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Dynamics of thick hygrothermal viscoelastic composite 
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Abstract. An uncoupled computational model for analyzing the hygrothermal dynamic response of
composite laminates has been developed. The constitutive equations, expressed in an integral form, and
involving relaxation moduli are adopted, to describe the non-aging hygrothermorheologically simple
materials. A Prony series represents the relaxation moduli is exploited in order to derive a recursive
relationship, and thereby eliminate the storage problem that arises when dealing with material possessing
memory. The problem is formulated in a descritized variational form. Mindlin and higher order finite
elements are employed for spatial descretization, while the Newmark average acceleration scheme is
exploited for temporal descritization. The adopted recursive formula uses only the details of the previous
event to compute the details of the current one. Numerical results of the displacement fields of both thin
and thick viscoelastic laminates problems are discussed to show up the effectiveness of Mindlin and
higher-order shear theories.
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1. Introduction

Viscoelastic dynamic analysis can be carried out in either the time or complex frequency domain
(Hashin 1970a, b, Cederbsum and Aboudi 1989). The dynamic analysis of such structures requires a
more accurate model for material damping rather than that of the velocity proportional damping
schemes (Saravanos and Chamis 1990). Chen and Zhu (1990) set up the equation of motion of the
elastic-viscoelastic composite structure in the time domain instead of the Laplace frequency domain.
They transformed the integro-differential equation of motion into a first-order differential equation,
where they discussed response calculations in the time domain and modal analysis. In addition to
the methods proposed in Chen and Zhu (1990), Chen and Chan (2000) developed an integral
element to carry out a full scale visco-elastic dynamic analysis of structures.

For general load histories, including hygrothermal loads, and viscoelastic material, direct time
integration schemes appear to be the most robust discretized tool. These schemes require large
amounts of storage to retain all of the previous solutions needed to evaluate the current state. This
deficiency can be remedied by the development of some sort of recursion relationships (Taylor et al.
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1970). Yi and Hilton (1994) used a recursive formulation to determine the dynamic response of
hygrothermorheologically simple viscoelastic composite plates. The formulation accounted for in-
plane and transverse mechanical loads and the developed recursive formula allows the current event
is to be calculated in terms of results of the previous two events. A direct integration scheme similar
to that of Taylor et al. (1970) was employed by Hammerand and Kapania (1999) to evaluate the
hereditary integrals describing the linear viscoelastic behavior of hygrothermorheologically simple
laminated plates and shells, where the resulting recursion relationship requires only the results of the
previous two events to compute the current one. 

In the present study, a discretized computational model is developed for analyzing the linear
uncoupled dynamic response of hygrothermal viscoelastic composite laminates in the time domain
and exploiting the integral form of the constitutive law. Both Mindlin-Reissner and higher-order
shear theories are introduced and the consistent mass concept is adopted in the framework of finite
element discretization procedure. The formulation accounts for in-plane and transverse mechanical
loads as well as hygrothermal loads. The developed recurrence formula permits the new event to be
determined in terms of the only previous one. To illustrate the versatility of the developed model,
the dynamic analysis of composite laminate, subject to bending loads, is carried out.

2. Displacement fields and deformations

The viscoelastic composite laminate is assumed to be in a plane stress state with transverse shear
deformations. In this study, small deformations, and consequently Caushy stresses, are considered.
The displacement fields are expressed in either one of the following forms:

(i) Mindlin-Reissner Displacement Field (Transverse Shear Element 1)

U(X, t) = uo + zθx, V(X, t) = vo + zθy, W(X, t) = wo (1)

(ii) Higher-Order Displacement Field (Transverse Shear Element 2)

(2)

Where X(x, y, z) are global laminate co-ordinates, uo, vo, wo are displacements at the midplane (z = 0)
of the laminate, θx and θy are the angles of rotation about the y and x axes,  and  are
higher-order terms of inplane displacements and rotational angles, respectively.

The engineering strains expressed in the global laminate co-ordinate system are:

(3)

For the two dimensional case, the engineering strains, , are expressed in terms of the
generalized strain vector, , which corresponds to the mid-plane at any point as:
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(4)

where the Zc matrix and the  vector for each displacement field are given in Hassan et al. (1996).

3. Constitutive laws for orthotropic hygro-thermal visco-elastic lamina

The stress-strain relationships for orthotropic, non-aging, hygrothermorheologically simple, linear
viscoelastic materials can be described in the principal material directions, Xi(x1, x2, x3), by the
following hereditary integrals, (Yi and Hilton 1995):

(5)

where σi is the stress tensor at temperature, T, moisture, M, and time, t; furthermore εj and  are
total and free hygrothermal strains which may be stated as:

(6)

where αj and βj are thermal and hygroscopic expression coefficients which are independent of
temperature, moisture and time; θT and θM are the changes in temperature and moisture from the
stress-free state.

Based on the time-temperature-moisture superposition principles, the relaxation curves can be
shifted, where master relaxation curves can be obtained at the reference temperature and moisture
content. The relaxation moduli can be defined as:

(7)

where Trf and Mrf are the reference temperature and moisture, and ζij is the reduced time which is
related to the temperature-moisture shift factor, φij , as:

(8)

Assuming temperature and moisture are uniform throughout the laminate and timewise constant,
Eq. (8) becomes as:

(9)

The relaxation moduli, Qij, and the reduced times, ζij, can be rewritten in contracted notations as:

(10)

where r = 1, …….., 6 for orthotropic lamina in a plane stress state with transverse shear
deformations.

The Prony series represents the relaxation moduli as:

ε{ } Zc[ ] ε̃{ }=

ε̃
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Qij T M t, ,( ) Qij Trf Mrf ζi j, ,( )=
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 (11)

where λrp are the relaxation times, Nr are the numbers of terms in the series expansions and  and
 are the fully relaxed and instantaneous moduli.

The transformed relaxation moduli, , with respect to the global laminate coordinates (Yi and
Hilton 1995) can be obtained by the following transformation:

(12)

where Aijr  are transformation coefficients (Assie 2001).

4. Finite element formulation and numerical algorithm

As regard to the dynamic orthotropic hygrothermal viscoelasticity, the Hamilton’s variational
functional is applied. Taking the first variation of the linear functional, the following equilibrium
equations are obtained for each element:

(13)

where the individual element matrices and vectors are defined in Assie (2001).
The assembly procedure is carried out to obtain the global stiffness and mass matrices in addition

to the load vectors. Therefore, the integro-differential equations are given as:

(14)

Where m', n' range from 1 to the total degrees of freedom per element, while m, n range from 1 to
the total degree of freedom in the global system.

To avoid large storage requirements, a numerical approach suggested by Yi (Hammerand and
Kapania 1999) and developed in Assie (2001) for the solution of Eq. (14) is employed. Assuming
the system is free of load at t < 0, Eq. (14) becomes at tÜ  as follows:

(15)

The global hygrothermal force vector, , can be developed into a recursive formula as shown
in Yi and Hilton (1995).
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Applying Newmark average acceleration direct integral method, Eq. (15) would be reduced to the
following recursive form:

(16)

where all terms of this equation are well defined in Assie (2001).
It is worthily noticed that Eq. (16) represents a simple recurrence formula for evaluating the

displacement vector at time, tÜ ,  in terms of the event at time, tÜ −1. 

5. Numerical results

The suggested numerical approach, addressed in the previous section is incorporated into the
framework of a traditional finite element model. The displacement models discussed in section (2)
are exploited and heterosis element is adopted for discretization (Hassan et al. 1996). 

As to the following examples, the dynamic central viscoelastic responses of simply supported
composite laminates are evaluated. The laminates are subjected to uniformly distributed transverse
unit step loads with zero initial conditions. All of the laminates have 20 in × 20 in square plan form,
the thicknesses of all layers are equal and a time step size of 0.0001 sec. is used. Due to the biaxial
symmetry of rectangular cross-ply laminates, one quadrant of the plate is discretized into four
heterosis elements. The elastic properties of GY70/339 composites, their master relaxation curves
and the shift factors are found in Yi (1987). It is assumed that G12 = G13 = G23 (shear rigidities) for
each lamina and Poisson’s ratio ν23 and ν13 are assumed to be the same as ν12. Since E1 is
controlled by fiber properties, it is assumed that the stiffness Q11 is time independent while other
relaxation moduli such as Q12, Q22, Q33, Q44, and Q55 have the same time dependent function and
the same shift factor. Also, all of the laminates are analyzed at 2.2% constant moisture content
under isothermal conditions (T = 129oF). 

Symmetric and unsymmetric stacking sequences, (0o
10/90o

10)s and (0o20/90o
20)t, are used to

compare between Element type (1) and Element type (2) in analyzing thin/thick viscoelastic
laminates. The thickness of each lamina is 0.0056 in and 0.1 in for the thin and thick plates,
respectively.

From Figs. 1 and 2, it is shown that the viscoelastic deflections obtained by using both Element
type (1) and Element type (2) are almost coincident for the thin plate limit where the plate side to
thickness ratio, A/H, equals 89.3. Meanwhile, in the thick limit of Element type (2) the model
exhibits higher viscoleastic deflection than that obtained from Element type (1), where a large
discrepancy is observed in unsymmetric laminates. In general, it is noticed that the response of thick
laminates rapidly decay than that of the thin ones. Also, it is noticed that the viscoelastic damping
dominantly affects the frequency of the unsymmetric thick laminates. These obtained results are
highly consistent with the concepts of higher-order shear and Mindlin-Reissner theories.
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6. Conclusions

A numerical algorithm for analyzing dynamic responses of orthotropic hygrothermal viscoelastic
composite laminates has been developed in the time domain. The integral form of the constitutive
laws is used. Mindlin-Reissner and higher-order transverse shear deformation theories are utilized in
the finite element formulations employing the consistent mass matrix. The proposed algorithm is
incorporated in the framework of the finite element the displacement model. Two different finite

Fig. 1 The viscoelastic deflection of a simply supported plate with (0o
10/90o

10)s -stacking sequence
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element types are exploited. The developed recurrence formula permits the current displacement
vector to be computed using only the previous one. Hygrothermal environment causes degradation
of the stiffness, and consequently, decaying of the vibration amplitude. The effectiveness of each
type of elements, in simulating the response of thin/thick viscoelastic laminates, is discussed.

Fig. 2 The viscoelastic deflection of a simply supported unsymmetric Laminate with (0o
20/90o

20)t -lamination
scheme
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