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Abstract. An optimal design method with nonlinear elastic analysis is presented. The proposed
nonlinear elastic method overcomes the drawback of the conventional LRFD method that accounts for
nonlinear effect by using the moment amplification factors of B1 and B2. The genetic algorithm used is a
procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation
operators are employed to look for high performance ones among sections in the database. They are
satisfied with the constraint functions and give the lightest weight to the structure. The objective function
taken is the total weight of the steel structure and the constraint functions are strength, serviceability, and
ductility requirement. Case studies of a planar portal frame, a space two-story frame, and a three-
dimensional steel arch bridge are presented. 
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1. Introduction

In the AISC-LRFD Specification (2001), linear elastic or nonlinear elastic analysis is used to
analyze a structural system. The use of linear elastic analysis is the norm of engineering practice.
When linear elastic analysis is used to analyze a structural system, the nonlinear effects associated
with P − δ and P − ∆ moment are considered by using the approximate moment amplification
factors of B1 and B2. In B1 − B2 method, an unbraced frame is decomposed into a non-sway and
sway component. The corresponding non-sway and sway moments (i.e., Mnt and Mlt) are obtained
by performing linear elastic analysis. Then, the nonlinear moments are obtained by multiplying two
sets of linear moments by the B1 and B2 factors, respectively (Salmon and Johnson 1990, Segui
1998). The shortcoming of this method is that the locations of maximum moments in two separate
sets are not identical. Thus, the resulting maximum moments (=B1Mnt + B2Mlt) is always larger than
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the accurate nonlinear moment. Another difficulty is that the direct use of computer software from
analysis to design in one step, is not possible since designers must select correctly the effective
length factor (K) for two separate components after analysis (Chen and Kim 1997).

The way to overcome these difficulties is to perform nonlinear analysis. The commercial finite
element analysis softwares including ABAQUS, ANSYS, and etc. can perform nonlinear analysis
(Habbit, Karlsson and Sorensen 1998, ANSYS 2000). These softwares, however, require more than
ten elements along the member to obtain an accurate solution under the some specific member
length and boundary conditions. To this reason they are not used for practical design purposes. In
this paper, a practical nonlinear analysis method is presented. The geometric nonlinearities are
considered by using stability functions (Chen and Lui 1987). The stability functions use only one
beam-column element to capture the nonlinear behavior of a member. Then, an optimal design
method combined with the practical nonlinear analysis is presented. 

In most practical problems in structural design, the design variables are discrete. A genetic
algorithm is generally suitable for problems with discrete variables, particularly since it searches for
the global optimal point. One way to achieve the optimal design for large-scale steel structures is to
select structural members from standardized steel profiles. Among various global optimization
techniques that are prevalent for the direct use of these steel profiles, a genetic algorithm gives the
best results (Erbatur et al. 2000). Thus, design optimization approach using a genetic algorithm is
employed in this study.

The genetic algorithm is introduced by Holland (1975). Recently, several genetic algorithms have
been developed by Jenkins (1991), Rajeev and Krishnamoorthy (1992), Lin and Hajela (1992), Li
and Love (1997), and Chen and Rajan (2000). These methods are usually incorporated with linear
analysis, but they cannot verify the compatibility between the isolated member and the member as
part of a frame. The individual member strength equations as specified in specifications are
unconcerned with system compatibility. As a result, there is no explicit guarantee that all members
will sustain their design loads under the geometric configuration imposed by the framework. In this
paper, a genetic algorithm and a section increment method were combined with nonlinear elastic
analysis to perform an optimal design. The genetic algorithm used is a procedure based on
Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are
used to look for high performance ones among sections in the database. In the section increment
method, a member with the largest unit value (calculated by LRFD interaction equations) is
replaced one by one with an adjacent larger member selected in the database. The results of the
optimal design using genetic algorithm were compared with those of the section increment method.
The weight of a steel frame was taken as an objective function. Strength, serviceability, and ductility
requirement were used as constraint functions.

2. Practical nonlinear analysis

To capture geometric nonlinearity (large displacement), stability functions are used to minimize
modeling and solution time. Since stability functions use only one beam-column element to define
the second-order effect of an individual member, they are an efficient and economical method of
performing a frame analysis (Kim and Chen 1996a, 1996b). Considering the prismatic beam-column
element shown in Fig. 1, the incremental force-displacement relationship of this element may be
written as
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(1)

where: Sii, Sij, Sji, Sjj are the stability functions; ,  are incremental end moments;  is
incremental axial force;  are incremental joint rotations;  is the incremental axial
displacement; A, I, L are area, moment of inertia, and length of beam-column element, respectively;
E is modulus of elasticity.

The stability fuction given by Eq. (1) may be written as

(2)

(3)

where, , P is positive in tension.
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Fig. 1 Beam-column subjected to double-curvature bending
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The force-displacement equation may be extended for three-dimensional beam-column element as
(Kim et al. 2001, Kim and Choi 2001)

 (4)

where  and  are incremental axial force, incremental end moments with
respect to y and z axes and incremental torsion, respectively.  and  are the
incremental axial displacement, the incremental joint rotations, and the incremental angle of twist.
S1, S2, S3, and S4 are the stability functions with respect to y and z axes, respectively. Eq. (4) is
approximate since it ignores the warping restraint effect. The stability functions given by Eq. (4)
may be written as
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(5d)

where , and P is positive in tension.
The numerical solutions obtained from Eqs. (5a-d) are indeterminate when the axial force is zero.

To circumvent this problem and to avoid the use of different expressions for S1, S2, S3, S4 for a
different sign of axial forces, Chen and Lui (1987) have proposed a set of expressions that make use
of power-series expansions to approximate the stability functions. The power-series expressions have
been shown to converge to a high degree of accuracy within the first ten terms of the series
expansions. Alternatively, if the axial force in the member falls within the range , the
following simplified expressions may be used to closely approximate the stability functions:

 (6a)
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Eq. (6) is applicable for members in tension (positive P) and compression (negative P). For most
practical applications, Eq. (6) gives an excellent correlation to the “exact” expressions given by Eq. (5).
However, for ρ other than the range of , the conventional stability functions (Eqs. (5a-d))
should be used. The stability function approach uses only one element per a member and maintains
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3. Verification of nonlinear analysis

The practical nonlinear analysis used for automatic design was verified for an axially loaded
column and a space frame. 

3.1 Axially loaded column

A simply supported column with three-dimensional degree of freedom is as shown in Fig. 2.
W8 × 31 column of A36 steel is used in the analysis. The yield strength of all members is 248 MPa
(36 ksi) and Young’s modulus is 200,000 MPa (29,000 ksi). The number of element used is one.
With increasing the slenderness parameter, the buckling strength of column is calculated. The
column strength by the proposed analysis and the Euler’s theoretical strength are compared in Fig. 3 

where, λcy = slenderness parameter about weak-axis . The Euler’s buckling strength for

weak-axis is PEy = π2EIy /L2. The strength of the proposed analysis compares well with that of the
Euler’s theoretical solution. The maximum error by the proposed analysis and the Euler’s theoretical
solution is 0.7%. 

3.2 Space frame

Fig. 4 shows a space one-story frame. The wide flange sections of W14 × 43 and W18 × 46 were
used for all columns and all beams, respectively. The yield strength of all members was 248 MPa
(36 ksi) and Young’s modulus was 200,000 MPa (29000 ksi). Fig. 4 also shows the three-
dimensional load condition. The load-displacements by the proposed method were obtained using

KL
ryπ
------- Fy

E
----- 
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Fig. 2 Simply supported 3-D column under
axial load P

Fig. 3 Strength curve corresponding to slenderness
parameter
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one element per member. The numerical analysis was carried out using ABAQUS, a commercial
finite element analysis software (Habbit, Karlsson, and Sorensen 1998). B31, B32, and B33 were
offered in ABAQUS for three-dimensional beam modeling. B31 and B32 were Timoshenko beams
and included shear deformation. B33 was an Euler-Bernoulli beam ignoring shear deformation. The
element type used was B33 because shear deformation was not considered in the proposed analysis.
The number of element used was one per 0.254 m (10 in.) along the member. The load-
displacement obtained by the proposed analysis compared well with that obtained by ABAQUS as
shown in Fig. 5. 

Fig. 4 Space frame 

Fig. 5 Comparison of space frame load-displacement curves at point A
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4. Optimal design

4.1 Genetic algorithm

The genetic algorithm was introduced by Holland (1975) at the Michigan University. It is based
on the theory of natural evolution and the law of genetics. Fig. 6 shows an example following the
procedure of the genetic algorithm. The number of individual (design variable) is 2, each encoded
with 8 bits leading to a chromosome size of 16. Population size is 3. The probability values of 0.9
for crossover and 0.03 for mutation were used. Three populations with two individuals are generated
as initial populations. One population of ‘1000010000110111’ with the highest fitness is selected
among the three populations. ‘1000010000110111’ represents two individuals (‘10000100’ and
‘00110111’). ‘10000100’ and ‘00110111’ can be transferred to 132 and 55 in decimal number,
respectively. These numbers represent the 133rd section and 56th section in the database, where the
section numbers are added by one. In this study, 256(=28) W-sections are adopted by excluding 35
large sections from 291 W-sections listed in the AISC-LRFD Specification. 256(=28) box sections
are adopted by excluding seven small sections from 263 box sections listed in the Specification.
Three populations are reproduced as the second generation. Crossover and mutation operators are
applied to the reproduced populations. One population (‘0010111110110010’) of the second
generation is selected by evaluating fitness. The selected individuals are ‘00101111’ and ‘10110010’
This procedure is repeated by reaching the number of maximum generation.

Fig. 7 shows an optimal design procedure using the genetic algorithm. First, the sections are
selected as the first generation. The total weight, serviceability, and strength of the structure
composed of the selected members are evaluated. Linear elastic analysis is performed in order to
check the serviceability of the structure subjected to service loads. Nonlinear elastic analysis is
performed in order to check the strength of the structure subjected to factored loads. If the unit

Fig. 6 Example of procedure of genetic algorithm
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values G(1) (Eq. (8a) and Eq. (8b)) of all the members are less than 1.0, the strength of the
structure is satisfied. If the member is not satisfied with the serviceability or the strength, the
sections of the second generation are assigned. If the new sections are satisfied with the
serviceability and the strength of the structure, the weight of the structure composed of the new
sections is reserved as the base weight.

Next, the new sections of the third generation are assigned. If the third sections are satisfied with
the serviceability and the strength, and the weight of the structure composed of the sections is
lighter than that of the structure assigned by the second generation. The weight of the third

Fig. 7 Optimal design procedure using genetic algorithm in cooperated with nonlinear elastic analysis
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generation is reserved as the new base value. If the third sections are not satisfied with the objective
function, the serviceability, or the strength of the structure, the fourth sections are selected. These
routines are repeated by reaching the number of maximum generation assigned by the designer.
Finally, the lightest sections satisfying the serviceability and the strength are selected.

4.2 Section increment method

Fig. 8 shows the procedure of the section increment method. The lightest sections are assigned to
the initial members. If the initial members are not satisfied with the constraint functions of the
structure, they are increased one by one corresponding to two rules. In the first rule, the shallowest
section among the various ones with the same weight is selected in order to minimize the difference
of strength and stiffness in weak and strong axis. For example, W10X30, W12X30, and W14X30
are the sequence to be selected corresponding to the rule. In the second rule, if the same weight
section does not exist, a slightly heavier one is selected. If W14X30 selected by the first rule is not
satisfied with the constraint functions, it is replaced by W8X31 according to the second rule. If
W8X31 is not satisfied with the constraint functions, it is replaced by W16X31 corresponding to the
first rule.

Fig. 8 Optimal design procedure using section increment method in cooperated with nonlinear elastic analysis
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Linear elastic analysis is performed in order to check the serviceability of the structure subjected
to service loads. If the beam is not satisfied with the constraint function of deflection, it is replaced
with an adjacent larger one selected in the database. If the column is not satisfied with the constraint
function of inter-story drift, it is replaced with an adjacent larger one. This routine is repeated until
the serviceability conditions are satisfied. Next, nonlinear elastic analysis is performed in order to
check the strength of the structure subjected to factored loads. The unit value G(1) of each member
is calculated using the LRFD interaction equation. A member with the largest unit value is replaced
one by one with an adjacent larger one selected in the database. This routine is repeated until the
unit values G(1) of all members of the structural system are less than 1.0.

4.3 Objective function

The objective function taken is the weight of a structure, which is expressed as

(7)

where ρ is the unit weight, NB and NC are the total number of beams and columns, respectively,
and (Vb)i and (Vc)j are the volume of the i-th beam and the j-th column, respectively. 

4.4 Constraint function

Strength, serviceability, and ductility requirement were used as constraint functions.

4.4.1 Strength
The strength for the beam-column follows the format of the AISC-LRFD (2001) interaction

equation. The corresponding constraint function may be written as
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total shear stress under factored load from torsion and all other causes. Fy is the yield stress. In this
paper, the plastic moment as nominal flexure strength was used because a compact section was
assumed and lateral torsional buckling was ignored. Pn is nominal axial compressive strength,
determined as

for (9a)

for (9b)

for which λc is

(10)

where Fy is yield stress; A and L are the gross cross-sectional area and the unbraced length,
respectively; r is the radius of gyration about the plane of buckling; and E is Young’s modulus. K is
the effective length factor calculated approximately by (Dumonteil 1992):
For the braced frame
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4.4.3 Ductility requirement
Adequate rotation capacity is required for members to develop their full plastic moment capacity.

This is achieved when members are adequately braced and their cross-sections are compact. The
limits for lateral unbraced lengths and compact sections are explicitly defined in AISC-LRFD.
Based on AISC-LRFD Table B5.1, the constraint functions of ductility requirement are written as

(14)

(15)

(16a)

(16b)

where G(4) is a constraint function on limitation of unbraced length to avoid lateral instability. G(5)
and G(6) are constraint functions on limitation of width-thickness ratio for flanges and web to avoid
local buckling. ryi and Lbi are radius of gyration about the weak axis and unbraced length of i-th
member, respectively.  bf and tf are the width and thickness of flange, respectively. tw is the thickness
of web. hc is the depth of web clear of fillets. Fy is the yield stress of steel. φb is the resistance
factor for flexure (=0.90). Pu and Py are the required compressive strength and yield strength,
respectively.

The limits for lateral unbraced lengths and compact sections for steel bridges are explicitly
defined in AASHTO-LRFD. Based on AASHTO-LRFD, the constraint functions of ductility
requirement for I-shaped section are written as
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length. Mp is plastic moment. ry and Lb are minimum radius of gyration and the unbraced length,
respectively. bf , tf , and tw are flange width, flange thickness, and web thickness, respectively. Dcp, E,
and Fy are web depth in compression, Young’s modulus, and the yield stress of steel, respectively.

Based on AASHTO-LRFD, the constraint functions of ductility requirement for box section are
written as
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, without longitudinal stiffeners (20a)

, with longitudinal stiffeners (20b)

, without longitudinal stiffeners (21a)

, with longitudinal stiffeners (21b)

where G(5) and G(6) are constraint functions on limitation of width-thickness ratio for flanges and
web to avoid local buckling. bf , tf , and tw are width of the compression flange, flange thickness, and
web thickness, respectively. Dc, E, and fc are depth of the web in compression in the elastic range,
Young’s modulus, and stress in the compression flange, respectively.

5. Design example

5.1 Planar portal frame

Fig. 9 shows a planar portal frame. The population, i.e., the groups of the section types, is shown
in Fig. 10. The number of element used was 3. The yield stress used was 250 MPa (36 ksi) and
Young’s modulus was 200,000 MPa (29,000 ksi). Design loads included dead load of 54.75 kN/m
(3.75 kips/ft), live load of 36.50 kN/m (2.50 kips/ft), and wind load of 67.7 kN (15.21 kips). The
load factors used were 1.2 for dead load (D), 0.5 for live load (L), and 1.6 for wind load (W).
Factored design loads were converted into equivalent concentrated loads as shown in Fig. 9. 

G 5( ) 1.38 E

fc
2Dc

tw

---------

------------------
bf

2tf

------– 0≥=

G 5( ) 0.408 E
fc

---
bf

2tf

------– 0≥=

G 6( ) 6.77 E
fc

---
2Dc

tw

---------– 0≥=

G 6( ) 11.63 E
fc

---
2Dc

tw

---------– 0≥=

Fig. 9 Planar portal frame Fig. 10 Group of section types of planar portal
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In case of the genetic algorithm, the number of individual (the number of section type of the
planar portal frame) used was two. Crossover probability of 0.90, mutation probability of 0.03, and
population size of 10 were used. The number of maximum generation used was 5,000. For the
section increment method, the initial member sizes used were W4 × 13, one of the lightest sections.
The member sizes were increased one by one according to the two rules mentioned previously until
the structure was satisfied with the constraint functions. 

Table 1 compares the optimal designs using the genetic algorithm and the section increment
method. Since the unit values G(1) for both cases were less than 1.0, the member sizes of the
system were adequate. The structure designed using the genetic algorithm was 7.7% lighter than
that by the section increment method. Since the weights of the structure in both cases of
serviceability considered and ignored were equal, it could be judged that the section sizes of the
structure were determined by the member strength rather than the serviceability. The vertical
deflections of the beam for the service live loads of 1.0L were calculated as L/1351 in case of the
genetic algorithm and L/1404 in the section increment method. These met the deflection limit of
L/360. The lateral drifts for the wind loads of 1.0W were calculated as H/731 and H/785 in the
genetic algorithm and the section increment method, respectively. These met the inter-story drift
limit of H/300.

5.2 Space two-story frame

Fig. 11 shows a space two-story frame. Fig. 12 shows the group of the section types. The number
of element used was 52. The yield stress used was 250 MPa (36 ksi) and Young’s modulus was
200,000 MPa (290,000 ksi). The load conditions were given as follows: (1) Roof loads: Dead load =
10.8 kN/m2 (225 psf) and Live load = 7.2 kN/m2 (150 psf); (2) Floor loads: Dead load = 13.2 kN/m2

(275 psf) and Live load = 12.0 kN/m2 (250 psf); (3) Wind load = 5.9 kN/m2 (122 psf). The load
combination used was 1.2D+0.5L+1.6W. Factored design loads were converted into equivalent
concentrated loads (Fig. 11).

In case of the genetic algorithm, the number of individual (the number of section type of the
space two-story frame) used was ten. Crossover probability used was 0.90, mutation probability was
0.03, and population size was 10. The number of maximum generation used was 20,000 since the
section types were more than those of the planar portal frame. In the section increment method,
initial member sizes used were W4 × 13, one of the lightest sections. 

Table 2 compares the optimal designs using the genetic algorithm and the section increment
method. Since the unit values G(1) for both cases were less than 1.0, the member sizes of the

Table 1 Optimal design of planar portal frame

Design 
variables

Serviceability considered Serviceability ignored

Genetic algorithm Section increment 
method Genetic algorithm Section increment 

method

Section size G(1) Section size G(1) Section size G(1) Section size G(1)

1 W24X55 0.932 W24X62 0.816 W24X55 0.932 W24X62 0.816
2 W16X40 0.934 W16X40 0.929 W16X40 0.934 W16X40 0.929

Weight (lb) 2,460 2,665 2,460 2,665
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Fig. 11 Space two-story frame

Fig. 12 Design variables of space two-story frame

Table 2 Optimal design of space two-story frame

Design 
variables

Genetic algorithm Section increment method

Section size G(1) Section size G(1)

1 W12X87 0.898 W30X116 0.747 
2 W24X103 0.977 W40X183 0.763 
3 W14X53 0.967 W24X76 0.845 
4 W24X76 0.939 W24X68 0.878 
5 W14X48 0.803 W16X40 0.984 
6 W8X15 0.880 W8X15 0.871 
7 W12X19 0.965 W12X19 0.960 
8 W12X26 0.997 W12X26 0.905 
9 W8X13 0.813 W8X13 0.797 
10 W12X16 0.915 W12X16 0.920 

Weight (lb) 21,115 25,794
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system were adequate. The structure designed using the genetic algorithm was 18.1% lighter than
that by the section increment method.

5.3 Three-dimensional steel arch bridge

Fig. 13 shows a steel arch bridge that was 7.32 m (24 ft) wide and 61.0 m (200 ft) long. The
group of the section types for arch rib, tie, vertical member, and bracing were assigned to 1, 2, 3,
and 4, respectively. The number of element used was 228. The yield stress used was 250 MPa (36
ksi) and Young’s modulus was 200,000 MPa (290,000 ksi). The dead load, live load, and impact
load specified in AASHTO-LRFD (1998) were considered as design loads. The concentrated dead
loads and live loads of HS-20 were applied on each joint. Load factors of 1.25 for the dead load,
1.75 for the live load, and 0.30 for the impact load were used. Fig. 14 shows the design load
considering the load factor.

In case of the genetic algorithm, the number of individual (the number of the section type of the
space two-story frame) used was four. The crossover probability used was 0.90, mutation probability
was 0.03, and population size was 10. The maximum generation number of 2,000 was used to
shorten the analysis time, although the number of element and the section types were much more
than those of the planar portal frame.

Fig. 13 3-D steel arch bridge

Fig. 14 Factored load
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Table 3 shows the optimal design using the genetic algorithm. Since the unit values G(1) were
less than 1.0, the member sizes of the system were adequate. The maximum deflection by the
service load was calculated as 29 mm (1.14 in) at mid-span. The deflection ratio was L/2113, which
satisfied the deflection limit of L/800. Since the three-dimensional steel arch bridge was sufficiently
satisfied with serviceability, it could be judged that the section sizes of the structure were
determined by the member strength rather than the serviceability.

6. Conclusions

An optimal design using the genetic algorithm and the section increment method incorporated
with a nonlinear elastic analysis was developed. The following are the summaries and conclusions
of this study.

(1) The proposed nonlinear elastic analysis overcomes the drawback of the conventional LRFD
method that accounts for nonlinear effect by using the moment amplification factors of B1 and B2.

(2) The practical nonlinear elastic analysis overcomes the difficulties due to incompatibility
between the elastic analysis of the structural system and the limit state member design in the
conventional LRFD method.

(3) The genetic algorithm and the section increment method incorporated with nonlinear elastic
analysis were used for optimal design. The objective function taken was the weight of the
structure. The constraint functions considered were strength, serviceability, and ductility
requirements. 

(4) The planar portal frame designed using the genetic algorithm was 7.7% lighter than that
designed using the section increment method. The space two-story frame designed using the
genetic algorithm was 18.1% lighter than that designed using the section increment method.

(5) Practical nonlinear elastic analysis and genetic algorithm were combined for optimal design.
This contribution would provide much benefit to engineering practice. 
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Table 3 Optimal design by genetic algorithm of 3-D steel arch bridge

Design variables Section size G(1)

1 TS16X12X3/8 0.939 
2 W33X130 0.914 
3 W18X76 0.790 
4 W10X49 0.766 

Weight (lb) 203,753
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