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Development of a meshless finite mixture (MFM) method 
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Abstract. A meshless method with novel variation of point collocation by finite mixture approximation
is developed in this paper, termed the meshless finite mixture (MFM) method. It is based on the finite
mixture theorem and consists of two or more existing meshless techniques for exploitation of their
respective merits for the numerical solution of partial differential boundary value (PDBV) problems. In
this representation, the classical reproducing kernel particle and differential quadrature techniques are
mixed in a point collocation framework. The least-square method is used to optimize the value of the
weight coefficient to construct the final finite mixture approximation with higher accuracy and numerical
stability. In order to validate the developed MFM method, several one- and two-dimensional PDBV
problems are studied with different mixed boundary conditions. From the numerical results, it is observed
that the optimized MFM weight coefficient can improve significantly the numerical stability and accuracy
of the newly developed MFM method for the various PDBV problems.

Key words: meshless method; finite mixture; point collocation; reproducing kernel particle; differential
quadrature; least-square.

1. Introduction

The Finite Element Method (FEM) has been important numerical technique for a long time in
modelling and simulation of engineering problems as the FEM has been proven to be highly
effective for a wide range of engineering applications. However, the FEM has some drawbacks. For
example, it requires the large computer memory due to the number of elements for complex
problems and the iterative remeshing for tracking dynamic processes of large deformation problems.
Therefore in the recent decade, the meshless approach, often referred to as the next-generation of
numerical tool, has attracted much attention amongst researchers world-wide (Liu 2002). In general,
meshless methods can be classified roughly into two groups. One requires a background mesh such
as Galerkin-based techniques and reproducing kernel particle (RKP) method (Belytschko et al.
1994, Krongauz et al. 1996, Liu et al. 1995, 1996, Lu et al. 1994, Gunther and Liu 1998,
Mukherjee and Mukherjee 1997, Hegen 1996, Zhu and Atluri 1998, Gosz and Liu 1996) and the
other does not require a background mesh such as point collocation techniques (Gingold and
Moraghan 1977, Onate et al. 1990, Liszka et al. 1996, Durate and Oden 1996). The latter
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collocation-based techniques are true meshless methods, including the finite point method (Cheng
and Liu 2002) and hybrid meshless-differential order-reduction (hM-DOR) method (Cheng et al.
2002, Ng et al. 2003) and the differential quadrature (DQ) method (Liu and Wu 2001, Shu 2000). 

It is clear that each of the existing meshless approaches has its own special advantages. From the
optimal viewpoint therefore, this paper proposes the finite mixture theorem to combine several
existing meshless approaches as subcomponents for development of a new mehsless technique,
named the meshless finite mixture (MFM) method. It fully takes the advantage of each existing
meshless approach, where RKP and DQ methods are selected as two subcomponents and are mixed
for approximate solution of unknown function. A weight coefficient for the mixture is optimized by
the least-square technique. The formulations of the shape functions and their derivatives are carried
out for the RKP and DQ methods. Then the point collocation technique is used to discretize the
partial differential boundary value (PDBV) problems. Finally, the discretization PDBV system is
solved numerically to determine the point value of the unknown function at the scattered points and
the distribution of field function in the defined computational domain. Several numerical studies are
conducted for one- and two-dimensional PDBV problems. The comparisons with exact solution are
achieved well, which validate the presently developed MFM method.

2. Fundamental formulations of MFM method

2.1 RKP and DQ subcomponents

A finite mixture theorem is based on the concept that any one function can be composed of
several subcomponents, within which the variables are homogeneous and between which the
variables are heterogeneous. The weight coefficients incorporating the subcomponents are availably
determined only by the variables themselves. The approximation fmix(x, y) of an unknown function
f (x, y) as a composite of the n subcomponents is thus written in the following form (Tarter and
Lock 1994)

(1)

where αi (i = 1, 2, ..., n) is the weight coefficient for the ith subcomponent with the requirements

0 <αi < 1 and . fi (i = 1, 2, ..., n) is the ith subcomponent and each subcomponent is different

approximation function of the unknown function with different approximate error.
Based on the finite mixture theorem, the simplest case of the finite mixture model is to

individualize only two subcomponents f1(x, y) and f2(x, y) to construct the mixture approximate
function as follows

(2)

For development of the present meshless finite mixture (MFM) method, the existing RKP method is
mixed with the DQ method to develop a truly meshless technique. The approximation  of

fmix x y,( ) α1f1 x y,( ) α2f2 x y,( ) … 1 αi
i 1=

n 1–

∑–
 
 
 

fn x y,( )+ + +=

α i
i 1=

n

∑ 1=

fmix x y,( ) α1f1 x y,( ) 1 α1–( )f2 x y,( )+=

f̃mix x y,( )
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an unknown function f (x, y) is thus generated as a mixture of the RKP and DQ approximations with
weight coefficient α as follows

(3)

or in the discrete form: 

(4)

where  is an approximation of the unknown function f (x, y) by the reproducing kernel
particle (RKP) method and  an approximation of the unknown function f (x, y) by the
differential quadrature (DQ) method. Np is the total number of the scattered points in both the
interior domain and boundary edges. f (xi, yi) is the ith scattered point-value of the unknown function
f (x, y) to be determined. Ni(x, y) and Di(x, y) are the shape functions constructed by the RKP and
DQ methods (see late). α is the weight coefficient and is optimally determined to minimize the
approximate errors by the least-square method, namely by constructing 

(5)

and having the stationary condition as, 

(6)

Thus two resulting equations are obtained as follows 

(7)

or

(8)

In addition, the approximate truncation errors of the point-collocation-based RKP and DQ methods
can be defined respectively:

(9)

(10)

f̃mix x y,( ) α f̃RKP x y,( ) 1 α–( ) f̃DQ x y,( )+=
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Considering the definition Eqs. (9) and (10), Eq. (7) is rewritten as

(11)

Since  is not equal to , the first resulting Eq. (7) is impossible of
existing. Therefore, the weight coefficient is obtained solely by the second resulting Eq. (8), i.e. 

(12)

Furthermore, according to the definition of the approximate truncation errors expressed by Eqs. (9) and
(10), Eq. (12) can be simplified as 

(13)

So far the formulation of meshless mixture finite (MFM) method has been completed. However, it
is necessary to estimate the approximate truncation errors of the mixed subcomponents, the RKP
and DQ methods, and to form the discrete expression of MFM approximation.

On the basis of the classical RKP method (Liu et al. 1995), an unknown real function f (x, y) can
be reproduced by integration with the chosen suitable kernel function  at a fixed
central point (xk, yk) and the correction function  as

(14)

where  is a fixed reproducing kernel approximation of f (x, y). It is also well known that
any function can be extended as a series function in a fixed point by the Taylor series expansion.
Thus the unknown function f (x, y) is expanded at the point (0, 0) as follows 

(15)

where  is defined by 

(15-1)
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After substituting Eq. (15) into Eq. (14), the integral form of extended series for the RKP
formulation is written as 

(16)

Combining Eqs. (15) and (16) and rearranging, we have the resulting equation  

(17)

In order to obtain the discrete form of the approximation of the unknown function, usually a basic
function P(x, y) and correction function C(x, y) are introduced to replace the , Eq. (14)
is thus rewritten as 

(18)

Since the RKP method has the characteristics of consistency condition, the elements of the basic
function P(x, y) can be correctly reproduced by the integral form in terms of a suitable reproducing
kernel . For instance, the nth-order basic function P(x, y) may be in the following
form,

(19)
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By consistency requirement (Liu et al. 1995), the elements of the basic function P(x, y) are
equivalently expressed in the following consistency conditions

(20-1)

(20-2)

(20-3)

(20-i)

(20-j)

(20-k)

Substituting the above consistency condition Eq. (20) into Eq. (17), the truncation error of the RKP
method is derived by

(21)

See Liu et al. (1996) for details. 
By means of the RKP method with a fixed kernel approximation, Eq. (18) is discretizated in the

form as 

(22)

where Np is the total number of scattered points in both the internal domain and the boundary. For a
regular distribution of N points along the x-axis direction and M points along the y-axis direction,

. The shape function  developed by the RKP method with a fixed kernel
approximation is written as Ng et al. (2003) 

(23)

For the subcomponent DQ method, it is necessary to compute the truncation error in 2-D
formulation to estimate the weight coefficient in Eq. (13). Let us carry out the estimation of
truncation error for a 1-D formulation first. In general, the 1-D truncation error of the DQ method is
expressed by Shu (2000)
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(24)

where ξ is a value of the variable x and N is the number of scattering points.  is presented as 

(25)

and, L(x) is defined as 

(26)

Then the estimation model of the 1-D truncation error is extended to the estimation of 2-D
truncation error for DQ method. Based on the expression of 1-D truncation error (Shu 2000), the 2-
D approximation  at fixed points xi or yj is expressed as 

(27)

(28)

where N and M are the numbers of points scattered along the x-and y-axis directions respectively.
ri(x) and sj(y) in Eqs. (27) and (28) are the Lagrange interpolation polynomials and given by 

(29)

(30)

By Eqs. (27) and (28), the 2-D approximation of DQ method is developed as follows

(31)

Therefore, the definition of the 2-D approximate truncation error can be written as

(32)

Furthermore, the 2-D truncation errors along the x- and y-axis directions can be expressed
respectively 

(33)
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By the 1-D expression Eq. (24) of the truncation error of DQ method, the above Eqs. (33) and (34)
are rewritten as 

(35)

(36)

where , are defined in (15-1). 
Finally, with the minimum of the approximate error, the 2-D approximate truncation error of DQ

method is defined as

(37)

2.2 Implementation of the MFM method

To apply the MFM method for simulation of engineering application, it is required to generate the
derivative approximation of the subcomponents of the MFM approximation. With a fixed kernel
technique, the derivative approximation of the RKP subcomponent is written as follows: 

(38)

(39)

(40)

On the other hand, the 1-D derivative approximation of DQ subcomponent can be generally
presented by

(41)

(42)

where the coefficient  is computed by 
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(45)

(46)

with the definition of M(x) and M(1)(x) 

However, in order to combine the two subcomponents of the MFM method, the approximation
 of the unknown function f (x, y) of the DQ method is rewritten in the following 2-D form

(47)

where Di(x, y) is obtained from Eq. (31). Therefore, based on the above merging technique, the 2-D
derivative approximation of DQ subcomponent is given as

 (48)

 (49)

It is noted that the present MFM method employs local differential quadrature method (Zong and
Lam 2002) to estimate the weight coefficient in terms of the above generalized differential
quadrature. The main difference between the two different differential quadrature methods is the
influence domain covered by the scattered points. The shape function of the generalized differential
quadrature is based on the full domain along the x- and y-axis discreted by the Lagrangian
interpolants. However, the shape function of the local differential quadrature method is based on the
localized domain (Zong and Lam 2002).

According to the above discussion of the subcomponents and their derivatives, the derivatives of
the MFM approximation with respect to x and y can be summarized as

(50)
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The above approximate expression of MFM method can be used to solve generic engineering
PDBV problems, such as,

     PDEs in computational domain Ω (53)

       Dirichlet boundary condition on ΓD (54)

 Neumann boundary condition on ΓN (55)

where L is a differential operator and f (x, y) an unknown real function. By using the point
collocation technique and taking  as the approximation of , the discretized
approximation forms of the PDBV problem are given as

n = 1, 2, …, NΩ (56)

 n = 1, 2, …, ND (57)

n = 1, 2 ,…, NN (58)

where NΩ, ND and NN are the numbers of scattered points in the interior computational domain and
along the Dirichlet and Neumann edges, respectively, and the total number of scattered points is
thus NT = (NΩ + ND + NN). 

3. Numerical validation of the MFM method

To examine the accuracy and convergence of the present MFM method, numerical comparisons
are carried out for several classical one- and two-dimensional partial differential boundary-value
(PDBV) problems, including the 1-D Poisson equation with a forcing term and the 2-D Laplace
equation with various mixed boundary conditions, for analysis of the effect of the weight coefficient
on the numerical stability and accuracy of the developed MFM method. Using a refined version of
the definition of the standard error, a global error measure ξ is defined (Mukherjee and Mukherjee
1997) for the present examination of numerical convergence,

(59)

3.1 Convergence study

In order to study the convergence of the MFM method, a 1-D Poisson equation with a forcing
term is considered here. The governing equation and the boundary conditions are given as 

(60)

L f x y,( ) P x y,( )=

f x y,( ) Q x y,( )=

∂f x y,( ) ∂n R x y,( )=⁄

f̃ x y,( ) f x y,( )

L f̃mix xn yn,( ) P xn yn,( )=

f̃mix xn yn,( ) Q xn yn,( )=

∂ f̃mix xn yn,( )
∂n

----------------------------- R xn yn,( )=

ξ 1
fmax

----------- 1
NT

------ f̃ i fi–( )2

i 1=

NT

∑=

∂2
f

∂x2
-------- 105x

2 2⁄ 15 2⁄–= 1– x 1< <
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(61)

(62)

The exact solution of this problem is given by

(63)

By using the MFM method, the problem is solved numerically and the good convergence
characteristic of the MFM method is depicted and confirmed in Fig. 1. For example, the global error
is less than 5.06 × 10−3 for the 201 regular point distribution, when compared with the exact
solutions. From the comparison among MFM method and subcomponents- RKP and DQ methods
as shown in Fig. 1, it is clear that the numerical accuracy of RKP method is less than that of DQ
method but its numerical stability is better than DQ’s. As a mixture result of these subcomponent
methods, MFM method can effectively mix and absorb the subcomponents’ advantages, namely
MFM method has a higher accuracy than RKP method and also has a better numerical stability than
DQ method. These benefits of the MFM method can be further verified in the next numerical
examples.  

The second 1-D problem is the 1-D Poisson equation with a high localized gradient. The
governing equation is 

(64)

and the boundary conditions 

(65)

f x 1–=( ) 1=

∂f
∂x
----- x 1=( ) 10=

f
35
8
------ 

  x4 15
4
------ 

  x2–
3
8
---–=

∂2f

∂x
2

-------- 6x– 2 φ2⁄ 4
x β–

φ2
----------- 

  2

– exp
x β–

φ
----------- 
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Fig. 1 Covergence of the MFM results for 1-D Laplace problem
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(66)

The exact solution is given by

(67)

Similarly, the developed MFM method is validated again and a good convergence characteristic is
shown in Fig. 2. For example, the global errors for the 161 regular point distribution is smaller than
1.631 × 10−4. With comparing to the RKP and DQ methods as shown in Fig. 2, it is found that the
MFM method can really absorb the respective advantages of the subcomponent methods and obtain
high and stable numerical results. 

For a classical 2-D Laplace equation defined in a unit-square computational domain, the
governing equation is given as 

, (68)

The cubic-form exact solution of the given 2-D Laplace problem is presented by

(69)

Four kinds of the pure or mixed boundary conditions are studied respectively. They are the pure
Dirichlet boundary condition as shown in Fig. 3(a),

(70)

(71)

∂f
∂x
----- x 1=( ) 3– 2

1 β–

φ2
------------ 

  exp
1 β–

φ
------------ 

 
2

––=

f x3– exp
x β–

φ
----------- 

 
2

–+=

∂2
f x y,( )
∂x2

-------------------- ∂2
f x y,( )
∂y2

--------------------+ 0= 0 x 1 and 0 y 1< << <

f x y,( ) x3– y3– 3xy2 3x2y+ +=
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Fig. 2 Covergence of the MFM results for 1-D Poisson problem with a local gradient 
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Fig. 3 Examination of the MFM method for the 2-D Laplace equation with various boundary conditions
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the symmetrically mixed Dirichlet and Neumann boundary condition as shown in Fig. 3(c)

(72)

(73)

the unsymmetrically mixed Dirichlet and Neumann boundary condition as shown in Fig. 3(e)

(74)

(75)

and the pure Neumann boundary condition as shown in Fig. 3(g)

(76)

(77)

Using the developed MFM method, the numerical simulations for the above 2-D problems are
solved and shown from Fig. 3. Figs. 3(b), 3(d) and 3(f) are achieved for examination of the MFM
convergence characteristics. Fig. 3(h) shows the profiles of the numerical results and exact solution
for the pure Neumann boundary condition. It is observed that the monotonic convergence trends
demonstrate the numerical stability of the present MFM method. For example, for 17 × 17 regular
point distribution, the global error of the MFM method for the pure Neumann boundary condition is
smaller than 4.00 × 10−4. 

3.2 Effect of weight coefficient of the mixture

For discussion of the effect of weight coefficient α as a important feature of the presently
developed MFM method, the steady-state heat conduction with a high gradient is considered in a 2-
D rectangular plate with a heat source and the governing differential equation of the temperature
field T(x, y) is given by

(78)

The boundary conditions are

, (79)

, (80)

where s is a free parameter, and with increasing s, the field variable  has an increasing
gradient.
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For the above steady-state heat conduction problem with a high gradient located near y = 0.5, the
exact solution of temperature field  is obtained as

(81)

and its first-order derivative with respect to y is

(82)

By applying the present numerical MFM method to solve the above problem, the numerical
results for the different weight coefficients are shown in Table 1 for the temperature  and
Table 2 for its derivative . It is clearly seen that the numerical MFM accuracy for both the
temperature and its derivative can be improved by decreasing the weight coefficient with
comparison with the point-collocation-based RKP method, but the computed MFM accuracy is less
than that of the local DQ method. Fig. 4(a) is obtained for the comparison of the numerical results
with the exact solution. For the convergence characteristics of the local gradient problem, Figs. 4(b)
and 4(c) show the numerical results of the temperature  and its derivative . As
observed, a very good agreement is obtained with converged results. For example, for a 3 × 201
regular point distribution, the global errors of the MFM method is smaller than 3.64 × 10−3. It is
evidently revealed from Tables 1 and 2 and Fig. 4(c) that the better convergence characteristic of
presently developed MFM method can be obtained by adjusting the weight coefficient within the
region (0.0, 1.0) by comparing with the point-collocation-based RKP method. For the present
problem, it is clearly indicated that the better numerical accuracy and stability can be obtained by
the MFM method with the optimal weight coefficient α = 0.1.

T x y,( )

T x y,( ) tanh s y 0.5–( )[ ]=

T, y x y,( ) s sech2 s y 0.5–( )[ ]⋅=

T x y,( )
T, y x y,( )

T x y,( ) T, y x y,( )

Table 1 Global errors of temperature T with different weight coefficients and point distributions for the high-
gradient heat conduction by comparison with the exact solution (81)

Weight coefficient
(α)

Different point distributions

3 × 51 3× 101 3× 151 3× 201 3× 241

1.0(RKP) 0.5112 0.1812 3.084E-2 9.520E-3 1.185E-2
8.0E-1 0.5114 0.1818 3.041E-2 7.396E-3 8.738E-3
5.0E-1 0.5116 0.1828 3.051E-2 4.914E-3 4.981E-3
1.0E-1 0.5119 0.1841 3.138E-2 3.637E-3 1.007E-3

0.0(DQ) 0.5120 0.1844 3.167E-2 3.780E-3 5.329E-4

Table 2 Global errors of temperature T, y with different weight coefficients and point distributions for the high-
gradient heat conduction by comparison with the exact solution (82)

Weight coefficient
(α)

Different point distributions

3 × 51 3× 101 3× 151 3× 201 3× 241

1.0(RKP) 0.1358 6.243E-2 2.440E-2 9.950E-3 5.3133E-3
8.0E-1 0.1357 6.127E-2 2.279E-2 8.737E-3 4.387E-3
5.0E-1 0.1356 6.000E-2 2.121E-2 7.523E-3 3.433E-3
1.0E-1 0.1355 5.887E-2 1.983E-2 6.567E-3 2.731E-3

0.0(DQ) 0.1355 5.867E-2 1.957E-2 6.403E-3 2.637E-3
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The finally numerical study for analysis of the effect of weight coefficient α is a 2-D Poisson
equation with a local high gradient in a unit-square computational domain

(83)

with the boundary conditions

(84)

(85)

(86)

(87)
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Fig. 4 Numerical results and convergence characteristics of MFM method for heat conduction problem with a
high gradient
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The exact solution of the given 2-D Poisson equation with a local high gradient is obtained as

(88)

and the first order derivatives of with respect to x- and y-direction are

(89)

(90)

It is seen that, if a and b are respectively taken to be 0.05 and 0.5, the local high gradient occurs
near the centre point (0.5, 0.5) of the unit-square computational domain. Using the present MFM
method, this problem is solved numerically and the simulation results for the different weight
coefficients are shown in Table 3 for the function f and Table 4 and 5 for its derivatives f, x and f, y.
From the Tables 3-5, it is explicitly observed that the weight coefficients can adjust the numerical
accuracy and stability of the MFM method, specially for their derivatives. Comparison of these
numerical results with the exact solutions, the convergence characteristic for the function f (x, y) and
its derivatives are presented in Figs. 5(b-d) respectively. Excellent agreement is observed here and
the global error in this example does not exceed 8.6 × 10−3 for the 21 × 21 regular point distribution.
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Table 3 Global errors of function u with different weight coefficients and point distributions for the local high-
gradient 2-D Poisson equation by comparison with the exact solution (88)

Weight coefficient
(α)

Different point distributions

9 × 9 11× 11 21× 21 33× 33

1.0(RKP) 1.730 0.9055 1.878E-2 2.426E-4
8.0E-1 1.715 0.8925 1.308E-2 4.245E-3
5.0E-1 1.717 0.8815 8.380E-3 2.438E-3
1.0E-1 1.728 0.8730 4.788E-3 5.695E-4
1.0E-2 1.730 0.8715 4.253E-3 2.644E-4

0.0(DQ) 1.730 0.8710 4.199E-3 5.755E-3

Table 4 Global errors of function u, x with different weight coefficients and point distributions for the local
high-gradient 2-D Poisson equation by comparison with the exact solution (89)

Weight coefficient 
(α)

Different point distributions

9 × 9 11× 11 21× 21 33× 33

1.0(RKP) 0.6772 0.3718 5.806E-3 5.678E-3
8.0E-1 0.6850 0.3757 3.217E-3 4.787E-3
5.0E-1 0.7000 0.3797 3.205E-3 3.851E-3
1.0E-1 0.7183 0.3841 4.287E-3 3.104E-3
1.0E-2 0.7217 0.3850 4.559E-3 2.999E-3

0.0(DQ) 0.7222 0.3850 4.588E-3 2.988E-3
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Table 5 Global errors of function u, y with different weight coefficients and point distributions for the local
high-gradient 2-D Poisson equation by comparison with the exact solution (90)

Weight coefficient
(α)

Different point distributions

9 × 9 11× 11 21× 21 33× 33

1.0(RKP) 0.3982 0.2397 5.772E-3 5.678E-3
8.0E-1 0.4054 0.2452 3.161E-3 4.787E-3
5.0E-1 0.4108 0.2505 2.963E-3 3.851E-3
1.0E-1 0.4148 0.2547 4.243E-3 3.104E-3
1.0E-2 0.4154 0.2554 4.517E-3 2.999E-3

0.0(DQ) 0.4156 0.2556 6.820E-3 2.998E-3

Fig. 5 Numerical results and convergence characteristics of MFM method for 2-D Poisson equation with a
local high gradient
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4. Conclusions

A new variation of point collocation based on the finite mixture theorem - the meshless finite
mixture (MFM) method has been developed. It consists of a mixture of two existing meshless
techniques as subcomponents - the classical reproducing kernel particle and differential quadrature
methods to exploit the respective merits of these subcomponent techniques for the numerical
solution of partial differential equations. In the presently developed MFM approximation, the weight
coefficient is optimized by the least-square approach for higher numerical accuracy and stability. In
order to examine the MFM method, convergence and weight coefficient studies have been carried
out for various classical 1-D and 2-D examples. These studies clearly demonstrate the numerical
stability and accuracy of the MFM method, and these appealing features can be attributed to the
optimized weight coefficient derived within the MFM method.
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