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Abstract. On the basis of a structural analysis of radial gate (i.e. Tainter gate), the current paper
focuses on weight minimization according to the location of the arms on a radial gate. In spite of its
economical significance, there are hardly any previous studies on the optimum design of radial gate.
Accordingly, the present study identifies the optimum position of the support point for a radial gate that
guarantees the minimum weight satisfying the strength constraint conditions. This study also identifies the
optimum position for 2 or 3 radial arms with a convex cylindrical skin plate relative to a given radius of
the skin plate curvature, pivot point, water depth, ice pressure, etc. These optimum designs are then
compared with previously constructed radial gates. Local genetic and hybrid-type genetic algorithms are
used as the optimum tools to reduce the computing time and enhance the accuracy. The results indicate
that the weights of the optimized radial gates are appreciably lower than those of previously constructed
gates. 
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1. Introduction

The optimum techniques are categorized into two groups. One is the local search (gradient
method) group. The steepest descent method is very powerful in simple cases. However, the
convergence rate may be too slow in some problems, like a curved sharp valley. The DFP method is
a kind of the variable metric algorithm, which can solve that kind of problem without any difficulty.
It uses conjugate directions, if the objective function is quadratic (Himmelblau 1972). The
traditional gradient method only focuses on searching the local extremum near the current points.

In contrast, the other is the global search group. The genetic algorithms are stochastic global
search methods based on the mechanism of natural selection and natural genetics. Therefore, GA
(genetic algorithm) have recently been applied to structural optimization problems due to their
capability of solving optimum problems that involve mixing continuous, discontinuous, and non-
convex regions etc. The SGA (simple GA) is improved to MGA (micro GA) by using some
techniques like tournament selection along with the elitist strategy. Yet, the GA has more difficulty
in fast searching the exact optimum point at later stage. The DPE (Dynamic Parameter Encoding)
GA (Schraudolph 1992) uses a digital zooming technique, which means that the digit of higher rank
is not changed any more after a certain stage. The SZGA (Successive Zooming GA) zooms the
searching area successively, thus the convergence rate is highly increased (Kwon 2003). The SZGA
might lose the optimum point, if the zooming factor is not properly chosen. Therefore, we propose a
new GA technique, which guarantee to find the optimum point. The remaining global search
techniques are SA (Simulated Annealing) and PGSL (Probabilistic Global Search Lausanne). The
SA (Corana 1987) provides a strategy where a higher value of a function is acceptable under some
conditions, not to be led to a local extremum. The PGSL is a global search technique based on the
basic assumption that better points are more likely to be found in the neighbourhood of good points
(Raphael 2000, Svanerudh 2002). 

Therefore, this study first identifies optimum values using a MGA, which has a better searching
ability than the simple genetic algorithm. To solve the convergence problem at later stage, we
employed, hybrid algorithms that combine the global GA followed by local search algorithms (DFP
or MGA). The hybrid algorithm using DFP method incorporates the advantages of both a genetic
algorithm and gradient search technique. We call LZGA (Local Zooming GA) for the other hybrid
algorithm of global GA and local GA at zoomed area. The enhancement of above hybrid algorithms
is verified by investigating the gate optimum problem.

The installation of gates in dams is essential to regulate the flow-rate and to ensure the safety of
dams. There are various types of gates with unique characteristics. Among these, the radial gate
(Tainter gate) is widely used to regulate the flow-rate of huge dams due to its accuracy in regulating
the flow-rate, easy opening and closing, endurance etc.

Yan (1991) studied the optimum design of dynamic characteristics radial gates using a sensitivity
analysis and experimental modal analysis. Jiang (1994) researched the flow-induced vibrations of
radial gates using the model examination method. Golliard (1998) improved the working capability
of radial gates and their security using the concept of a fusegate. Anami (1998) analysed the
vibration and damping characteristics of radial gates. However, although the selection of supporting
points is very important in the design of a radial gate, there has been relatively little research on the
optimum design of the location of radial arms. As such, the design of a radial gate generally
depends on the experience of the designers. Therefore, this study focuses on the optimal design of
the location of radial arms, then the results are compared with those of experience-based designs.
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An attempt is made to demonstrate the usefulness and importance of optimization when selecting
the location of a radial arm. Based on the above information, two types of radial gate are
considered: 2-radial arm type and 3-radial arm type.

2. Genetic algorithm

GAs are stochastic global search methods that mimic the concept of natural evolution. Due to the
nature of the algorithm, their successful application has been mostly restricted to optimization
problems whose solution can be conveniently represented in binary form. However, there is a rising
interest in applying genetic algorithms to continuous optimization problems, especially since there is
no need for initial estimates, which is an important advantage over other stochastic search methods,
such as simulated annealing. Therefore, in this paper GAs are applied for continuous variable
optimization. A micro genetic algorithm (MGA) is briefly introduced and two hybrid algorithms are
proposed to improve the local-tuning ability. 

2.1 Micro genetic algorithm 

Krisnakumar (1989) proposed a micro GA which has a good performance in the case of very small
populations, whereas Carroll (1996) dealt with problems using other operators. De Jong (1975)
showed that MGAs improved both the initial and later performance compared with simple genetic
algorithms. MGAs converge faster to a near optimum design and can avoid premature convergence
occurring in small population problems where the optimization procedure has to restart after
populations are recomposed if they almost converge to one point to maintain a diversity of genetic
information. The genetic operators used are as follows. The selection operators are the tournament
selection and elitist strategy. The crossover operators are a one-point crossover, plus the crossover
probability is Pc = 1, which means parent pairs crossover based on the need for earnest information
exchange between individuals. MGAs introduce sufficient diversity every time, since an MGA restarts
with new populations recomposed by optimum individuals in converged populations, and the
remaining individuals are created arbitrarily if individuals converge close to any one point. Therefore,

Fig. 1 Convergence in case A (2-design variables) Fig. 2 Convergence in case B (3-design variables)
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no additional mutation operators are needed. As such, the mutation probability fixed in Pm = 0. 
Figs. 1 and 2 show the convergence processing of an object function with respect to generation

evolution according to a change in the individual populations for case A and case B. In the case of
A (two design variables) the object function became small after 700 generations for different
population numbers. In the case of B (three design variables) the population number for an
optimum performance increased compared to the case of two design variables. This was because
the search region was magnified. Yet MGAs that can efficiently search small populations become
less effective in the case of exceeding the population number for the optimum performance.
Generally, because of poor local fine-tuning an MGA can not give a good solution accuracy and
consumes much computing time. Accordingly, this paper presents a hybrid type GA to overcome
this problem.

2.2 Hybrid algorithm I ; Combining MGA + DFP

This hybrid algorithm incorporates the advantages of both a genetic algorithm and gradient search
techniques. A GA reaches a point closer to a global solution, then a gradient search algorithm
searches for an accurate solution using this point as the initial point. As the local search algorithm,
the DFP (Davidon-Fletcher-Powell) method is adopted from among the variable metric methods.
When the change in the objective function becomes very small, this algorithm takes the generation
as the initial point to reduce the computing time, for example, 700 generations in the case of A (2-
design variables) and 4000 generations in the case of B (3-design variables). It is well known that
the DFP method as a local search algorithm can converge to a local optimum value without
preliminary knowledge. However the proposed hybrid algorithm converges to a global optimum
value. Fig. 3 shows a flow chart of this algorithm. 

2.3 Hybrid algorithm II ; Combining MGA + Local genetic algorithm
 
In this hybrid algorithm, a MGA is performed generation by generation until the objective

function changes no more, then we have approximate optimum solution at ZMGA. The gradients of

Fig. 3 Flow chart combining micro GA with DFP
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Fig. 4(a) Flow chart combining micro GA with local GA

Fig. 4(b) Signs of gradients at concavity condition
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the objective function along the design variables are checked, if the concavity condition
(Himmelblau 1972) is satisfied at the boundary of small zoomed area (Fig. 4b). If the condition is
not satisfied, the small zoomed area is increased by δ. After many iterations we finally have the
concavity conditions at the boundary of final zoomed area (kδ × kδ ) centered at ZMGA. With the
elitist solution from the global GA (approximate optimum solution, ZMGA) and the concavity
condition, we have the optimum point within the final zoomed area [Zi = (Zi − kδ )~(Zi + kδ )]. From
this point we perform a local GA for the small finally zoomed area, which probably contains the
optimum point. Usually, this area is very small compared with the original one, therefore we have
tremendously increased convergence rate (remember that the first approximate solution prematurely
converged to an inexact optimum point).

Tables 1 and 2 show the optimum values for above three algorithms. Clearly the hybrid algorithm
produced a solution with a better accuracy than the Micro GA, plus reduced the computing time.
When the results of the case A (2-design variables) and case B (3-design variales) are compared, the
computing time of the case B was longer due to a wider searching region. 

We can tell that the hybrid algorithms have the same optional solution (0.690488E+10), the
original MGA still has no actual optimal solution (0.690497E+10) with over double size of
generations than the others.

3. Structure of radial gate and governing equations

3.1 Structure of radial gate

In radial gates, the part of the radial gate that resists water pressure and ice pressure related to the
freezing of the water surface is called the skin plate. Fig. 5 shows the structure of a radial gate
where the skin plate, supported by 2 arms, is resisting both ice pressure and hydro-static pressure.

In Fig. 5 ELH, ELS, and Pice are the height of the water surface, height of the bottom of the skin
plate, and ice pressure related to the freezing of the water surface in winter, respectively. B
represents the width of the skin plate. To calculate the force of each arm supporting the skin plate,
the dead weight of the skin plate has to be considered in addition to aforesaid Pice and hydrostatic
pressure, as shown in Fig. 5. In Fig. 5, the depth of the water, h, is ELH-ELS. The projected area of
the skin plate is used to calculate the vertical and horizontal components of the resultant force

 
Table 1 Optimum values by different optimum tools in the case A

Case A Micro GA (N=10) MGA+DFP MGA+LGA

Convergence Generation 1000 700 700
Objection Function 0.115735E+11 0.115711E+11 0.115711E+11

 
Table 2 Optimum values by different optimum tools in the case B

Case B Micro GA (N=10) MGA+DFP MGA+LGA

Convergence Generation 9000 4000 4000
Objection Function 0.690497E+10 0.690488E+10 0.690488E+10
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working on the skin plate due to hydrostatic pressure in proportion to the depth of the water. That
is, the circular skin plate is assumed to be straight. Radial gates have vertical girders that support
the load first. Fig. 6 shows an H-type vertical girder supporting the skin plate of a vertical girder.
The vertical girder is connected to the horizontal girder and arms, and is designed to support the
skin plate. As shown in Fig. 6, an H-type vertical girder is composed of a flange 1, flange 2, and
web. The section modulae Z1 and Z2 are different from each other because the sizes of the upper and
lower flange are different from each other. Radial gates can be divided into 2-arm and 3-arm types,
according to the number of arms. Whereas the governing equation for a 2-arm type is statistically
determinate, the governing equation for a 3-arm type is statistically indeterminate.

3.2 Governing equation of 2-arm type radial gate

Fig. 7 shows the water pressure on a skin plate of a radial gate supported by 2 arms. Although the
vertical girder that supports the skin plate is curved, it can be treated as a straight beam when the
ratio of the radius of the curvature to the thickness (R/t) is over 20 (Ugural 1995). Here, it was
treated as a straight beam because the R/t ratio was almost 80.

From the equilibrium equations ΣF = 0, ΣMA = 0, the reaction forces and reaction moments of
points A and B become Eqs. (1) and (2) and Eqs. (3) and (4), respectively

Fig. 6 Vertical girder

Fig. 5 Model of the radial gate with 2-arm
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 (1)

(2)

(3) 

(4) 

The objective is to determine the location value of the maximum moment. When x is the distance
from point A, as in Fig. 7, the moment of x is equal to Eq. (5)

(5) 

To identify the maximum, the derivative of MAB with respect to x should equal 0. From here, the
maximum moment Mmax, can be obtained.
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Fig. 7 Free body diagram of radial gate with 2 arms



Local zooming genetic algorithm and its application to radial gate support problems 619

(6)

Here, h1 = L1, h2 = L1 + L2, h3 = L1 + L2 + L3

Thus, the maximum moment in a vertical girder is one of MA, MB and MABmax, plus the section
modulus of a vertical girder can be decided for this maximum moment.

 
3.3 Governing equation of 3-arm type radial gate
 
In the case of a 3-arm radial gate, the number of unknowns is three, whereas the number of

equilibrium equations is two. That is, the problem is statistically indeterminate. Fig. 8 shows the
free body diagram of a 3-arm type radial gate.

To solve the above statistically indeterminate problem, Fig. 8 is divided into Figs. 9(a) and 9(b).
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Fig. 9(a) Reaction curve diagram Fig. 9(b) Deflection curve diagram 

Fig. 8 Free body diagram of radial gate with 3 arms
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The solution of a statistically indeterminate beam can be obtained using the singularity function
method. First, when the load acts at the simple-supports-beam, as shown in Fig. 9(a), the deflection
is as follows.

(7)

The deflection at point B can be calculated by applying the singularity method to the simple-
supports-beam with the distributed load in Fig. 9(b). The singularity function applied is equal to
Eq. (8).

 

 (8)

When integrating the beam equation with Eq. (8), the deflection is as follows:
 

 (9)

in which E and IZ represent the modulus of elasticity and inertial moment, respectively. When
applying the boundary condition that the deflection at points A and C is 0, the equations for the
constants C1 and C2 are as follows:

Point A (x = L1) 

(10)

Point C (x = L1 + L2 + L3) 

(11)

By substituting x = L1 + L2 into Eq. (9), the deflection at point B can be obtained. 

(12)

When substituting vB into Eq. (7), RB2 can be obtained. The reaction forces RA2 and RC2 in Fig. 9(a)
are as follows:
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(14)

(15)

Using the relation between the force and the moment in Fig. 9(b), RA1 and RC1 become Eqs. (16)
and (18), respectively.

 
(16)

(17)

(18)

Using the above Eqs. (13)-(18), the reaction forces of arms A, B and C are as follows:

(19)

(20) 

(21) 

and the moments for each arm are as follows (Fig. 8):

(22)

 (23)

(24)

Here, h1 = L1, h2 = L1 + L2, h3 = L1 + L2 + L3

The maximum moment occurring in a vertical girder is one of the maximum bending moments:
MA, MB, MC, or MAC. The magnitude of the maximum bending moment determines the section
modulus of a vertical girder.

4. Weight minimization of radial gate 

4.1 Formulation of optimum problems

Selecting the location of a radial arm is very important because the size of the member supporting
the working stress is affected by the location of the radial arm. The weight can be obtained by the
density times the volume calculated based on the size of the member. Therefore, the weight can be
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minimized by an economic design that controls the location of 2-arm type or 3-arm type. In this
study, weight minimization is obtained by minimizing the volumes because the density is constant.
Therefore, the volume equations are as follows. 

(CASE I) girder only

(25)

(CASE II) girder and non-equal arm cross-section

· 2-arm type

(26)

· 3-arm type

 (27)

(CASE III) girder and equal arm cross-section

· 2-arm type

(28) 

· 3-arm type

(29)

Where, N1 : Vertical girder number
 N2 : Arm number
 Lg : Vertical girder length
 La : Arm length
 Sg : Vertical girder allowable stress
 Sa : Arm allowable stress
 Rmax : Max. reaction of supporting point 
 Mmax : Max. moment of vertical girder
 f1 : The ratio of the section modulus to section area = Z/A = 0.32h (Gere & Timoshenko 1995), 
h : Section height

CASE I only considers the girder. CASE II considers the girder and a non-equal arm (different
arm sizes). CASE III considers the girder and an equal arm (identical arm sizes). Calculating the
volumes based on the above equation satisfies the strength constraint condition. When optimizing
the arm location on a radial gate, the independent variables are the length ratios, which are
dimensionless with respect to the total length. The optimization problems can be formulated as
follows: 
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Two-arm type
Minimize f (R) = max. volume of gate

R = {R1  R2  R3}
T 

subject to (30)
R1 + R2 + R3 = 1 

Ri : dimensionless lengths

Three-arm type
Minimize f (R) = max. volume of gate

R = {R1  R2  R3  R4} T 
subject to  (31)

R1 + R2 + R3 + R4 = 1 
Ri : dimensionless lengths

In the case of a 2-arm type, the value of R3 is decided automatically by R1 and R2 from the
equation R1 + R2 + R3 = 1. Therefore, the only independent variables used in optimization are R1

and R2. A decrease in the section modulus satisfying allowable stress of a vertical girder under a
given load condition can be obtained by comparing the values of the section modulus before and
after optimization. As a result, the optimum weight according to the reduction in the section
modulus can be obtained. In the case of a 3-arm type, the number of independent variables is three
and the sum of the length ratios of each part must be one. 

Table 3 shows the minimum section modulus and weight satisfying allowable stress in the case of
a 2-arm type. Table 4 shows the minimum section modulus and weight satisfying allowable stress in
the case of a 3-arm type.

In this study, the ratio of length before optimization was 0.5:1:0.5 in the case of a 2-arm, and
0.5:1:1:0.5 in the case of a 3-arm. Tables 3 and 4 show that the arm moments were equally

 
Table 3 Optimum results in the case of a 2-arm type

2-arm Value before 
optimum

Optimum value

Girder Only Girder and 
Non-equal Arm

Girder and 
Equal Arm

Ratio of 
length

R1  0.25000 0.19381 0.19381 0.19380
R2  0.50000 0.67662 0.67662 0.67663
R3  0.25000 0.12957 0.12957 0.12957

Reaction
(kg/mm)

RA  0.37137E+2 0.52729E+2 0.52729E+2 0.52729E+2
RB  0.10493E+3 0.89341E+2 0.89341E+2 0.89341E+2

Moment
(kg-mm/mm)

MA  0.75006E+5 0.55255E+5 0.55255E+5 0.55253E+5
MB  0.15381E+6 0.55255E+5 0.55255E+5 0.55254E+5

Section modulus
(mm3)

Z1  0.77328E+7 0.27780E+7 0.27780E+7 0.27781E+7
Z2  0.64087E+7 0.23023E+7 0.23023E+7 0.23024E+7

Volume
(mm3)

Girder Only  0.23905E+11 0.85877E+10 - -
Girder+Arm  0.26889E+11 - 0.11571E+11 0.12340E+11
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distributed at supports in each arm in the case of the minimum weight radial gate except for the
case of equal arm. This can be explained as follows. We made the sizes of cross-section of arms be
equal for the convenience of manufacturing. That altered the optimal position of arms to result in
unequal moments at the supports. The sum of the reaction force for each arm in the 2-arm and 3-
arm types was always 0.14207E+3 kg/mm, thereby indicating indirectly that the governing equations
in Sec 3.2 and 3.3 are correct. As depicted in Table 3, in the case of a 2-arm type, the section
modulus of a vertical girder satisfying the safety constraints was only 36.0% after optimization. In
addition, in Table 3, with weight optimization in the case of a 2-arm type, the weight was reduced
by 64.0% compared to the value before optimization for CASE I, 56% for CASE II (different arm
size), and 54% for CASE III (identical arm size). 

In the case of a 3-arm type, the section modulus of a vertical girder satisfying the safety
constraints was only 32% after optimization, as shown in Table 4. Furthermore, in Table 4, when
optimization was accomplished in the case of a 3-arm type, the weight was reduced by 55%
compared to the value before optimization for CASE I, 55% for CASE II (different arm size), and
50% for CASE III (identical arm size). As such, the optimum values for the length ratio, reaction,
moment, and section modulus were the same for both CASE I and CASE II. The reason for this is
that a vertical girder supports the load, which is then distributed to the arms. Meanwhile, in the case
of different arm size (non-equal arms), the size of the arms are decided by the force at the
respective supporting points. But, in the case of identical arm size, the optimized weight is larger
than that in a non-equal arm case because shape of the arms is made identical to that of the arm
supporting the largest force.

 
Table 4 Optimum results in the case of a 3-arm type

3-arm  Value before 
optimum

Optimum value

Girder Only Girder and
 Non-equal Arm

Girder and 
Equal Arm

Ratio of
length

R1 0.16667E+0 0.94167E−1 0.94167E−1 0.96218E−1
R2 0.33333E+0 0.46274E+0 0.46274E+0 0.49757E+0
R3 0.33333E+0 0.36789E+0 0.36789E+0 0.32980E+0
R4 0.16667E+0 0.75203E−1 0.75203E−1 0.76412E−1

Reaction
(kg/mm)

RA 0.40160E+2 0.30462E+2 0.30462E+2 0.32248E+2
RB 0.10903E+2 0.49199E+2 0.49199E+2 0.50179E+2
RC 0.91007E+2 0.62409E+2 0.62409E+2 0.59643E+2

Moment
(kg-mm/mm)

MA 0.46542E+5 0.25231E+5 0.25231E+5 0.25803E+5
MB 0.69769E+4 0.25231E+5 0.25231E+5 0.25801E+5
MC 0.81075E+5 0.25231E+5 0.25231E+5 0.25796E+5

Section modulus
(mm3)

Z1 0.40761E+7 0.12685E+7 0.12685E+7 0.12972E+7
Z2 0.33781E+7 0.10513E+7 0.10513E+7 0.10751E+7

Volume
(mm3)

Girder Only 0.77921E+10 0.34524E+10 - -
Girder+Arm 0.15584E+11 - 0.69049E+10 0.77677E+10
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5. Conclusions

This study presented a structural analysis of a radial gate under a working load of water pressure
and ice pressure for both 2-arm and 3-arm types. The weight of the radial gate was minimized using
an optimization technique involving a genetic algorithm. A hybrid genetic algorithm was also
applied to enhance the convergence speed and reduce the computing time. A summary of the results
is listed as follows. First, for both the 2-arm and 3-arm cases of a radial gate, the relationship
between the load and the bending moment was derived. Second, two hybrid algorithms were
proposed to improve the local-tuning ability ; 1) GA + DFP incorporates the advantages of both a
genetic algorithm and local search techniques. 2) GA + LGA used GA for global solution and LGA
for local solution. These two algorithm were used to solve the convergence problems in a genetic
algorithm. The last, in the design of a radial gate, the optimum problem is formulated that has to
find the location of the arms for minimum volume ; 1) The weights of the optimized radial gates
were appreciably lower than those of previously constructed gates. 2) The weight of a 2-arm type
was heavier than that of a 3-arm type because the moment of a vertical girder in a 2-arm type is
bigger than that of a 3-arm type. 3) A girder and equal arms were heavier than a girder and non-
equal arms. This was due to non-optimal sizes of the cross-section of arms. However, A designer is
more likely to select a girder and equal arms when considering the manufacture process,
maintenance, dynamic behavior, etc.
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