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Abstract. Steel corrosion in reinforced concrete structures leads to concrete cover cracking, reduction
of bond strength, and reduction of steel cross section. Among theses consequences mentioned, reduction
of bond strength between reinforcement and concrete is of great importance to study the behaviour of RC
members with corroded reinforcement. In this paper, firstly, an analytical model based on smeared
cracking and average stress-strain relationship of concrete in tension is proposed to evaluate the maximum
bursting pressure development in the cover concrete for noncorroded bar. Secondly, the internal pressure
caused by the expansion of the corrosion products is evaluated by treating the cracked concrete as an
orthotropic material. Finally, bond strength for corroded reinforcing bar is calculated and compared with
test results.
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1. Introduction

Reinforcement corrosion is one of the major causes of reinforced concrete structure deterioration.
Corrosion may affect: (a) The steel, due to the reduction of both the steel cross section and the
mechanical properties (Almusallam 2001); (b) The concrete, due to the expansion of corrosion
products, cracking, splitting and even delaminating (Andrade et al. 1993, Molina et al. 1993); (c) The
bond strength between steel and concrete, due to the accumulation of corrosion products around the
steel, deteriorating or lost. Among the consequences mentioned above, many research works (Al-
Sulaimani et al. 1990, Cabrera and Ghoddoussi 1992, Stanish et al. 1999, Amleh and Mirza 1999,
Mangat and Elgarf 1999, Auyeung et al. 2000, Zhao and Jin 2002) focused on bond behavior of
corroded reinforcement. However, these works are experimental. The empirical formulae that
describe what influence corrosion has on the bond strength are based on the corresponding test
results.

Recently, general models for the prediction of bond strength for corroded bars have been proposed
by Lundgren (2002) and Coronelli (2002), respectively. Lundgren (2002) assumes corrosion
products as a corrosion layer. Bond model is combined with the modeling of the corrosion layer,
and a three-dimensional finite element program DIANA is used. Coronelli (2002) proposes a model
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to predict both the pressure around a corroded bar and the bond strength at the onset of pullout in
an anchorage. Before corrosion cracking of the cover concrete, the maximum pressure at bond
failure is taken as the maximum bursting capacity for noncorroded bars, where the maximum
bursting capacity is evaluated with the limit analysis method proposed by Tepfers (1979) for
noncorroded bars; the pressure exerted by the expansion of corrosion products is evaluated by
modeling the concrete cover as a beam, which has a cross section defined by the cover in the two
orthogonal directions and rests on evenly spaced supports that represent the confinement exerted by
the surrounding concrete. However, softening behaviour of concrete is not considered in the limit
analysis method suggested by Tepfers (1979), whereas concrete cover can still maintain some
residual strength after its tensile capacity is exceeded; meanwhile, the residual confinement pressure
is evaluated from the tests by Baldwin and Clark (Coronelli 2002) after the splitting strength of
concrete cover is exhausted by the expansion of the corrosion products.

In the present paper, firstly, an analytical model is proposed to evaluate the maximum pressure
development in the confined concrete before corrosion cracking of the concrete cover. Smeared
cracks are assumed to form in the radial direction as hoop stresses exceed the tensile capacity of
concrete; therefore, the average hoop tensile strain integrated over the perimeter represents the sum
of the true, discrete crack openings. Constant radial displacement is assumed in partly cracked
concrete. After corrosion cracking, the residual confinement pressure is calculated in association
with different corrosion levels. Secondly, corrosion pressure is evaluated by treating the cracked
concrete as an orthotropic material before and after corrosion cracking. Smeared cracks are assumed
and the average stress-strain relationships of cracked concrete in two principal directions are used.
Finally, a modified model proposed by Coronelli (2002) for splitting bond failure is used to evaluate
bond strength for corroded bars.

2. Bar-concrete pressure p(x) for corroded bars 

Before corrosion cracking of the cover concrete, the maximum pressure p(x) for corroded bars can
reach the maximum bursting capacity for noncorroded bars (Coronelli 2002); after corrosion
cracking, the residual confinement pressure is evaluated in association with different corrosion
levels. Therefore, the maximum bar-concrete pressure for noncorroded bars is evaluated firstly, then
the bar-concrete pressure for corroded bars after corrosion cracking is calculated.

2.1 Bar-concrete pressure for noncorroded bars 

The bond between steel and concrete consists of three mechanisms: adhesion, friction and
mechanical interlock. When a ribbed bar is pulled out of the concrete, its bond strength mainly
originates from mechanical interaction between the steel ribs and the surrounding concrete. A
splitting crack occurs if the tensile strength of concrete is reached. Tepfers (1979) treated this
problem as a thick-walled cylinder subjected to internal radial pressure. Later several research works
(Reinhardt and Van der Veen 1992, Olofsson et al. 1995, Noghabai 1996, Gambarova et al. 1994,
Gambarova and Rosati 1997, Nielsen and Bicanic 2002) have been carried out on the basis of the
idea of Tepfers (1979). In order to consider the softening behaviour of concrete, the thick-walled
cylinder is divided into two rings: an uncracked outer ring and a partly cracked inner ring. Different
concrete tensile softening models have been used in the cracked inner ring: a power-law model



Bond strength modeling for corroded reinforcement in reinforced concrete 865

(Reinhardt and Van der Veen 1992), a linear softening curve (Olofsson et al. 1995, Noghabai 1996),
and an elasto-cohesive model (Gambarova et al. 1994, Gambarova and Rosati 1997). However,
theses models have a common characteristic: they are related to the number of assumed radial
cracks. Therefore, the results of the problem are associated with the number of assumed radial
cracks. But it is different to determine the number of radial cracks in real concrete structures
because there are thousands of microcracks and cracks in cracked concrete.

In the present paper, the methodology proposed by Tepfers (1979) is also used; the problem of
determining the internal radial pressure p is divided into two parts, see Fig. 1, wherein the
reinforcing bar of initial radius R0 is embedded in concrete with outer radius Rc, the concrete cover
dimension measured from the center of the bar to the nearest surface of concrete. Ri defines the
crack front, where the hoop stresses equal to the tensile strength of concrete fct.

Simple equilibrium conditions written along any radially cracked section give the following
equation, by introducing the softening behaviour of concrete:

(1)

where the hoop stress σθ is assumed to vary only in the radial direction.
The pressure pi can be obtained from the solution  of the elastic out part, see Fig. 1(c):

(2)

To obtain σθ in the cracked part, see Fig. 1(d), the displacement and stresses are considered in this
cracked part. Smeared cracking is assumed to form in the radial direction as hoop stresses exceed
the tensile capacity of concrete; therefore, the formulation is written in terms of average stresses and
strains; and the average hoop tensile strain εθ, integrated over the perimeter, represents the sum of
the true, discrete crack openings (Pantazopoulou and Papoulia 2001). As a result, the total tangential
elongation δt at a radial distance r from the center of thick-walled cylinder, which is expressed as
the sum of nc crack widths plus the linear-elastic extension of the concrete between the cracks
(Reinhardt and Van der Veen 1992, Olofsson et al. 1995, Noghabai 1996, Gambarova et al. 1994,
Gambarova and Rosati 1997, Nielsen and Bicanic 2002), where nc is the assumed number of radial
cracks, can be expressed as following:

p R0⋅ pi Ri⋅ σθdr
R0

Ri∫+=

σθ r Ri=
fct=

pi fct

Rc
2 Ri

2–

Rc
2 Ri

2+
------------------⋅=

Fig. 1 Concrete cylinder with partly cracked inner part
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(3)

At a radial distance Ri, the tensile strength of concrete fct is reached and no cracks exist. Then, the
total tangential elongation δt is

(4)

where the Poisson’s effect is neglected; and E0 is the initial elastic modulus of concrete; εct is the
tensile strain capacity of concrete, εct = fct/E0. 

The associated radial displacement  is assumed to be constant (Reinhardt and Van der
Veen 1992, Olofsson et al. 1995, Noghabai 1996, Gambarova et al. 1994, Gambarova and Rosati
1997). Considering the compatibility between the cracked and uncracked parts, the following
equation can be obtained:

(5)

Thus, the average hoop strain εθ at a radial distance r is given by

(6)

In Eq. (6) εθ is related to the constitutive relation of concrete in tension. The following average
stress-strain relationship of concrete in tension (Fig. 3) is used (Hsu 1996), see Fig. 2.

     (7a)

(7b)

where E0 is taken as (  and  are in Mpa); fct is taken as 0.33 (  and  are
in Mpa);  is the compressive strength of concrete.

According to Eq. (6), it is evident that εθ > εct. Substituting Eq. (6) into Eq. (7b), then σθ in the
cracked part is given by 

(8)

δt 2π r εθ⋅ ⋅=

δt 2πRiεθ= 2πRi

fct

E0

-----≈ 2πRiεct=

ur Ri εct⋅=

δt 2πrεθ 2πRiεct= =

εθ
Ri

r
---- εct⋅=

σθ E0 εθ⋅= εθ εct≤

εθ fct

εct

εθ
----- 

 
0.4

⋅= εθ εct>

3875 fc′ fc′ fc′ fc′ fc′ fc′
fc′

εθ fct εct
0.4 r

Riεct

----------- 
  0.4

⋅ ⋅ fct Ri
0.4– r

0.4⋅ ⋅= =

Fig. 2 Average stress-strain curve of cracked concrete (Hsu 1996)
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Substituting Eq. (2) and Eq. (8) into Eq. (1), it simplifies to 

(9)

Differentiation of Eq. (9) with respect to Ri gives 

(10)

Eq. (10) is put to zero, and solved numerically for Ri. Taking the corresponding Ri into Eq. (9),
the maximum bar-concrete pressure pmax for noncorroded reinforcement can be obtained. 

2.2 Bar-concrete pressure for corroded bars after corrosion cracking

When the concrete cover is cracked, the stirrups and the concrete remaining around the bar still
develop some residual confining action (Giuriani et al. 1991, Coronelli 2002). Hence, a residual
confinement pressure pres is still present. In the case where no stirrups are provided, the confinement
pressure can be calculated by summing the contribution of the residual tensile strength of cracked
concrete (Giuriani et al. 1991).

To determine the residual confinement pressure pres, the method used in section 2.1 is still
adopted. Now, the equilibrium equation similar to Eq. (1) is given by

(11)

Smeared cracking is also assumed and Poisson’s effect is neglected. At the edge of the cracked
concrete ring, r = Rc, the hoop strain is assumed to be εx, and the associated radial displacement

 is assumed to be constant. Thus, the average hoop strain at a distance r is given by 

(12)

Using the average stress-strain relationship of concrete in tension, σθ in Eq. (11) is given by

(13)

Substituting Eq. (13) into Eq. (11), it simplifies to 

(14)

When the hoop strain εx at r = Rc is given, the corresponding residual confinement pressure pres

can be obtained from Eq. (14). In this paper, this hoop strain εx is related to the corrosion level. This
problem is solved in the following.

p R0⋅ Ri fct

Rc
2 Ri

2–

Rc
2 Ri

2+
------------------⋅ ⋅ fct+ Ri

0.4– Ri
1.4 R0

1.4–
1.4

-----------------------⋅ ⋅=

d
p R0⋅

fct

------------- 
 

dRi

----------------------
Rc

4
Ri

4– 4Ri
2– Rc

2⋅

Rc
2

Ri
2+( )

2
-------------------------------------------

1 0.4+ R0
1.4

Ri
1.4–⋅ ⋅

1.4
---------------------------------------------+=

pres R0⋅ σθ rd
R0

Rc∫=

ur Rc εx⋅=

εθ
Rc

r
----- εx⋅=

σθ fct εct
0.4 r

Rc εx⋅
-------------- 

  0.4

⋅ ⋅=

pres R0⋅ fct εct
0.4 Rc

0.4– εx
0.4– Rc

1.4
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1.4–
1.4

-----------------------⋅ ⋅ ⋅ ⋅=
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3. Corrosion pressure pcor (x) for corroded bars

3.1 Corrosion pressure for corroded bars before corrosion cracking

3.1.1 Definition of the mechanical problem
The method used in this part is similar to that used in section 2. In this approach, the evolution of

internal pressure is an output of the solution rather than the controlling parameter. The controlling
variable is a prescribed radial displacement  at the inner boundary of the concrete cover
layer. This prescribed radial displacement is related to the volumetric expansion of the rusting
reinforcement (Pantazopoulou and Papoulia 2001). The problem is modeled with reference to Fig. 3,
wherein R0 is the initial radius of reinforcing bar; Rs is the reduced radius of reinforcing bar; Rc is
the outer radius of concrete cover measured from the center of the bar to the nearest surface of
concrete; Rr defines the rust front; Ri defines the crack front. The prescribed radial displacement

 is given by .
Assuming uniform corrosion on the bar surface, the attack penetration depth or radius loss of the

bar is defined as x. Then the reduced radius of bar Rs is given by . The corresponding
volume of the steel consumed per unit length of the bar is given by 

. And the corresponding volume of accumulated rust products on the bar perimeter
∆Vr is , where n is the ratio between the volume of rust products and virgin steel, the
value of n is taken as 1.7~6.15 according to different corrosion products (Lundgren 2002).

Considering a part of the corrosion products flows away from the bar surface through the cracks
and pores of concrete toward the free surface, the volume of accumulated rust products is

 (Pantazopoulou and Papoulia 2001), from
which, with  and , where tr is the thickness of rust layer, it follows
that

(15)

Then the prescribed radial displacement  is given by

(16)

When the prescribed radial displacement  is given, attention is paid to the solution of the
problem in Fig. 3. The problem is divided into two parts: elastic outer and cracked inner part, see

ur r R0=

ur r R0=
ur r R0=

Rr R0–=

Rs R0 x–=
Vs∆ πR0

2 πRs
2–=

2πR0x πx
2–=

Vr∆ n Vs∆=

Vr∆ n Vs∆ πtr 2Rs tr+( ) π+ ur r R0=
Ri Rr–( )⋅ ⋅= =

ur r R0=
Rr R0–= Rr Rs tr+=

tr

n 2R0x x2–( ) x+ Ri R0– x+( )⋅
Ri R0+

---------------------------------------------------------------------------=

ur r R0=

ur r R0=
Rr R0– tr x–

n 1–( ) 2R0x x
2–( )⋅

Ri R0+
-------------------------------------------------= = =

ur r R0=

Fig. 3 Concrete cylinder with the prescribed radial displacement ur r R0=
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Fig. 3(b) and 3(c). In the elastic outer part, there is sound concrete, whereas sound concrete is
treated as an isotropic material. Therefore, the internal pressure pi is also given by Eq. (2). For the
cracked inner part, firstly, smeared cracking is assumed; as a result, the formulation is written in
terms of average stresses and strains. Secondly, the cracked concrete is treated as an anisotropic
elastic material. The governing equation of the problem is written as a differential equation for the
radial displacement ur (Pantazopoulou and Papoulia 2001)

(17)

where Er, Eθ are the secant stiffnesses of the cracked concrete in the radial and hoop directions. The
corresponding radial, hoop strains and stresses are given by

, (18a,b)

  
, (19a,b)

where the Poisson’s ratios νrθ and νθr are related by virtue of the requirements of anisotropic
elasticity as  (Pantazopoulou and Papoulia 2001). As the secant slope of the stress-
strain relationships of cracked concrete in principal directions defines stiffnesses, the constitutive
laws of concrete must be known.

3.1.2 Modeling of material behaviour
Hoop and radial directions are principal directions because of the assumed axisymmetry of the

problem. The hoop stresses σθ typically are tensile, whereas the radial stresses σr are compressive.
Smeared cracks are assumed to form in the radial direction as hoop stresses exceed the tensile
capacity of concrete fct.

The following stress-strain relationships of cracked concrete are used (Pantazopoulou and Papoulia
2001, Hsu 1996), see Fig. 4: 

d
2
ur

dr2
---------- 1

r
---+

dur

dr
--------⋅

ur

r2
----–

Eθ

Er

-----⋅ 0=

εr

dur

dr
--------= εθ

ur

r
----=

σr
1

1 νr θνθr–
----------------------- Erεr νr θEθεθ+( )= σθ

1
1 νr θνθr–
----------------------- Eθεθ νθrErεr+( )=

νθrEr νr θEθ=

Fig. 4 Stress-strain relationships of cracked concrete in principal directions. a) Principal compression
(Pantazopoulou and Papoulia 2001); b) Principal tension (Hsu 1996)
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concrete in compression (Pantazopoulou and Papoulia 2001, Fig. 4a)

(20)

concrete in tension (Hsu 1996, Fig. 4b)

(21a)

(21b)

where fc'  is the uniaxial compressive strength of concrete and ε0 is the corresponding axial
compressive strain, ; E0 and εct are the same values as in Fig. 2.

3.1.3 Solution of the problem
In order to obtain the unknown corrosion pressure pcor, the crack front Ri in Fig. 3 and the radial

displacement ur(r) in Eq. (17), a finite-difference scheme is established with the radial direction
discretized into N + 1 equidistant nodes (i.e., N intervals with length ). The first
node, i = 0, is located at r = R0, and the last node, i = N, is located at r = Ri. The corresponding
boundary conditions are 

, (22a,b)

Using a central-difference scheme to express the derivatives at the point r = ri in discrete form
(Pantazopoulou and Papoulia 2001)

, (23a,b) 

and for . Eq. (17) is written in terms of nodal displacements

(24)

Setting , Eq. (24) for i = 1 becomes 

(25)

where  is given by Eq. (16).

The discretized form of Eq. (22b) is 

(26a)
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then 

(26b)

Substituting Eq. (26b) into Eq. (24) for i = N (i.e., rN = Ri), it simplifies to

(27)

where .

Eq. (24), Eq. (25) and Eq. (27) can be written as an N × N tridiagonal system of equations
 with  and [B] shown in Appendix.

The pressure exerted by the corroding bar on the surrounding concrete cover is obtained by
calculating the radial stress at r = R0 (Fig. 3c)

(28)

where the displacement ur, −1 is obtained from Eq. (24) for i = 0 (i.e., at r = R0)

(29)

Eq. (24), Eq. (25) and Eq. (27) must be combined with Eq. (30), which is the equilibrium
condition written along any radially cracked section of the cracked inner part, see Fig. 3(d), to solve
unknown variables for different attack penetration depth x.

(30)

where the sign “−” is used to consider that the corrosion pressure pcor or the radial stress 
calculated from Eq. (28) is compressive.

3.2 Corrosion pressure for corroded bars after corrosion cracking

When Ri = Rc, the concrete cover is fully cracked. The corresponding attack penetration depth x is
defined as xcr. From this stage onward, the whole concrete cover is treated as an anisotropic elastic
material. The governing equation of the problem, the corresponding radial, hoop strains and stresses
and the stress-strain relationships of cracked concrete are the same as these in section 3.1. Now, the
whole clear cover is discretized into N + 1 equidistant nodes (i.e., N intervals with length h = (Rc − R0)/N).
The first node, i = 0, is located at r = R0, and the last node, i = N, is located at r = Rc. The
corresponding boundary conditions are 
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, (31a,b)

Substituting the discretized form of Eq. (31b) into Eq. (24) for i = N (i.e., rN = Rc, it simplifies to
(Pantazopoulou and Papoulia 2001)

(32)

For a given x (x > xcr), the unknown radial displacements are obtained by solution of a
combination of equations Eq. (24), Eq. (25) and Eq. (32), and the corresponding corrosion pressure
pcor is given by the following equation

(33)

where .
The corresponding hoop strain εx at r = Rc is given by 

(34)

Taking Eq. (34) into Eq. (14), the residual confinement pressure pres at a given attack penetration
depth x(x > xcr) can be obtained.

4. Bond strength for corroded reinforcement

The following model, originally proposed by Cairns and Abdullah (1996) and modified by
Coronelli (2002) to consider corroded bars, is used to calculate bond strength for corroded
reinforcement for splitting bond failure

(35)

where p(x): maximum confinement pressure for corroded bars at bond failure
when   where pmax is calculated by Eq. (9) and Eq. (10);
when   where pres is calculated by Eq. (14).
pcor(x): corrosion pressure, obtained from section 3 for different values of x;
k(x): coefficient, given by Cairns and Abdullah (1996) as following 

(36)

for an annular rib, (36a)
for crescent-shaped ribs, given by Coronelli (2002) as

(36b)

: non-splitting components of bond strength (Cairns and Abdullah 1996)
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2h
rN

------ 1

h2
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---------=

τbu x( ) k x( )p x( ) τb
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k x( ) kr Ar tg δ φ+( )⋅ ⋅ I π d sr⋅ ⋅ ⋅( )⁄=
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(37)

µ(x): friction coefficient, given by Coronelli (2002) as

(38)

: adhesion strength, given by Coronelli (2002) as 

(39)

: rib area in the plane at right angles to bar axis

for an annular rib, (40a)

for crescent-shaped ribs, (40b)

d: diameter of reinforcing bar;
sr: longitudinal spacing of transverse ribs. For crescent-shaped ribs, the value of sr is

suggested to take as d/tgβ;
kr: number of transverse ribs at section, kr = 2 for crescent-shaped ribs;
β: inclination of rib to bar axis, suggested value (Plizzari et al. 1998) is β = 57o~60o;
hr: height of transverse rib, for an annular rib, hr is a constant;
hrave: average rib height for crescent-shaped ribs, suggested value (Plizzari et al. 1998) is

hrave = (1/19− 1/21) · d;
δ: inclination of bearing face of rib to bar axis, suggested value (Cairns and Abdullah 1996) is

δ = 35o~45o;
: friction angle between reinforcing bar and concrete.

5. Numerical results of the models 

5.1 Comparison with Tepfers’ classic solutions 

The maximum bursting capacity pmax for noncorroded bars is evaluated by Tepfers (1979) in three
stages: a linear-elastic stage (lower bound); a plastic stage (upper bound); and an intermediate partly
cracked elastic stage. In Fig. 5, the relative maximum pressure pmax/fct is depicted as a function of
the relative cover thickness c/d, where c is the clear concrete cover. The solution of Eq. (9) and
Eq. (10) for noncorroded bar is compared with Tepfers’ solutions. It is seen from Fig. 5 that the
proposed model falls in between the partly cracked elastic stage and the plastic stage as pointed out
by Tepfers.

5.2 Comparison with test results of Mangat and Elgarf (1999)

An experiment taken from the literature is used (Mangat and Elgarf 1999). Reinforced concrete
beams of 910 mm length, and rectangular cross-section 150 mm deep and 100 mm wide were used.

τb
o x( ) kr Ar fcoh ctgδ tg δ φ+( )+[ ] π d sr⋅ ⋅( )⁄⋅=

µ x( ) tgφ 0.37 0.26x xcr–( )–= =

fcoh fcoh x( )=

fcoh x( ) 3.41 21.21x xcr–( )–=

Ar Ar x( )=

Ar x( ) π d hr x–( )⋅ ⋅=

Ar x( ) 0.5π d hrave x–( ) hrave x–( )2–[ ] sinβ⁄⋅=

φ φ x( )=
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Two deformed bars, each of 10 mm diameter and 1100 mm length, were located symmetrically at a
spacing of 50 mm center to center. A concrete cover of 25 mm to the center of reinforcement was
provided. The compressive strength of the concrete after 28 days was 45N/mm2, with 1.0N/mm2

standard deviation. The degree of corrosion in the experiment is defined as 2RT/d% (% reduction in
rebar diameter), where R is the corrosion in ‘mm/year’ and T is the time in ‘year’ since the
initiation of corrosion. Corrosion cracking occurred when the degree of corrosion increased from
0.4% to 0.5%. The corresponding attack penetration depth x is approximately 0.020~0.025 mm.
When the volume ratio n is taken as 2.0, the calculated attack penetration depth xcr is 0.0209 mm.
The calculated results are compared with the test results, see Fig. 6.

Fig. 6 Comparison of test results of Mangat and Elgarf (1999) and model

Fig. 5 The relative maximum pmax/fct as a function of the relative cover thickness c/d
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5.3 Comparison with test results of Zhao and Jin (2002)

Another experiment is taken from the test of Zhao and Jin (2002). Pullout test was conducted on
100 mm cubic concrete specimen with 12 mm diameter deformed bar embedded centrally. The
average compressive strength of the concrete cubes after 28 days was 22.13 MPa. Corrosion was
determined by applying Faraday’s law. The calculated results are compared with the test results, see
Fig. 7.

6. Conclusions 

In this paper, bond strength for corroded reinforcement is theoretically modeled. Firstly, the bar-
concrete pressure for corroded bars is modeled. Before corrosion cracking, the maximum pressure
p(x) for corroded bars is taken as the maximum bursting capacity for noncorroded bars (Coronelli
2002), and the softening behaviour of concrete is considered in evaluating the maximum bursting
capacity for noncorroded bars; after corrosion cracking, the residual confinement pressure is
calculated in association with different corrosion levels. Secondly, corrosion pressure is evaluated by
treating the cracked concrete as an orthotropic material before and after corrosion cracking. The
corresponding methodology, originally proposed by Pantazopoulou and Papoulia (2001), is modified
by using the equilibrium condition for the cracked part to calculate the unknown crack front Ri at
different corrosion levels. Finally, a model, which is originally proposed by Cairns and Abdullah
(1996) and modified by Coronelli (2002) to take into account the effect of corrosion, is used to
evaluate bond strength for corroded bars for splitting bond failure. 

In order to evaluate the maximum bursting capacity for noncorroded bars, the methodology,
originally suggested by Tepfers (1979), where a thick-walled cylinder is exposed to internal radial
pressure, is still used to consider the softening behaviour of concrete. Smeared cracking and

Fig. 7 Comparison of test results of Zhao and Jin (2002) and model
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constant radial displacement are assumed in partly cracked concrete. The calculated relative
maximum pressure pmax/fct is compared with Tepfers’ classic solutions. The proposed model falls in
between the partly cracked elastic stage and the plastic stage as pointed out by Tepfers.

Corrosion pressure before corrosion cracking is evaluated by treating the cracked concrete as an
orthotropic material and sound concrete as an isotropic material. Boundary conditions are different
from those used by Pantazopoulou and Papoulia (2001); and an equilibrium condition for the
cracked part is added to calculate the unknown crack front Ri at different corrosion levels. The
calculated attack penetration depth xcr at the stage of concrete splitting reproduces the experimental
results well. 

Bond strength for corroded reinforcement is calculated and compared with test results. Bond
strength increases at low corrosion levels, and then maximum bond strength occurs at a critical
corrosion level, and finally decreases with increasing corrosion levels. There are some difference
between the calculated results and test results, the causes of which are believed to lie in (1)
unknown geometric characteristics of deformed bar used in the corresponding tests; (2) empirical
formulae of coefficient friction µ(x) and adhesion strength fcoh(x) (Coronelli 2002).

This analysis opens the way to study the mechanical behaviour of RC members with corroded
reinforcement theoretically, taking into account the deterioration of bond strength with increasing
degrees of corrosion levels. 
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Appendix: N × N tridiagonal system of equations [ K][ur] = [B]

(A1)

where 

K
N N×

K11  K12  0  0  …    …  0
K21  K22  K23  0  …    …  0
0  …  …  …  …    …  0
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0  …  …  …  …  …  0
0  0  …  0  KN 1– N 2–   KN 1– N 1–   KN 1N–

0  0  0  …  0  KNN 1–   KNN

=
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-----------+ 

 –= =
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(A2)

(A3)
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