
Structural Engineering and Mechanics, Vol. 17, No. 3-4 (2004) 409-428 409

Holder exponent analysis for discontinuity detection

Hoon Sohn†, Amy N. Robertson† and Charles R. Farrar†

Weapon Response Group, Engineering Sciences and Applications Division,
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received October 1, 2002, Accepted August 27, 2003)

Abstract. In this paper, a Holder exponent, a measure of the degree to which a signal is differentiable,
is presented to detect the presence of a discontinuity and when the discontinuity occurs in a dynamic
signal. This discontinuity detection has potential applications to structural health monitoring because
discontinuities are often introduced into dynamic response data as a result of certain types of damage.
Wavelet transforms are incorporated with the Holder exponent to capture the time varying nature of
discontinuities, and a classification procedure is developed to quantify when changes in the Holder
exponent are significant. The proposed Holder exponent analysis is applied to various experimental signals
to reveal underlying damage causing events from the signals. Signals being analyzed include acceleration
response of a mechanical system with a rattling internal part, acceleration signals of a three-story building
model with a loosing bolt, and strain records of an in-situ bridge during construction. The experimental
results presented in this paper demonstrate that the Holder exponent can be an effective tool for
identifying certain types of events that introduce discontinuities into the measured dynamic response data.
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1. Introduction

In recent years, there have been increased economic and life-safety demands to continuously
monitor the conditions and long-term deterioration of structures and mechanical assemblies to
ensure their safety and adequate performance throughout their life spans. Structural health
monitoring has applications to almost all engineering structures and mechanical systems including
defense hardware, civil infrastructure, buildings, manufacturing equipments, and commercial
aerospace and automotive systems. These increasing economic and safety concerns have initiated
numerous structural health monitoring research throughout various engineering disciplines. 

A recent literature review by the authors has revealed that although significant advances have been
made in sensing and data acquisition technologies, much research work in signal processing and
data interrogation is certainly a requisite (Sohn et al. 2003). For instance, 16 million US dollars are
spent to install 600 various types of instrumentations including accelerometers, strain gauges,
anemometers, thermocouples, GPS systems and etc. into the Tsing Ma Suspension Bridge in Hong
Kong, which was completed in May, 1997 (Wong et al. 2000). However, little investigation has been
done regarding how to utilize the tremendous amount of data that these sensors are constantly
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producing. A personal communication with the local authorities indicates that they are overwhelmed
by a large set of these continuously collected data. 

Recent advances in micro-electromechanical system (MEMS) sensors and fiber optic sensors
clearly demonstrate that the deployment of a dense array of sensors at an affordable price would be
feasible in the next 5 to 10 years. The question that remains to be solved is how to best utilize a
large amount of measured response data and extract information useful for a specific application.
Furthermore, the increasing size of recorded data not only makes it difficult to transmit all the
signals to a central storage or monitoring facility but also demands significant time and effort
analyzing the acquired data. Vibration-based damage detection techniques assume that changes of
the structure’s integrity affect characteristics of the measured vibration signals enabling one to detect
damage. Many current approaches to this problem involve methods that leave much to the
interpretation of analysts. These methods may enable a trained eye to discern and identify damage,
but these methods are not easily automated or objective. 

The goal of this study is to develop a discontinuity detection technique based on the Holder
exponent analysis, which can minimize unnecessary user interaction and can be potentially
automated for the development of an autonomous continuous monitoring system. This application of
the Holder exponent is not new in the analysis of time series data. For instance, Struzik (2001) uses
the Holder exponent to characterize the underlying structure of a system that produces a time series
of interest. The specific application is to financial data, where outliers and fluctuations in the Holder
exponent value reveal interesting phenomena such as market crashes. Using the Holder exponent for
discontinuity detection has also been shown to be useful in interpreting images (Shekarforoush et al.
1998). The edges in an image can be thought of as discontinuities and their identification can be
used for finding abnormalities, removing noise, or even compressing the size of the image, because
most of the information in an image is found in its edges. Holder exponents have even been used in
one application of health monitoring. Hambaba and Huff (2000) use a wavelet transform to
determine the Holder exponent value of a gear response at different scale levels. By fitting an Auto-
Regressive Moving-Average (ARMA) model to the wavelet-transformed data, analysis of the
residual error is used to indicate the presence of fatigue cracks in the gear. Peng et al. (2002)
examine shaft orbits using the wavelet modulus maxima. The wavelet modulus is the absolute value
of the wavelet transform and its maxima are ridges of high-valued coefficients that progress through
the time-frequency plane. The Holder exponent values are extracted only for these maxima lines and
then their distribution is used as input features to a neural network, which classifies the shaft orbit
(including fault classification). These two applications are very different from the one presented in
this paper. This paper will use the wavelet transform to obtain a time-based local Holder exponent
function. Fluctuations in this function as demonstrated in Struzik (2001) will be useful for
understanding and identifying outliers in the data. Hambaba and Huff (2002), on the other hand, are
looking at the global regularity of the data at various scales and Peng et al. (2002) use the Holder
exponent at specific points in time as a feature, rather than its variation in time.

2. Holder exponent analysis

A Holder or Lipschitz exponent, which provides a measure of a signal’s regularity, is presented to
detect the presence of a discontinuity and when the discontinuity occurs in a dynamic signal. The
regularity of a signal is defined as the number of continuous derivatives that the signal possesses.
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First the time varying nature of the Holder exponent is obtained based on a wavelet transform.
Because discontinuity points have no continuous derivatives, these points are identified by locating
time points where the Holder exponent value suddenly drops. Next, an automated classifier is
developed to quantify when changes in this Holder exponent are significant. It should be noted that
the proposed approach is very different from the one presented by Hambaba and Huff (2000). This
paper will use the wavelet transform to obtain a time-based local Holder exponent function, and
fluctuations in this function will be useful for understanding and identifying outliers in the data.
Hambaba and Huff (2000), on the other hand, look at the global regularity of the data at various
scales. 

2.1 Wavelet analysis of signals

Wavelets have been gaining in popularity as the multi-scale transform of choice since their first
influx into mainstream mathematics and engineering in the early 90’s. Wavelets are mathematical
functions that decompose a signal into its constituent parts using a set of wavelet basis functions.
This decomposition is very similar to Fourier transforms, which use dilations of sinusoids as the
bases. The family of basis functions used for wavelet analysis is created by both dilations (scaling)
and translations (in time) of a “mother wavelet”, thereby providing both time and frequency
information about the signal being analyzed. There are many different functions that can be called
wavelets. In this study, the Morlet wavelet is used for the family of basis functions. This wavelet,
ψ(t), is defined as:

(1)

which is very similar to a sinusoid with a Gaussian envelope. The term fo is the center frequency of
the sinusoid and σ determines the width of the frequency band. Also, t is the time variable and i the
imaginary value of . The wavelet transform, Wf(u, s), is obtained by convolving the signal f (t)
with the translations (u) and dilations (s) of the mother wavelet:

(2)

where

(3)

The transform itself can be categorized as either discrete or continuous. By computing the
continuous wavelet transform at integer values of the translation parameter, u, and only at dyadic
values of the scale parameter, s, the most common form of the discrete wavelet transform is found.
The discrete transform provides an efficient method for computing the wavelet transform, resulting
in the fewest number of coefficients needed to characterize the signal without loss in reconstruction.
This property makes the discrete transform popular in signal/image compression and data
transmission applications. For analysis purposes, however, compactness and speed are not nearly as
important as accuracy. The compact form of the discrete transform might allow singularities to go
undetected unless they align themselves with the precise points in the time-scale space where the
discrete transform is computed. The continuous transform supplies redundant information, but with
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a finer resolution. Thus, for discontinuity detection presented here, a continuous wavelet transform
is used so that a more precise localization of the discontinuity points can be found.

A common problem with wavelets is end-effects. End-effects are the errors in the wavelet
transform resulting from performing a convolution on a finite-length signal. Any transform or
filtering process that performs a convolution on a finite signal will suffer from errors caused by
these end-effects. Zero-padding and mirroring of the signal are used in this paper to deal with this
problem. The calculation of the Holder exponent is greatly improved when the end-effects are dealt
with.

2.2 Characterization of the pointwise holder regularity for discontinuity detection

The resulting coefficients from the wavelet transform of a time domain signal, such as the
acceleration response of a structure, can be represented in a two-dimensional time-scale map.
Examination of the modulus of the wavelet transform shows that many of these coefficients are very
small in magnitude. Large magnitude components, termed modulus maxima, will be present at time
points where the most change in the signal has occurred. Jumps or singularities in the signal can
therefore be identified by the presence of modulus maxima at specific time points in the wavelet
map. Singularities are distinguishable from noise by the presence of modulus maxima at all of the
scale levels for a given time point. Noise will produce maxima at the finer scales, but will not
persist to the coarser scales. Mallat and Hwang (1992) first introduced a method for detecting
singularities in a signal by examining the evolution of the maxima of the modulus of the wavelet
transform across the scales. The decay of this maxima line can then be used to determine the
regularity of the signal at a given time point. A less time consuming alternative to the extraction of
the maxima line is to simply look at the decay of the wavelet modulus across the scales at a given
time point. Points of large change in the signal will have large coefficients at all the different scales,
thus having little decay. Features such as noise, however, only produce large coefficients in the finer
scales and therefore would show more decay across all of the scales. The measure of this decay is
the Holder exponent of the signal at a given time point. 

The Holder exponent, also known as the Lipschitz exponent (Mallat and Hwang 1992) is a tool
that provides information about the regularity of a signal. In essence, the regularity identifies to
what order a function is differentiable. For instance, if a signal f (t) is differentiable at t = 0 it has a
Holder exponent of 1. If the signal is discontinuous but bounded in the neighborhood of t = 0, such
as a step function, then the Holder exponent is 0. The Dirac Delta function then has a Holder
exponent of −1 because it is unbounded at t = 0. It turns out that there is a relationship between the
Holder exponent of a function and its derivatives and primitives. Taking the derivative of a function
decreases its regularity by 1 and integrating increases it by 1.

For the applications in this paper, singularities are defined as points in the signal that are
discontinuous. As discussed above, bounded discontinuities have a Holder exponent of 0. Therefore,
measuring the regularity of the signal in time can be used to detect these singularities. The Holder
exponent can pertain to the global regularity of a function, or it can be found locally. A common
method for finding its value is through the use of the Fourier transform (Mallet and Hwang 1992).
The asymptotic decay of a signal’s frequency spectrum relates directly to the uniform Holder
regularity. The Fourier transform approach only provides a measure of the minimum global
regularity of the function, and cannot be used to find the regularity at a particular point in time.
Wavelets, on the other hand, are well localized in time and can therefore provide an estimate of the
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Holder regularity over both time intervals and at specific time points. The wavelet method for
estimating the Holder exponent is similar to that of the Fourier transform. The wavelet provides a
time-frequency map called the scalogram. By examining the decay of this map at specific points in
time across all scales (frequencies), the point-wise Holder regularity of the signal can be
determined. 

The Holder regularity is defined as follows. Assume that a signal f (t) can be approximated locally
at t0 by a polynomial of the form (Struzik 2001):

(4)

where Pn is a polynomial of order n and C is a coefficient. The term associated with the exponent α
can be thought of as the residual that remains after fitting a polynomial of order n to the signal, or
as the part of the signal that does not fit into an n + 1 term approximation. The local regularity of a
function at t0 can then characterized by this “Holder” exponent: 

(5)

In order to detect discontinuities, a transform is needed that ignores the polynomial part of the
signal. A wavelet transform that has n-vanishing moments is able to ignore polynomials up to order n:

(6)

Transformation of Eq. (5) using a wavelet with at least n vanishing moments then provides a
method for extracting the values of the Holder exponent in time:

(7)

where Wf(u, s) is the wavelet transform at time translation u and scale s. The wavelet transform of
the polynomial is zero and so what remains is a relationship between the wavelet transform of f (t)
and the error between the polynomial and f (t), which relates to the regularity of the function. When
a complex wavelet such as the Morlet wavelet is used, the resulting coefficients are also complex.
Therefore, the magnitude of the modulus of the wavelet transform, called the scalogram, must be
used to find the Holder exponent. As detailed in the next section, the exponent α can be calculated
at a specific time point by finding the slope of the log of the scalogram at that time versus the log
of the scale vector s.

The concept of the Holder exponent was first introduced in this paper in terms of the decay of the
Fourier transform. It is logical therefore to wonder if a short-time Fourier transform (STFT) could
be used to extract a time-varying Holder exponent function as well. In fact, any time-frequency
transform can be used for Holder exponent extraction, but certain characteristics of the wavelet
transform make it particularly well adapted for this application. Specifically, the decay of the
wavelet basis functions in the frequency domain, which is associated with the number of vanishing
moments, and the variability of the bandwidth of the wavelet transform in time and frequency. The
order of the wavelet limits the degree of regularity that can be measured in a function. Therefore,
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wavelets can be tuned to the signals that are being analyzed. Also, the variability of the time and
frequency bandwidths provides a finer time resolution at the higher frequencies, which can be
helpful in detecting the location of sudden changes in a signal in time.

The measurement of the regularity can be used to detect discontinuities in a signal. The easiest
way to identify a discontinuity is by looking for a distinct downward jump in the regularity versus
time plot. A discontinuous point should have a Holder exponent of zero, but resolution limitations
of the wavelet transform will result in slightly different values. So, identifying areas where your
Holder exponent dips from positive values towards zero, or below, will identify when the
discontinuities in the signal occur. A procedure for identifying the discontinuities will be presented
in the following section.

2.3 Extraction of the holder exponent

The steps for calculating the Holder exponent in time are as follows. First, take the wavelet
transform of the given signal and take the absolute value of the resulting coefficients to obtain the
wavelet transform modulus:

(8)

Then, arrange the coefficients in a two-dimensional time-scale matrix. One dimension of the time-
scale matrix (u) represents a different time point in the signal, and the other dimension denotes a
different frequency scale (s). Take the first column, which represents the frequency spectrum of the
signal at the first time point, and plot the log of it versus the scales, s, at which the wavelet
transform was calculated. This procedure can be shown mathematically by taking the log of each
side of Eq. (7):

(9)

Ignoring the offset due to the coefficient C, the slope m is then the decay of the wavelet modulus
across its scales. Negating the slope will give the decay versus the frequencies of the transform
rather than the scales, due to the inverse relationship between scale and frequency. The Holder
exponent α is then simply the slope m. This is the Holder exponent for the first time point in the
signal. To find the Holder exponent at all time points, repeat this process for each time point of the
wavelet modulus matrix.

2.4 Development of a discontinuity classifier

An automated classifier is created to detect the presence of discontinuities in the signals by
identifying drops in the Holder exponent in time. The previous investigation by the authors indicates
that looking at the depth of a drop in the Holder exponent is an effective way of assessing a
discontinuity (Robertson et al. 2003a).

A threshold is set such that any drops that exceed this threshold are labeled as discontinuities. The
threshold value is set using a portion of the data known to contain no discontinuities, and this
portion of data is termed “normal” data. The procedure starts by finding all the local maxima and
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minima of the Holder exponents in time for the normal signal. Then, drops in the Holder exponent
values are calculated as the difference between a given minimum and the maximum immediately
preceding it. Next, the threshold is determined by finding the largest drop under “normal” conditions
and amplifying this number by a factor of 1.5. The procedure for determining the depths of the
drops in the Holder exponent function is then repeated on the remaining data of interest. If any of
the drops are 50% deeper than the biggest drop in the normal data, the time point is identified as a
discontinuity location. It should be noted that this amplification factor is application specific, and
this threshold can be altered to be more or less restrictive, based on the needs of the application. In
Robertson et al. (2003b), a threshold value is established based on a more statistically rigorous
technique called extreme value statistics. For the all examples presented in this paper, the value of
1.5, however, serves our purpose well.

In some instances, the dips in the Holder value are jagged with small oscillations. This property
makes the estimation of the dip’s depth a difficult task because the algorithm relies on comparing
the local maxima and minima, which will now also appear in the small fluctuations in the dip itself.
Therefore, it was decided to add the option of smoothing the Holder exponent values before
performing the discontinuity detection algorithm by applying a low-pass moving average (MA) filter:

(10)

where α (i) is the Holder exponent values at the ith time point and m is the number of points used
in the averaging. This filtering process effectively removes the oscillations in the dips and allows for
an appropriate detection of the discontinuities. 

3. Data interrogation of various signals

The effectiveness of the Holder exponent for detection discontinuities in signals is demonstrated in
this section using three different types of signals. The first one is acceleration record obtained from
a mechanical system with an internal rattling part. The second one is acceleration responses
measured from a three-story building model near a loosened bolted joint. Finally, the discontinuity
detection algorithm is applied to strain reading obtained during construction of the Singapore-
Malaysia Second Link Bridge.

3.1 Acceleration time signals from a rattling mechanical system 

This first example investigates the acceleration response of a mechanical structure subjected to a
harmonic base excitation. The defense nature of the test structure precludes a detailed description of
its geometry or material properties. Instead a structure that is conceptually similar is schematically
shown in Fig. 1. The exterior container of the system is horizontally excited at 18 Hz, and the non-
symmetric bumpers attached to two interior side walls of the container cause the internal mass to
exhibit a rattle during one portion of the harmonic excitation. 

Fig. 2 shows the response of the structure at three different excitation levels measured by
accelerometers mounted on the outer structure in the in-axis and off-axis directions. The placement
and orientations of the in-axis and off-axis accelerometers are shown in Fig. 1. The rattle produced
by these impacts is evident in the sensor measurements that are off-axis from the excitation. The
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Fig. 1 A schematic diagram of a mechanical test structure that has a loose internal part and non-symmetric
bumpers

Fig. 2 Acceleration response of the test structure at three base excitation levels as measured in the in-axis and
off-axis directions by accelerometers mounted on the outer structure
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short oscillations of increased magnitude in these measurements are indicative of the rattle. For the
lowest excitation level, the rattling is occurring near 5.33 and 10.89 milliseconds. Similar rattling
can be observed for the intermediate and the highest excitation levels near 1.34, 6.88, and 12.39
milliseconds, and 0.25, 5.80, and 11.33 milliseconds, respectively. These same oscillations are not
readily apparent in the in-axis data, particularly if one does not have the off-axis measurements for
reference. The examination of the data from all three input levels shows that one can only see the
rattle clearly in the off-axis measurements, and the lowest excitation level had the lowest signal to
noise ratio, thus making observation of the rattle more difficult. The purpose of this application is to
determine whether the presented technique can be used to identify the time when the rattle is
occurring by looking only at the in-axis response measurements. For the acceleration signals
analyzed in this example, 4096 acceleration time points are recorded for 0.125 seconds resulting in
a sampling frequency of 3276 Hz.

First, a time-frequency information shown in Fig. 3 is obtained using a wavelet transform. The
time locations of the rattling phenomena are clearly visible in this figure. A complex-valued Morlet
wavelet with length 16 is used for the scalogram, and 256 scales are used between 0 Hz to the
Nyquist frequency (1638 Hz). A larger width wavelet function increases the overall frequency

Fig. 3 The scalogram for the in-axis acceleration data subject to the three-excitation levels
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resolution of the transform while decreasing the time resolution. The coarse time resolution acts as a
smoothing filter decreasing the amount of spurious oscillation in the Holder exponent and bringing
out changes associated with true discontinuities. To minimize the end effect of the wavelet
transform, a continuous wavelet transform with mirroring is used in this example. The program for
this mirrored wavelet computation is available at www.irccyn.ecnantes.fr/FracLab/Fraclab.html as
part of Fractal Analysis Software, copyrighted by INRIA. 

The next step is to transfer this visual interpretation of the images to a more automated
identification procedure. For this purpose, the Holder exponent was extracted from the scalogram.
Fig. 4 shows the Holder exponent obtained from the previous scalogram in Fig. 3. To smooth the
plot of the Holder exponent, averaging with a moving window size of 8 was applied [see Eq. (10)].
The singularities associated with the rattle are clearly visible in this plot at each time they occur
during the oscillatory cycles. Though the dips in the Holder exponent shown in Fig. 4 are fairly
apparent to the naked eye, identification of them using an automated procedure is more difficult.
The discontinuity classification algorithm described in the previous section was used to identify the
locations of the rattle. The first 1000 time points of the lowest level response was used as the
“normal data” to establish the threshold value for discontinuity detection. The threshold value was

Fig. 4 The Holder exponent extracted from the scalogram of the in-axis acceleration data subjected to the
three-excitation levels
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then set at 150% of the largest dip in the normal data. Filtering using the moving average method
effectively removed the spurious oscillations in the dips and allowed for a successful detection of
the discontinuities as shown by the circles in Fig. 4. Although it is not reported here, a similar
Holder exponent analysis is repeated using the spectrogram instead of the scalogram. However, the
holder exponent extracted from the spectrogram failed to identify the rattle. It is speculated that
because of the high-energy concentration in the low frequency range of the spectrogram, a
frequency spreading into the higher frequency range associated the rattle did not change the values
of the Holder exponent beyond natural fluctuation. Furthermore, the spectrogram was unable to
provide a time resolution fine enough to accurately calculate the Holder exponent. 

Third, an empirical mode decomposition (EMD) is applied to the signals. This fairly new signal
processing technique decomposes a signal into a finite and often small number of intrinsic mode
functions (IMFs) that admit well-behaved Hilbert transforms. Because the decomposition is based
on the local characteristic time scale of the data, this method has been shown effective in processing
nonlinear and nonstationary data (Huang et al. 1998). The Hilbert transforms of IMFs yield
instantaneous frequencies as a function of time, thereby providing time-frequency information.
Within an individual IMF, the instantaneous frequency can vary, but the instantaneous frequencies

Fig. 5 The acceleration response at the lowest excitation level, and the intrinsic mode functions (IMF) of the
in-axis response computed by the empirical mode decomposition
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from different IMFs are always mutually exclusive at any given time points. Therefore, the EMD
decouples a signal into several basis functions that have mutually exclusive frequency contents.
More details on the EMD can be found in Huang et al. (1998). This feature of the EMD clearly
separates the rattle from the low frequency base excitation. In Fig. 5, the in-axis acceleration
response at the lowest excitation level is decomposed into 7 IMFs. The spikes in the first IMF
clearly indicate the locations of the rattle. In fact, the first IMF is the time response associated with
the rattle. Although it is not presented here, it is a trivial matter to establish an automated rattle
identification procedure from the first IMF. For instance, a simple process control chart (Sohn et al.
2000) can be easily applied to the first IMF. Using a segment of the time series without rattling, the
upper and lower control limits of a control chart can be constructed from an assumed or empirical
distribution of the time series segment. Then, the time response of the first IMF at the rattle time
points will obviously exceed the control limits automatically identifying the rattle. Another
interesting observation is that the last IMF (IMF 7 in Fig. 5) is almost identical to the base
excitation at 18 Hz. It should be noted that the maximum amplitude of the rattle shown in the first
IMF of Fig. 5 is about 0.05 g, and this amplitude is less than 6% of the harmonic amplitude (about
0.9 g) of the base excitation shown in the last IMF of Fig. 5. Despite the very small amplitude of
the rattle, the separation of the rattle and the base excitation was possible because their frequency
contents were so distinctive. Although it is not reported here, similar results are found from the in-
axis responses of the intermediate and highest excitation levels. In both cases, the first IMF clearly
indicated the rattle and the final IMF reconstructed the base excitation function. In this example,
both the Holder exponent and EMD were successful in identifying the rattle caused by the moving
internal component with unsymmetrical bumpers.

3.2 Acceleration time signals from a loosened bolted connection 

The next structure tested is a three-story frame structure model shown in Fig. 6. The structure is
constructed of Unistrut columns and aluminum floor plates. The floors are 1.3-cm-thick (0.5 in)
aluminum plates with two-bolt connections to brackets on the Unistrut. The base is a 3.8-cm-thick
(1.5 in) aluminum plate. Support brackets for the columns are bolted to this plate and hold the
Unistrut columns. Dimensions of the test structure are displayed in Fig. 6. All bolted connections
are tightened to a torque of 0.7 N-m (60 inch-pounds) in the undamaged state. Four Firestone air
mount isolators, which allow the structure to move freely in horizontal directions, are bolted to the
bottom of the base plate. The isolators are inflated to 140-kPa gauge (20 psig) and then adjusted to
allow the structure to sit level with the shaker. The shaker is coupled to the structure by a 15-cm-
long (6 in), 9.5-mm-diameter (0.375-in) stinger connected to a tapped hole at the mid-height of the
base plate. The shaker is attached off-center, so that both translational and torsional motions can be
excited. 

The structure is instrumented with 12 piezoelectric single-axis accelerometers, one per joint as
shown in Fig. 6. The accelerometers are oriented to measure vertical accelerations and mounted on
the aluminum blocks that are attached by hot glue to the plate. The accelerometers are numbered
from the top floor to the first floor and from the right side of the structure to left. Furthermore, the
accelerometers at the front of the structure have even channel numbers, while the accelerometers on
the back have odd numbers. The nominal sensitivity of each accelerometer is 1 V/g. A 10-mV/lb
force transducer is mounted between the stinger and the base plate. This force transducer is used to
measure the input to the base of the structure. 
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A piezoelectric stack actuator was inserted in the bolt near channel 2 as displayed in Fig. 6. The
preload of the bolt was changed by varying the voltage applied to the stack actuator. The expansion
of the stack actuator was proportional to the voltage applied. The stack was initially activated by
applying approximately 800 V to the stack. Then, the bolt was tightened to a torque value of 16.9 N-m
as were all other bolts on the structure. While the structure was excited at the base level by a
broadband random excitation generated by the shaker, the stack was deactivated by decreasing the
applied voltage to near 0 V, causing the stack to contract and relieve a fraction of the preload in the
bolt. That is, the actuator is employed in this example to simulate the loosening of a bolt. Square
wave voltage signals generated by a commercial pulse generator caused the stack to expand and
contract at specified intervals. Then, a commercial data acquisition system controlled from a laptop
PC was used to digitize the accelerometer and force transducer analogue signals. The 32 second
acceleration time signals analyzed in this example consisted of 8192 time points yielding a Nyquist
frequency of 128 Hz. 

The success of the Holder exponent in this example mainly depended on the type of the base
excitation. When the structure was driven by a sinusoidal input, the Holder exponent successfully
detected the loss of preload in the bolt. The next type of excitation into the three-story structure was
a broadband random input that varied from 0 to 1000 Hz. In this environment, any changes in the
Holder exponent related to a damage event were not significant compared to other extraneous
changes in the Holder exponent. It should be noted that the Holder exponent was originally
designed to detect a broadening of the frequency domain response in higher frequency content
caused by a discontinuity. However, when a broadband input signal is already applied to the system
like this example, the subtle broadening of the frequency content caused by the discontinuity is
often masked. 

Armed with the insight about the inability of the Holder exponent to detect discontinuities in the

Fig. 6 A three-story frame structure instrumented with accelerometers and a piezoelectric stack actuator
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presence of a broadband excitation, the three-story structure was revisited. By limiting the
bandwidth of the random input from 0 to 100 Hz, it was hypothesized that the Holder exponent
would more easily accentuate the high frequency content resulting from a discontinuity. First a
baseline response is obtained from the channel 2 accelerometers when a normal voltage of 800 V is
applied to the stack actuator. Then, the square wave voltage signal is alternated between 0 and 800 V
as shown in Fig. 7(a), and the corresponding test acceleration response at channel 2 is recorded.
Any drop in the voltage applied to the piezoelectric stack corresponds to a loss of bolt preload. 

The Holder exponent is applied to the test acceleration signal to examine whether the Holder
exponent can locate time points associated with the sudden voltage drops and/or jump shown in
Fig. 7(a). A complex-valued Morlet wavelet with length 32 and 64 scales between 0 Hz and the
Nyquist frequency (128 Hz) are used for the computation of the scalogram. Again, the mirrored
continuous wavelet transform and averaging of the Holder exponent with a moving window size of
8 were applied to minimize the end effect of the wavelet transform and to obtain a smoother Holder
exponent plot, respectively. The result of the Holder exponent analysis is reported in Fig. 7(b). The
sudden voltage drops near 9.21 and 28.37 seconds are clearly identified by the downward spikes in
the Holder exponent plot shown in Fig. 7(b). Next, the automated discontinuity detection algorithm

Fig. 7 Detection of preload changes using the Holder exponent and AR-ARX model
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is applied to the Holder exponent plot in Fig. 7(b). The baseline signal is used to establish the
threshold value for the discontinuity classifier, and the discontinuity points identified by the
discontinuity classifier are marked by the circles, which well coincided with these two spike points.
However, the Holder exponent completely missed the voltage jump from near 0 to 800 V occurring
around 18.78 second. It is speculated that, while the contraction of the actuator caused by an abrupt
drop in the applied voltage produced a sudden preload decrease, the expansion of the actuator back
to the normal preload state took a much longer time causing a gradually change in the preload. That
is, the compression force applied to the actuator by the tightened bolt prevented the instantaneous
expansion of the stack actuator resulting in a gradual preload change. 

Next, an Auto-Regression and Auto-Regression time series analysis with exogenous inputs (AR-
ARX) is employed to substantiate the result of the Holder exponent analysis (Sohn and Farrar
2001). The AR-ARX model is a linear, time predictive model from which residual errors are
calculated. These residual errors are used as the features that are monitored. The AR-ARX model is
first fit to the baseline signal. The fitted AR-ARX model was then used to compute a sequence of
prediction errors from the testing signal. The underlying assumption is that the errors on the
abnormal sequence will be significantly higher than those on the baseline sequence because the AR-
ARX model is developed from fits to the baseline data. That is, when a time prediction model is
constructed from the baseline signal, this prediction model should be able to properly predict the
new signal if the new signal is close to the baseline signal. On the other hand, if the new signal
were recorded under an abnormal condition different from the condition where the baseline signal
was obtained, the corresponding prediction errors would significantly increase.

In this example, p, a, and b values of the AR-ARX model are set to 25, 20, and 5, respectively.
Here, p is the order of the auto-regressive model fit in the first step, and a and b are the orders of
the auto-regressive and moving average terms of the auto-regressive model with exogenous inputs fit
in the second step. For the detailed definition of these parameters, the readers are referred to Sohn
and Farrar (2001). The transient nature of the AR-ARX time prediction model at a few initial time
points engenders anomalously high initial residual errors, which are duly truncated. First, the AR-
ARX model is constructed by fitting it to the baseline signal. Then, the prediction errors on the
testing signal are computed and reported in Fig. 7(c). The findings of the AR-ARX time series
analysis agree with the results of the Holder exponent again missing the abrupt voltage jump near
18.78 second. Therefore, it is concluded that the expansion of the stack actuator does not produce
an instant change in the measured response signal. Finally, it should be straightforward to develop
any automated detection procedure based on the prediction errors obtained from the AR-ARX
model because the changes are substantial. 

3.3 Strain signals during construction of the Singapore-Malaysia Second Link Bridge 

Finally, the Holder exponent analysis is used to assess the impacts of several events identified
during construction of the Singapore-Malaysia Second Link Bridge (see Fig. 8). This bridge is
known as the “Second Link” as it is the second land crossing built between the two countries after
the Johor Causeway, which was constructed in the 1920s. This bridge is a post-tensioned box girder
bridge carrying a dual carriageway with three lanes on each carriage. The bridge was completed in
1997 and opened to traffic in the same year. A structural health monitoring system was installed
during construction of the bridge to monitor the bridge’s short-term and long-term behavior and
performance under construction loads, environmental loads, and vehicular loads. The sensing system
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installed includes a set of temperature sensors, load cells, strain gauges and accelerometers
distributed in three segments of the bridge’s main span on Singapore side. Details of the Second
Link Bridge monitoring system can be found in Brownjohn and Moyo (2000).

In this example, strain data recorded from strain gauges embedded into one of the concrete
segments are used to identify several events during the construction phase of the bridge. These
events include post-tensioning, concreting of segments, and shifting of form traveler. (The form
traveller moves out from the tower one segment at a time. The primary purpose of the form traveller
is to hold the wet concrete in place until it hardens into the proper shape. The form must then be
stripped from the hardened concrete. To achieve this, all surfaces of the form are able to move.) The
strain data hourly measured from April 29th, 1997 to June 1st, 1997 (800 time points) are used in
this study. Specifically, the strains were recorded from four sensor locations within segment 31. The
location of segment 31 and sensor positions are displayed in Fig. 9. The time of the construction
events of interest are listed in Table 1. The strain signals from the four sensors of bridge segment 31
are shown in Fig. 10. The observation of Fig. 10 reveals that the concrete casting yields a sudden

Fig. 8 Singapore-Malaysia Second Link Bridge (Courtesy of Moyo and Brownjohn 2002)

Fig. 9 Layout of the Singapore-Malaysia Second Link Bridge (Courtesy of Moyo and Brownjohn 2002)
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jump in strain for the strain signals from sensor locations 2 and 4. However, this abrupt strain
increase is not obvious from the strain signals from sensor locations 1 and 3. In addition, the event
of post-tensioning and shifting of form traveler are hard to visually identify. 

The Holder exponent is applied to all four signals and the results are reported in Fig. 11. Again,
the discontinuities identified by the automated classifier are marked by the circles. A complex-
valued Morlet wavelet with length 4 is used for the scalogram, and 64 scales are used. Other
parameters for the Holder exponent are kept same as the previous examples. Several findings are
made from Fig. 11. First, the event of concreting and post-tensioning of segments are successfully

Fig. 10 Strain gauge readings from the four sensors within the bridge segment 31

Table 1 Concreting, post-tensioning, and shifting of form traveller during construction

Activity
Activity time (hours from 12:00AM, April 29th, 1997)

Segment 27 Segment 26 Segment 25 Segment 24

Concreting 91-95 280-288 496-500 700-710
Post-tensioning 155-156 328-329 538-540 778-779

Shifting of form traveller 180-182 352-355 553-558 950-954
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identified from all four-sensor readings. However, the shifting of the form traveller does not seem to
be related to the discontinuities in the measured signals. The authors believe that the form traveller
shifting does not necessary cause significant abrupt changes in the measured strain data. Second, the
post-tensioning event is the most noticeable event from all four sensors. The concreting of segments
is more discernable from sensors 2 and 4 rather than sensors 1 and 3. This result agrees well with
the visual inspection of the raw strain data shown in Fig. 10. In addition, it is believed that there
were other unknown sharp changes in the signals near 390 and 720 hours. This observation
coincides with the findings reported in Moyo and Brownjohn (2000). It should be interesting to go
back to the construction log book and to see if there were any particular events near these two time
points.

4. Conculsions 

In this study, a Holder exponent analysis is successfully applied to various experimental signals to
detect discontinuities in the measured response data that can potentially be introduced by certain

Fig. 11 Holder exponent analysis of the bridge strain gauge data (-------: concrete casting events; : post-
tensioning events; ..........: shifting of form traveler)
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types of damage. Examples of signals being analyzed include the acceleration response of a
mechanical system subjected to a harmonic excitation with a rattling internal part, the acceleration
signals of a three-story building model with the preload of a bolt being controlled by a piezoelectric
actuator, and the strain records of the Singapore-Malaysia Second Link Bridge exposed to
concreting and post-tensioning of segments and shifting of form traveller during construction.
Furthermore, a discontinuity classifier is developed to automate the identification procedure of
discontinuities. The results of the Holder exponent analysis are also confirmed by other signal
processing techniques including the empirical mode decomposition and auto-regressive time series
analysis. The simplicity and data driven nature of the proposed approach makes it very attractive for
embedding the discontinuity algorithm into a digital signal processing chip or field programmable
gate array, which can be an integrated part of an intelligent sensor unit with micro-
electromechanical system (MEMS) sensors, a wireless telemetry, on-board computation power and a
battery.

However, further research regarding the use of the Holder exponent for damage detection needs to
be explored. For instance, the establishment of the threshold value of the discontinuity detection
algorithm is currently a case-by-case basis taking into account the specific properties of the signals
being monitored. In addition, there is no principled guideline for the selection of the mother
wavelet, the width of the wavelet, and the number of scales being used for the wavelet transform.
The automation of the parameter selection would be an area of future study. This automation step
could not be fully tackled in this study because of the limited amount of normal condition data
available for training the discontinuity detection algorithm.
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