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Abstract. This paper presents a theoretic model of a smart structure, a transversely isotropic
piezoelectric thick square plate constructed with three laminas, piezoelectric-elastic-piezoelectric layer, by
adopting the first order shear deformation plate theory and piezoelectric theory. This model assumes that
the transverse displacements through thickness are linear, and the in-plane displacements in the mid-plane
of the plate are not taken to be account. By using Fourier’s series expansion, an exact Navier typed
analytical solution for deflection and electric potential of the simply supported smart plate is obtained.
The electric boundary conditions are being grounded along four vertical edges. The external voltage and
non-external voltage applied on the surfaces of piezoelectric layers are all considered. The convergence of
the present approach is carefully studied. Comparison studies are also made for verifying the accuracy and
the applicability of the present method. Then some new results of the electric potentials and displacements
are provided. Numerical results show that the electrostatic voltage is approximately linear in the thickness
direction, while parabolic in the plate in-plane directions, for both the deflection and the electric voltage.
These results are very useful for distributed sensing and finite element verification.

Key words: sandwich plate; piezoelectric plate; piezoelectric material; first order shear deformation
theory; analytical solution; bending.

1. Introduction

The study of embedded or surface mounted piezoelectric materials in structures has received
considerable attention in recent years. One reason for this is that it may be possible to create certain
types of structures and systems capable of adapting to or correcting for changing operating
conditions. The advantage of incorporating these special types of material into the structure is that
the sensing and actuating mechanism becomes part of the structure by sensing and actuating strains
directly. These types of mechanism are referred to as strain sensing and actuating. This advantage is
especially apparent for structures that are deployed in space. Generally space borne structures are
very flexible because they are not designed for operations in which the force of gravity is present.
In addition, they are characterized as having very low level of damping. Thus, transient vibrations
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endure for longer periods of time than is acceptable and operations may be interrupted. Proof-mass
actuators, thrusters, and piezoelectric materials as described here are possible means of controlling
the vibrations. Of course, there may also be many other good methods that have not as yet been
thought of. However, generally speaking, most actuator systems other than the strain induced type
add a considerable amount of weight and a possible space to the structure, thereby changing its
mechanical properties significantly.

In order to utilize the strain sensing and actuating properties of piezoelectric materials, the
interaction between the structure and the intelligent material must be well understood. Mechanical
models for studying the interaction of piezoelectric patches surface mounted to plates have been
developed by a number of investigators. To name a few, Lee (1990) derived a theory for laminated
piezoelectric plates, where the linear piezoelectric constitutive equations were the only source of
coupling between the electric field and the mechanical displacement field. Tiersten (1969) modeled
single layer piezoelectric plates, including the charge equations, but did not study laminates.
Tauchert (1992) presented a theory for laminated piezoelectric plates including the thermal effects.
These studies are all based on the classical plate theory. To begin addressing the influence of
transverse shear effects on smart piezoelectric composite plates subjected to mechanical or thermal
loads, Jonnalagadda et al. (1994) developed a theory for laminated piezoelectric plates used a
Reissner-Mindlin or first order shear deformation theory. Analytical and finite element solutions for
plates having simply supported or fixed boundary conditions are presented. Then various kinds of
refined higher order shear deformation theories for laminated piezoelectric plates have been
developed by Fernandes (2001), Mitchell and Reddy (1995). All the theories mentioned above are
based on an assumption that the distribution of electrostatic potential through thickness is linear or a
fixed known function of coordinate z. This is not in accordance with the actual case, and the
numerical results are not with enough accuracy. Recently, exact three-dimensional solutions for this
problem are carried out by several investigators employing different method, see Heyliger (1991,
1996, 1997), Bisegna (1996), Jong (1996), Chen (1997) and et al. It is no doubt that these theories
can generate excellent results, however, the computational costs will be very high. To generate
moderately accuracy solutions with little computational efforts, the present paper provides an
analytical solution for a four edges grounded piezoelectric sandwich plate with simply supported
mechanical boundary conditions base on the first order shear deformation theory. In our studies, no
assumptions are made to the electric potential in any directions of the plate. 

2. Basic equations

Generally, the constitutive relations for piezoelectric materials are as follows

(1)

where, D and E are the electrical displacements vector and the applied electric field intensity vector
respectively; σ and ε are the stress vector and strain vector respectively; c, e and g are the elastic
coefficients matrix, the piezoelectric stress coefficients matrix and the dielectric permittivity matrix
respectively. For an isotropic piezoelectric material polarized in z direction, these matrixes are

σ cε eTE, D– eε gE+= =
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(2)

where c11 = c22, c13 = c23, c44 = c55, c66 = (c11 − c12)/2, g11 = g22, e15 = e24, e31 = e32.
The stress equations of equilibrium and the equation of electrostatics are as follows

(3)

where Xi(i = 1, 2, 3) are the applied volume force density components. The strains are expressed in
terms of the displacements ui , and the electric field intensities Ei are expressed by an electric
potential function Φ as 

 (4)

Consider an isotropic rectangular plate mounted with two piezoelectric layers on the bottom and
top surfaces. The geometric shape and the coordinate system of the plate are shown in Fig. 1. The
length and width of the plate is a and b respectively. The thickness of the elastic layer and two
piezoelectric layers is h and t respectively.

Consistent with first order shear deformation theory, the displacement components are taken to be
of the form

(5)

where α and β are the rotations about x and y axes respectively. Using the displacements of Eqs. (5),
the strains are given by

(6)
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Fig. 1 Geometric and laminate configurations
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Integrating the constitutive relationships of Eqs. (1) through the composite plate thickness leads to
the structure material stiffness relationships. The bending stiffness and the shear stiffness coefficients
are given as

(7)

The bending moments, twisting moments and the shear force resultants are written as

(8)

Substituting Eqs. (8) into the three equations of equilibrium

(9)

and substituting the second equation of Eqs. (1) into the second equation of Eqs. (3), one can obtain
the governing equations of the problem

(10)

Suppose the four edges of the plate are grounded, the charge boundary conditions along four
edges can be written as

   
(11)

When the top surface of the plate is applied with external voltage, the charge boundary conditions
are expressed as

(12)
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where Φ0(x, y) is the applied external potential on top surface of the plate. When the surface of the
plate is applied only with a uniform transverse load and with no external voltage, the charge
boundary conditions should be expressed as

 (13)

According to the first order shear deformation theory, the mechanical boundary conditions for
simply supported edges are as follows

(14)

3. Method of solution

For boundary conditions imposed in Eqs. (11) to (14), the solution to the displacement equations
of equilibrium can be expressed in the Fourier’s series form 

(15)
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Fig. 2 Convergence characteristic of central deflection
of the plate applied with uniform loading
q = 1000 kN/m2

Fig. 3 Convergence characteristic of electrostatic
potential at the central point of the plate
applied with uniform loading q = 1000 kN/m2
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which seem satisfying the boundary conditions (11) and (14) along four edges. For boundary
conditions (12) and (13) on the two surfaces, we can rewrite them by substituting Eqs. (15) into Eqs. (1)
then into Eqs. (12) and (13) as follows

(16)

and

:

(17)

where Φ0ij is the coefficients of the Fourier’s series for applied voltage Φ0. Substituting Eqs. (15)
into the forth equation of Eqs. (10), we obtain
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Fig 4 Distribution of deflections for plate under
uniform load q= 1000 kN/m2

Fig. 5 Distribution of electrostatic potentials on the
bottom face of the top layer for plate under
uniform load q = 1000 kN/m2 (y = 0.05 m)
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where

(19)

(20)

The general form for solution of Eq. (18) can be written as

(21)

in which the integrating coefficients A and B are determined by the top and bottom surface charge
boundary conditions (16) and (17). 

When the external voltage Φ0(x, y) is applied on the top surface, Eq. (21) can be rewritten as

(22)

which satisfying boundary conditions (16). Substituting Eq. (22) and Eqs. (15) into the first three
equations of Eqs. (10), we obtain the following linear algebraic equations about αij, βij and wij. 

(23)

where the coefficients  are expressed in appendix I.
When the surface of the plate is applied with only external mechanical load, the solution of Eq. (18)

satisfying boundary conditions (17) can be expressed as 
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Similarly, substituting this equation and Eqs. (15) into the first three equations of Eqs. (10), we can
also obtain a set of linear algebraic equations about αij, βij and wij as Eqs. (23). Here the coefficients

 are expressed in appendix II.
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of the electric potential function can be obtained. 
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4. Results and discussion

In this section, the response of a simply supported square sandwich piezoelectric plate subjected
to mechanical and electric field loading is carried out. The length and width of the plate is
a = b = 0.1. The plate is constructed with three laminates, PVDF/steel/PVDF. The thickness of the
elastic layer and the piezoelectric layer is h = 0.01, t = h/4, respectively. Material properties for
PVDF layer are E = 2.0 × 109 N/m2; e31 = e32 = 0.0483 C/m2; e33= −0.072 C/m2; e15 = e24 = −0.04 C/m2.
g11 = g22= g33 = 1.062 × 10−10 F/m. Properties for steel laminae are E = 2.1 × 1011 N/m2; ν = 0.3. In
order to determine the number of Fourier’s series required for resulting solutions with high accuracy,
convergency studies are carried out firstly. Fig. 2 demonstrates the convergence pattern of center
point deflections of the plate under uniform loading condition q = 1000 N/m2 and applied with 0(V)
electric potential or no electric potential on top surface of the plate. It is observed that the
deflections are converged to stable values with increasing the number of Fourier series n. The
convergence demonstrates a slight fluctuation characteristic. It is easily found that only 5 orders of
Fourier’s series are needed to obtain the deflection solutions with acceptable accuracy. One can also
found that the numerical values of deflections for plate applied with 0(v) external electric voltage on
top surface are 2 times greater than those for plate with no external voltage. This means that the
effect of electric potential on deflections due to the piezoelectric coupling is very high. The
convergence properties of electric potentials at the center point on the bottom surface of the top
piezoelectric layer are shown in Fig. 3. It is evident that the convergence of electrostatic potential
also demonstrates a fluctuation property; however, the convergence rate is much slower than that of
deflections as shown in Fig. 2. Generally speaking, 10 orders of Fourier’s series can give good
results for all cases considered in this paper. In all the following studies, 15 items of sine or cosine
series are employed to acquire solutions with higher accuracy.

Base on the convergence studies, we calculate the deflections and electrostatic potentials of a
piezoelectric plate with four edges grounded charge boundary conditions and simply supported

Fig. 6 Electric potential at the central point through
thickness of the plate applied with uniform
loading q = 1000 kN/m2

Fig. 7 Deflections of the plate applied with uniform
external unit potential on top surface of the
plate 
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mechanical boundary conditions. Figs. 4 and 5 demonstrate the distribution of deflections and
potentials of the plate subjected to a uniform distributed mechanical load q = 1000 N/m2 and applied
with 0(V) external potential as well as with no external potential on the top surface. It is seen from
these two figures that the deflections and the electrostatic potentials vary in a parabolic manner in
the plate in-plane directions. It is evident that the values of displacements and electric potentials in
case 0(v) external potential applied is much higher than those in case no external potential applied.
Fig. 6 illustrates the distribution of electrostatic potential through thickness at the central point of
the plate applied with uniform loading q = 1000 N/m2. Also, two electric conditions, 0(v) external
potential and no external potential applied are considered. It is obvious that the electrostatic
potential is almost linear in the thickness direction. These numerical results ascertain the rationality
of the linear electric potential assumption through thickness some researchers employed. It is also
found that the difference of electric potential between two surfaces of the top layer is much higher
for plate applied with 0(v) external voltage than for plate applied with no external voltage. 

Figs. 7 and 8 are the distribution diagrams of the central deflections and the electrostatic potentials
on bottom surface of the top layer when the plate is applied only with a unit uniform potential on
top surface of the top surface. We can see from Fig. 7 that the displacements produced by external
potential also show a parabola diagram along the x-axis, just like the distribution diagram of
displacements produced by mechanic load showed in Fig. 4. The electrostatic potentials however,
are found from Fig. 8 that demonstrate a constant line in this loading case except for the two points
at the edge. In Fig. 9, the effect of piezoelectric thickness ratio t/h on the deflections at center point
produced by a unit potential is plotted. It is easy to find that the deflection at center point increases
monotonically as the piezoelectric thickness ratio increases from 0 to 0.5.

At last, comparison studies are made to verify the accuracy of the present method. In comparison
studies, the material properties are identical as in the previous studies except for e15 and e23 which
are chosen as 0. The plate is also in the same form of geometric shape as in the previous studies.
Figs. 10 and 11 plot the results of deflections and electric potentials respectively, which are
generated by the classical plate theory (Zhang 2000) and by the present first order shear
deformation theory. One can easily find that the present results are in good agreement with Zhang’s

Fig. 8 Electrostatic potentials on the bottom face of
the top layer under uniform external unit
potential

Fig. 9 Influence of the relative thickness ratio of
piezoelectric layer to steel layer on central
deflections
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results. The present results are higher than those calculated by Zhang et al. using the classical plate
theory. The maximum discrepancy of deflections between two results is 10.8%, and the maximum
discrepancy of electric potentials is 6.8%. We should note that the classical plate theory always
generates lower results than the first order shear deformation theory in general, since it makes the
plate stiffness much higher.

5. Conclusions

This paper presents an analytical model for a sandwich piezoelectric plate based on the first order
shear deformation theory. The governing equations and boundary conditions including the
equilibrium equation and charge equation of the plate subjected to a uniformly distributed
mechanical load are derived firstly. Then an analytical solution to the problem is presented by
Fourier series expansion. Convergency and comparison studies show that the deflections and
potentials converge to stable values with high accuracy when increasing the number of Fourier
series, and the convergence rate of the present method is very fast. Numerical results demonstrate
that the deflections and the electrostatic potentials are distributed in a parabolic manner in the plate
in-plane directions, while the electrostatic potentials are distributed linearly in the thickness
direction. From these numerical results we can conclude that the influence of electric potentials on
the deflections of the plate is considerable high, and cannot be neglected especially as the thickness
of piezoelectric layer is not so small. These results can also be used as a benchmark to verify the
accuracy of other numerical results.

The present model is valid only for a symmetric sandwich plate, and cannot be used to a non-
symmetric multi layered plate.

Fig. 10 Comparison of central deflections of the
plate under uniform load q = 1000 kN/m
(φ = 0 on top face)

Fig. 11 Comparison of electrostatic potentials on
bottom surface of the plate under uniform
load q = 1000 kN/m (φ = 0 on top face)



An analytical solution for static analysis of a simply supported piezoelectric plate 651

References

Bisegna, P. and Maccri, F. (1996), “An exact three-dimensional solution for simply supported rectangular
piezoelectric plates”, J. Appl. Mech., ASME, 63, 628-637.

Chandrashekhara, K. and Agarwal, A.N. (1993), “Active vibration control of laminated composite plates using
piezoelectric devices: a finite element approach”, J. Intelligent Mater. Sys. Struct., 4, 496-508.

Chen, W.Q. and Ding, H.J. (1997), “Three dimensional analysis of bending problem of thick piezoelectric
composite rectangular plates”, Acta Materae Compositae Sinica, 14, 108-115(in Chinese).

Fernandes, A. and Pouget, J. (2001), “Two-dimensional modeling of laminated piezoelectric composites: analysis
and numerical results”, Thin Walled Structures, 39, 3-22.

Heyliger, P. (1991), “Static behavior of laminated elastic/piezoelectric plates”, AIAA Journal, 32, 2481-2484.
Heyliger, P. and Brooks, S. (1996), “Exact solutions for laminated piezoelectric plates in cylindrical bending”, J.

Appl. Mech., ASME, 63, 903-907.
Heyliger, P. (1997), “Exact solutions for simply supported laminated piezoelectric plates”, J. Appl. Mech.,

ASME, 64, 299-306.
Jong, S.L. and Long, Z.J. (1996), “Exact electric analysis of piezoelectric; laminae via state space approach”, Int.

J. Solids Struct., 33, 977-990.
Jonnalagadda, K.D., Blandford, G.E. and Tauchert, T.R. (1994), “Piezothermoelastic composite plate analysis

using first-order shear deformation theory”, Comput. Struct., 51, 79-89.
Lee, C.K. (1990), “Theory of laminated piezoelectric plates for the design of distributed sensors/actuators: part I:

governing equations and reciprocal relationships”, J. Acoustical Soc. Amer., 87, 1144-1158.
Mitchell, J.A. and Reddy, J.N. (1995), “A refined hybrid plate theory for composite laminates with piezoelectric

laminar”, Int. J. Solids Struct., 32, 2345-2367.
Tauchert, T.R. (1992), “Piezothermoelastic behavior of a laminate”, J. Thermal Stresses, 15, 25-37.
Tiersten, H.F. (1969), Linear Piezoelectric Plate Vibrations, Plenum Publications, Newyork. 
Zhang, J.G., Liu, Zhengxing and Lin, Qirong (2000), “An analytical solution for static electromechanical coupled

behavior of a laminated piezoelectric plate”, Acta Mechnica Sinica, 32(3), 326-333(in Chinese).

Appendix I: Coefficients µst in case that external voltage is applied in the top surface
of the plate
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Appendix II: Coefficients µst in case that no external voltage is applied
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