44)-(45) it follows that . In view of = 

+ , the eigenvalues of A(i) are ordered as follows 

(48)

Hence, it is a simple matter to show that the eigenvectors of A(i) are respectively 

(49)

(50)

(51)

Case 4: .

ω1
i( ) 1

4
--- q3

i( ) 2
–=

ω2
i( ) 1

2
--- q1

i( ) 2
q2

i( ) 2
q1

i( ) q3
i( )⋅( )

2
––=

ω3
i( ) 1

2
--- q1

i( ) 2
q2

i( ) 2
q1

i( ) q3
i( )⋅( )

2
–=

ω1
i( ) 0≤ ω2

i( ) 0≤ ω3
i( ) 0≥, , p1

i( ) p2
i( ) p3

i( ), ,
ω1

i( ) ω2
i( ), ω3

i( )

q3
i( )

q1
i( ) q2

i( ) 0= =

q3
i( ) 0≠ q2

i( ) 0= q1
i( ) 0=, , q3

i( ) 0≠ q2
i( ) 0= q1

i( ) 0≠, ,

A i( ) 1
4
---– q3

i( ) q3
i( )⊗= ω2

i( ) ω3
i( ) 0= = ω1

i( )

ω2
i( ) ω3

i( )

p1
i( ) q3

i( )=

p2
i( ) p3

i( ), p1
i( )

q3
i( ) 0≠ q2

i( ) 0≠ q1
i( ) 0 q1

i( ) q3
i( )⋅ 0=,≠, ,

ω2
i( ) 1

2
--- q1

i( ) q2
i( ) ω3

i( ) 1
2
--- q1

i( ) q2
i( )=,–= q3

i( ) 2
q1

i( ) 2

q2
i( ) 2

2 q1
i( ) q2

i( )≥

ω1
i( ) ω2

i( )≤ 0 ω3
i( )< <

p1
i( ) q3

i( )=

p2
i( ) q2

i( )

q1
i( )

------------q1
i( )– q2

i( )+=

p3
i( ) q2

i( )

q1
i( )

------------q1
i( ) q2

i( )+=

q3
i( ) 0≠ q2

i( ) 0≠ q1
i( ) 0 q1

i( ) q⋅ 3
i( )

0≠,≠, ,
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The eigenvectors corresponding to the eigenvalues  are respectively 

(52)

(53)

(54)

We are now in a position to prove that the admissible region defined by the conditions (32), (33)
and (34) is a closed convex set of �2n, as it is the intersection of a finite number of closed convex
sets. In order to prove that for each  and , the inequalities (32), (33) and (34)
define a convex set of �2n, it is sufficient to prove that the subset  
with q1, q2 and A given in (25), (26) and (28), is convex. For the sake of simplicity, we omit the
index i.

Let us designate = 4, 5, 6, 7, 8, as an orthonormal basis of Span{q1, q2, q3} , and put 

(55)

where the vectors pi are given in Eqs. (46)-(47), (49), (50), (51) or (52), (53), (54) respectively for
cases 1 to 4. As the spectral theorem dictates that 

(56)

for a vector , the condition  is equivalent to the inequality 

(57)

and the conditions , become 

(58)

ω1
i( ) ω2

i( ) ω3
i( ), ,

p1
i( ) q1

i( ) q2
i( )–

q3
i( ) 2

2 q1
i( ) 2

–

2 q1
i( ) q3

i( )⋅( )
--------------------------------------q3

i( )+=

p2
i( ) q1

i( ) 2
q2

i( ) 2
q1

i( ) q3
i( )⋅( )

2
– q1

i( ) 2
–

q1
i( ) q3

i( )⋅
---------------------------------------------------------------------------------------q1

i( )=

q1
i( ) 2

q2
i( ) 2

q1
i( ) q3

i( )⋅( )
2

– q1
i( ) 2

–

q1
i( ) q3

i( )⋅
---------------------------------------------------------------------------------------q2

i( ) q3
i( )++

p3
i( ) q1

i( ) 2
q2

i( ) 2
q1

i( ) q3
i( )⋅( )

2
– q2

i( ) 2
+

q1
i( ) q3

i( )⋅
---------------------------------------------------------------------------------------– q1

i( )=

q1
i( ) 2

q2
i( ) 2

q1
i( ) q3

i( )⋅( )
2

– q1
i( ) 2

+

q1
i( ) q3

i( )⋅
---------------------------------------------------------------------------------------– q2

i( ) q3
i( )+

k 1 … 4, ,= i 1 … m, ,=
� v �8 q1 v⋅ 0≥ v Av⋅ 0≥,∈{ }=

p̃j j, ⊥

p̃i

pi

pi

---------, i 1 2 3, ,= =

A ωjp̃j p̃j⊗
j 1=

3

∑=

v vjp̃j
j 1=

8

∑= v Av⋅ 0≥

ωjvj
2

j 1=

3

∑ 0≥

q1 v⋅ 0 q2 v⋅ 0≥,≥

vjq1 p̃j⋅
j 1=

3

∑ 0, vjq2 p̃j⋅
j 1=

3

∑ 0≥≥
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Thus, the set � can be represented as follows 

(59)

Let us now analyze the preceding four cases separately.
In Case 1 we have .
In Case 2, as it holds that , � is therefore convex.

In Case 3, , which is also convex.

Finally, in Case 4, from Eqs. (43), (44), (45) and (52), (53), (54) it follows that 

,

(60)

where 

(61)

+

+ (62)

� x �
8∈ ωjxj

2

j 1=

3

∑ 0≥ xjq1 p̃j⋅
j 1=

3

∑ 0≥ xjq2 p̃j⋅
j 1=

3

∑ 0≥, ,
 
 
 

=

� �
8=
� x �

8∈ x1 0= p2 q2⋅( )x2 p3 q2⋅( )x3+ 0≥,{ }=

� x �
8∈

q3
2

2 q1 q2

-------------------x1
2 x2

2 x3
2–+ 0 x2– x3+ 0 x2 x3+ 0≥,≥,≤
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+

(63)

It can be verified that, if q1 · q3 > 0, then Eq. (60) becomes 

(64)

while, on the contrary, if q1 · q3 < 0, then 

(65)

which are convex sets of �8.
As the objective function and the admissible region are convex, any local minimum of (30)-(34) is

also a global minimum Cea (1978).
One further property of the minimum problem (30)-(34) stems from the fact that the inequalities

(32), (33) and (34) define a cone. In fact, if we put , with α > 0, it is a simple
matter to prove that, if  is a solution to (30)-(34) corresponding to cv(1), then  is a solution
to (30)-(34) corresponding to cv(α).

4. Numerical examples

In this section we apply the numerical method proposed in the foregoing to some plane problems
for which the collapse multiplier and collapse mechanism are both known. The minimum problem
(30)-(34) has been solved by using the free software FILTER available at the server for optimization
NEOS (Czyzyk et al. 1998, Gropp and Moré 1997, Dolan 2001). The first example regards a thick-
walled cylinder subjected to two uniform radial pressures, and the resulting numerical solution is
compared to the exact one. For the other two cases, a circular arch and a rectangular panel, the
numerical solution to the respective minimum problem (30)-(34) is compared with both the

p3
q1

2 q2
2 q1 q3⋅( )2– q2

2+
q1 q3⋅( )

----------------------------------------------------------------------------
 
 
 

2





= q1
2

q1
2 q2

2 q1 q3⋅( )2– q1
2+

q1 q3⋅( )
----------------------------------------------------------------------------

 
 
 

2

q2
2

2
2 q1

2 q2
2 q1 q3⋅( )2– q3

2+( )
q1 q3⋅( )

------------------------------------------------------------------------------------
 
 
 

q1 q3⋅( ) q3
2+




1 2⁄

–

� x �
8∈ q3

2x1
2 2 q1

2 q2
2 q1 q3⋅( )2– x2

2+




=

2 q1
2 q2

2 q1 q3⋅( )2–– x3
2 0 x3 0≤,≤





� x �
8∈ q3

2x1
2 2 q1

2 q2
2 q1 q3⋅( )2– x2

2+




=

2 q1
2 q2

2 q1 q3⋅( )2– x3
2 0 x3 0≥,≤





–

cv cv α( ) α c= =
a α 1– a



12 Silvia Degl'Innocenti and Cristina Padovani

corresponding exact solution and the numerical solution obtained via an incremental non-linear
analysis performed with the finite element code NOSA (Lucchesi et al. 2000).

In the NOSA implementation, the masonry is considered to be a non-linear elastic material with
zero tensile strength and infinite compressive strength. Once the permanent load has been assigned,
the value of the collapse load and the corresponding mechanism are then obtained by progressively
increasing the variable load assigned to the structure, until it is no longer possible to determine an
admissible equilibrated solution.

4.1 Thick-walled cylinder subjected to two uniform radial pressures

An unbounded cylindrical body, whose cross section is a circular ring, with inner radius a and
outer radius b, made of a rigid no-tension material, is subjected to two uniform pressures p2 and
λp1, where , acting on the outer and inner surfaces, respectively. A cylindrical reference
system {O, ρ, θ, z} is chosen with origin at the centre of the ring and the z-axis orthogonal to its

plane (Fig. 1). It has been demonstrated (Bennati and Padovani 1997) that for , there exists

an admissible stress field equilibrated with loads p2 and λp1. For values of λ greater than , on

the contrary, there are no stress fields that are both in equilibrium with the external pressures and
semidefinite negative. The value of the collapse multiplier is (Bennati and Padovani 1997).

(66)

λ 0≥

λ b
a
---

p2

p1

-----≤

b
a
---

p2

p1

-----

λ c
b
a
---

p2

p1

-----=

Fig. 1 Thick-walled cylinder subjected to radial pressures
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In fact, the stress field T having components

(67)

with respect to the chosen reference system, is admissible and equilibrated with loads p2 and λc p1.
Moreover, T is a collapse stress field, as  contains the strain tensor E with
components

(68)

where α > 0, corresponding to collapse mechanism u with components

(69)

One quarter of the circular ring has been discretized with 16 four-node plane elements (the
number of nodal points is n = 25), adopting the following values: 

a = 1 m, b = 2 m, p1 = 1 N/m2, p2 = 10000 N/m2 (70)

The solution to the minimum problem (30)-(34) calculated with the FILTER code is 

(71)

σρ ρ( ) λ cp1
a
ρ
---–= σθ ρ( ) 0= τρθ ρ( ) 0=, ,

D �( ) � T( )∩

ερ ρ( ) 0= εθ ρ( ) α
ρ
---= ερθ ρ( ) 0=, ,

uρ ρ( ) α , uθ ρ( ) 0= =

λ* 20047=

Fig. 2 One quarter of circular ring - collapse mechanism corresponding to λ* (grey line) superimposed on the
undeformed configuration (black line)
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and, from Eq. (66) we get 

λc = 20000 (72)

Fig. 2 shows the collapse mechanisms corresponding to λ*; the displacement yielded by FILTER
is of the type (69).

4.2 Circular arch subjected to its own weight and a point load on the extrados

Let us consider a circular arch with mean radius r and thickness h. We assume that the arch,
clamped at the springings, is made of a rigid no-tension materials with specific weight b and is
subjected to a vertical load λfv applied at the keystone (Fig. 3). Our aim is to determine the collapse
multiplier and a collapse mechanism.

We choose the following parameters, 

r = 1 m, h = 0.14 m, | b | = 20000 N/m3, | fv | = 1 N (73)

by taking into account that the width of the arch is 0.01 m, the weight of the arch is 87.965 N. In
Lucchesi et al. (1997) the collapse load for a circular arch such as that in Fig. 3 has been calculated
explicitly as function of the ratio t = h/2r. In the case at hand, we have t = 0.07, and the collapse
multiplier is 

λc = 7.794 (74)

One half of the arch has been discretized with 144 four-node plane elements (the number of nodal
points is n = 175), and the solution to the minimum problem (30)-(34) calculated with FILTER is 

λ* = 7.68 (75)

for which the relative error is ε 7.794 7.68–
7.794

------------------------------= 1.0%≅

Fig. 3 Circular arch
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Fig. 4 Collapse mechanism corresponding to λ* as calculated by FILTER superimposed on the undeformed
configuration

Fig. 5 Collapse mechanism corresponding to λN as calculated by NOSA superimposed on the undeformed
configuration



16 Silvia Degl'Innocenti and Cristina Padovani

Figs. 4 and 5 show the collapse mechanism corresponding to λ*, respectively calculated by
FILTER and via an incremental analysis performed with the NOSA code using the same
discretization. The collapse multiplier resulting from the NOSA analysis is λN = 7.8.

4.3 Rectangular panel

Considering now a rectangular panel made of a rigid no-tension material, we assume that the
panel is clamped at the base and subjected to the load fp + λfv (Fig. 6), with

fp = (0, p), fv = ( fv, 0) (76)

where 

An admissible stress field equilibrated with the load has been determined in Lucchesi and Zani (2001)

fv x( )

p b 2x+( )
b 2x0+

-----------------------,
b
2
---– x x0≤ ≤

p b 2x–( )
b 2x0–

-----------------------, x0 x
b
2
---≤ ≤

=

Fig. 6 Rectangular panel
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it is regular in the two regions Ω1 and Ω2, delineated by the isostatic line . Moreover, the

collapse multiplier λc and a collapse mechanism (u, v) have also been explicitly calculated

(77)

(78)

(79)

The panel has been discretized using 256 plane elements (in this case the nodal points are
n = 289) and the following parameters

h = 0.6 m, b = 0.6 m, p = 1 N/m2 (80)

For x0 = 0, by (77) we obtain a collapse multiplier of λc = 0.5. The minimum problem has been
solved with FILTER, for which the resulting value of the collapse multiplier is λ* = 0.676. For the
same discretization the NOSA code instead furnished a collapse multiplier λN = 0.686.

y
x x0–

λ
-------------=

λc

b 2x0–
2h

-----------------=

u x y,( )
0, x y,( ) Ω1∈

x λ cy– x0–   x y,( ) Ω2∈,
=

v x y,( )
0,                    x y,( ) Ω1∈

λ c x λ cy– x0–( ) b 2x–( )
2λ cy b– 2x0+

----------------------------------------------------------   x y,( ) Ω2∈,
=

Fig. 7 Collapse mechanism corresponding to λ* as calculated by FILTER superimposed to the undeformed
configuration
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Fig. 8 Collapse mechanism corresponding to λN as calculated by NOSA superimposed on the undeformed
configuration

Fig. 9 Collapse mechanism (78)-(79) corresponding to λc superimposed on the undeformed configuration
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Thus, we can conclude that for a fixed discretization of the panel, the numerical method proposed
herein yields the same approximated solution to the collapse problem as an incremental analysis
conducted via the NOSA code. Of course, with both methods the accuracy of the solution depends
on the number of elements used in discretizing the panel. Seeing that the solution calculated by
NOSA tends towards the exact solution as the number of elements increases, we would expect the
solution of (30)-(34) to behave in a similar way. Figs. 7 and 8 show the collapse mechanism
calculated via FILTER and NOSA respectively. For the sake of comparison, the exact collapse
mechanism reported in (78)-(79) has been plotted in Fig. 9.

5. Conclusions

This paper presents a numerical method for the limit analysis of structures made of a rigid no-
tension material. After formulation of the constrained minimum problem resulting from application
of the kinematic theorem, the corresponding discrete minimum problem is derived via the finite
element method. We thereby obtain a minimum problem in which the objective function is linear
and the inequality constraints are linear as well as quadratic. In particular, even if the functions
describing the quadratic constraints are not convex, the admissible region is convex; thus, any local
minimum is a global minimum as well. The method has been applied to some examples for which
the collapse multiplier and a collapse mechanism are explicitly known. The solution to the
minimum problem has been calculated via numerical codes for quadratic programming problems
and then compared to both the exact solution and the numerical solution obtained with the finite
element code NOSA. The examples described in Section 4 demonstrates that the results of the
proposed numerical procedure and those of an incremental static analysis conducted via the NOSA
code are essentially equivalent.
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