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Abstract. In this paper, several modal identification techniques for output-only structural systems are
extensively investigated. The methods considered are the power spectral method, the frequency domain
decomposition method, the Ibrahim time domain method, the eigensystem realization algorithm, and the
stochastic subspace identification method. Generally, the power spectral method is most widely used in
practical area, however, the other methods may give better estimates particularly for the cases with closed
modes and/or with large measurement noise. Example analyses were carried out on typical structural
systems under three different loading cases, and the identification performances were examined throught
the comparisons between the estimates by various methods.
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1. Introduction

Experimental modal testing and analysis are gaining more attention for monitoring and structural
integrity assessment of civil infrastructures such as bridges and buildings. For example, forced
vibration tests are frequently carried out to identify the modal properties of newly built long span
bridges, and the results are used to verify the finite element models and to establish the baseline
properties for the integrity assessments in the future.

Vibration tests are generally classified as the forced vibration tests (FVTs) and the ambient
vibration tests (AVTs). AVTs may be performed under normal operating conditions with
uncontrollable and immeasurable ambient loads such as traffic and wind loadings, while FVTs just
can be carried out using the controllable and/or measurable loads applied by droppers and shakers.
FVTs usually require much more expensive equipments and controlled operating conditions.

† Research Assistant Professor
‡ Professor

DOI: http://dx.doi.org/10.12989/sem.2004.17.3_4.445



446 Jin-Hak Yi and Chung-Bang Yun

However, AVTs may be carried out under normal operating conditions and require simpler
equipments. From this point of view, AVTs may be considered as more preferable testing methods
for large infrastructures such as bridges, buildings, and dams. The non-stationarity in ambient loads
would be one obstacle to apply AVTs to modal testing; however, the undesirable non-stationary
effect can be minimized by collecting a sufficiently long data or deleting any parts of the response
data under the non-stationary ambient loads.

There are several modal identification techniques using output-only information. The most general
method in engineering field might be the power spectral method in which the modal parameters can
be identified by reading the peak frequencies and the amplitude of the power spectral density
functions (Newland 1984, Bendat and Piersol 1993). Recently, the frequency domain decomposition
method was developed using the singular value decomposition of the power spectral density
function matrix (Otte et al. 1990, Brinker et al. 2000). The power spectral method and the
frequency domain decomposition method are performed in the frequency domain. On the other
hands there are several time domain methods developed using an assumption that the ambient loads
are Gaussian white noise processes. Ibrahim time domain method was developed in late 1970s
(Ibrahim and Mikulcik 1977, Ibrahim and Pappa 1982), which was formulated based on the
condition with free vibration responses in continuous time domain. The eigensystem realization
algorithm (Juang and Pappa 1985, Juang 1994) and the stochastic subspace identification method
(Hermans and Van Der Auweraer 1990, Overschee and De Moor 1996) were developed based on
the system theory in the discrete time domain.

In this paper, the above-mentioned techniques are briefly summarized and their performances are
investigated through the extensive comparative studies for three example cases. The first example is
the ASCE benchmark model of a 2-bay and 4-story building provided by the ASCE benchmark task
group on structural health monitoring and damage detection (ASCE 2000, Johnson et al. 2000). The
second one is a 5-story steel frame tested on a shaking table in National Taiwan University (NTU)
(Loh et al. 2000). The last one is a scaled bridge model tested in Korea Institute of Machinery and
Materials (KIMM) (Lee et al. 2002). They are subjected to three different types of ambient loads:
i.e. random excitations of a long duration at the roof for the ASCE model, earthquake loads for the
NTU structure and vehicle loads for the bridge model. These three example cases cover two typical
structural systems subjected to ambient loads frequently encountered. The case with the ASCE
model is a numerical simulation study, and several levels of the noise are imposed on the measured
data. Then the relationship between the intensity of the measurement noise and the identification
results are extensively investigated. In the case of the NTU structure, the experiments are carried out
for two different earthquake ground motions with different frequency components, and the
consistency between the estimates is examined. In the case of the bridge model, 10 times of the
vehicles tests are carried out, and the consistency of the estimates for 10 different cases by each
identification method is intensively investigated.

2. Revisits to modal parameter identification
 
2.1 Power spectral method

In the power spectral (PS) method, the modal parameters can be estimated by reading the peak
frequencies and peak amplitudes of the power spectral density (PSD) functions of the structural
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response data. Therefore this method is also addressed as the peak picking method, or the direct
reading method. Natural frequencies can be determined as the peak frequencies and the mode
shapes can be obtained using the ratios of the PSD functions at the corresponding peak frequencies
as follows

(1)

where, φak is the k-th mode shape component at Point a, ωk is the k-th natural frequency, and 
and  are the PSD functions of the measurement data at Points a and b with respect to the
reference Point b. Nm is the number of the measured DOFs.

2.2 Frequency domain decomposition method

In the frequency domain decomposition (FDD) method (Otte et al. 1990, Brinker 2000), the
singular values of the PSD function matrix Syy(ω) are used to estimate the natural frequencies
instead of the PSD functions themselves as follows

(2)

where Σ is the diagonal matrix consisting of the singular values (σi’s) and U and V are unitary
matrices. Since Syy(ω) is symmetric, U becomes equal to V. In this FDD method, the natural
frequencies can be determined from the peak frequencies of the singular values, and the mode shape
from anyone of the column vectors of U(ω) at the corresponding peak frequencies. Generally the
first singular value σ1(ω) among σi’s(i = 1, ..., N) is used to estimate the modal parameters except in
some special cases such as with two or more identical excitations.

2.3 Ibrahim time domain method

The Ibrahim time domain (ITD) method (Ibrahim and Mikulcik 1977, Ibrahim and Pappa 1982)
was developed to deal with the free vibration responses. When the ambient loads are Gaussian
random processes of white noises or wide-band processes, the free vibration responses can be
extracted using the random decremental technique (Ibrahim 1977, Yang et al. 1984) or the cross-
correlation functions (James et al. 1996, Yam et al. 1997). In this study, the cross-correlation
functions are used to obtain the free vibration signatures. Then the ITD method can be applied
thereafter.

The free vibration responses can be expressed using the complex mode shapes  and
eigenvalues (λk) as follows

(3)

where Nm is the number of measured points, N is the number of the modes to be extracted, and ϕk

and λk are the complex mode shape and eigenvalue for the k-th mode, respectively. In this study, the
free vibration responses y(t) are obtained using the cross-correlation functions of the measured
ambient responses. From Eq. (3), the following response matrices Y and  consisting of the free
vibration response data can be constructed as 
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(4)

(5)

where NITD is the number of response data used for the ITD method. Then a system matrix
A ITD( ) may be defined from the relationship between Y and  as

(6)

(7)

Then, from Eqs. (4)-(6), the following equation can be obtained, which defines an eigenvalue
problem of a system matrix AITD as follows

(8)

where, . Since  is a real matrix, the eigenvalues and vectors can be
obtained as pairs of complex conjugates. Then the natural frequency ωk and modal damping ratio ξk

can be determined as

(9)

The complex mode shapes are transformed to minimize the imaginary part and then the real parts of
the transformed complex mode shape are taken as the structural mode shapes.

2.4 Eigensystem realization algorithm

The eigensystem realization algorithm (ERA) was also developed to deal with the free vibration
response (Juang and Pappa 1985, Juang 1994). It is based on the discrete state space equation of
structural system as

Y y t( )  …  y t NITD 1–( ) t∆+( )[ ] ϕ1  …  ϕN[ ]
e

λ1t
… e

λ1 t NITD 1–( ) t∆+( )

e
λNt

… e
λN t NITD 1–( ) t∆+( )

= =

Î

Î

Î
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                  (10)

where z, u, and y are the state vector, external load vector and observation vector, respectively; and
matrices A, B, and C are the system matrices; and Nu is the number of external loads. For a case of
free vibration with an impulsive excitation at the beginning: i.e., u(0) = 1 and u(k) = 0(k = 1, 2, ...),
the observation vector y(k) can be obtained as a Markov process as

(11)

In this study, the free vibration responses y(k) are obtained using the correlation functions of the
ambient responses as in the ITD method. Constructing the block Hankel matrix 
with the observed data y(k), the block Hankel matrix can be decomposed into the observability
matrix , the system matrix A and the controllability matrix  from the
last equality of the Eq. (12).

                         (12)
      

where 

where ji(i = 1, ..., n1) and ti(i = 1, ..., n2) are the random integers, and the ERA method may be equal
to the Ho-Kalman algorithm if ji and ti are set as sequential integers (Ho and Kalman 1966). In the
ERA method, the block Hankel matrix  at k = 0 are decomposed into unitary matrices U1

and V1 and singular value matrix Σ1 using the minimum order realization concept (Juang and Pappa
1985) as follows

         (13)

The size of the singular value matrix Σ1 can be determined by considering the condition that
min(diag(Σ1)) > max(diag(Σ2))  or by using the stabilization chart introduced in Section 2.6.
From the Eqs. (12) and (13), the term  can be expressed as (Juang and Pappa 1985), 
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(14)

and y(k + 1) can be also obtained by taking the first block of the  as 

                   (15)

where  and . From the Eqs. (11) and (15), the
system matrices A, B and C can be obtained using U1, Σ1, and V1; i.e. the results of the SVD of

 and  as follows 

(16)

The eigenvalues and vectors of the discrete system can be calculated from eigenvalue
decomposition of system matrix A that is similar to Eq. (8).

(17)

Finally, the eigenvalue, modal damping ratio, natural frequency and modal vector for the physical
system can be obtained as follows

(18)

2.5 Stochastic subspace identification method

The stochastic subspace identification (SSI) method utilizes the SVD of a block Hankel matrix
with cross correlation matrix of responses, and there are two kinds of the SSI methods; one is SSI/
BR (balanced realization) and the other is SSI/CVA (canonical variate analysis). The fundamental
base for this method is the stochastic state space equation, which considers the system dynamics
under the stochastic random excitation or random noises as 

(19)
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where w(k) and v(k) are statistically uncorrelated white noise vector sequences with zero means
representing the process and measurement noises, respectively. Then, the cross correlation function
R(k) can be calculated using the Eq. (19)

(20)

where . Constructing the block Hankel matrix with the cross correlation
matrix, this block Hankel matrix can be decomposed into an observability matrix and an extended
controllability matrix as in the last equality of Eq. (21)

        

where (21)
 

After pre- and post-multiplying of invertible weighting matrices W1 and W2, respectively, to the
block Hankel matrix  and by decomposing it into  and , the observability
matrix  can be obtained as follows

(22)
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Two kinds of the SSI method can be derived according to the way of choosing the weighting
matrices. The first is the SSI/BR (balanced realization) by using identity matrices as the weighting
matrices. The second is the SSI/CVA (canonical variate analysis) by using the matrices in Eq. (24)
as the weighting matrices, which were obtained by maximizing the correlation between the
measured time history data at different locations (Hermans et al. 1999).

where (24)

2.6 Construction of stabilization chart

In the cases of time domain identification techniques such as ERA and SSI, an appropriate system
order should be determined. In the case of a structural model with n-DOFs, the size of system
matrix A is certainly 2n because the state vector consists of the displacements and velocities.
However, a structure generally has infinite number of DOFs. So the meaningful system order should
be determined to carry out engineering problems. If a structure can be reasonably represented as a
system with n-DOFs, the following relationship can be obtained for the singular values as 

 >> (25)

Therefore, it would be possible to find out the suitable system order by looking into the trend of
singular values. But in reality, it may be very difficult to find out a large drop in singular values due
to the effect of the measurement noise. In such cases, the proper system order may be determined
by looking into the trend of the estimated modal parameters in a stabilization chart (as shown in
Section 3.1.3), as the system order increases sequentially. The following criteria can be used to
classify a mode as stable mode, unstable mode, and noise mode. If the estimated modal damping
ratio is larger than a prescribed value as in Eq. (26), this mode is classified as a noise mode,

(26)

where  is j-th identified modal damping ratio at the system order p, and ξnoise_cr is the prescribed
critical value for damping ratio. Among the non-noise modes, those satisfying Eqs. (27)-(29) can be
classified as stable modes. Otherwise, they may be considered as unstable modes.
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where,  and  are j-th natural frequency and mode shape at the system order p, respectively,
and, , , and  are the tolerance values for the natural frequency, damping
ratio, and mode shape. The tolerance values may be determined by considering the structural type
and the confidence level of the measurement data.

3. Example analyses

3.1 Example 1: ASCE benchmark structure subjected to roof excitations

3.1.1 Description of example structure
In this study, a benchmark structure provided by the ASCE task group on structural health

monitoring and damage detection (ASCE 2000, Johnson et al. 2000) was used to identify the modal
parameters without input information. It is a 2-bay and 4-story building structure, which is a
numerical model for a test frame at Univ. of British Columbia (Ventura et al. 1997) as shown in
Fig. 1. The structure was subjected to roof excitations in x- and y-directions. 10 sets of acceleration
data of 40 sec long were generated using the Acceleration Response Generation Program provided
by the ASCE task group. The acceleration data were obtained with a sampling rate of 1000 Hz.
Various levels of the measurement noise were considered to investigate the effect of the
measurement noise, i.e. 0%, 20%, 40% and 60% in the root mean square (RMS) levels. Fig. 2
shows typical examples of the response time history at roof in x- and y-directions.

f p( )
j ϕj

p( )

fstable_cr∆ ξstable_cr∆ φstable_cr∆

Fig. 1 ASCE benchmark structure Fig. 2 Acceleration time histories at the roof (cm/sec2)
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3.1.2 Frequency domain methods
For frequency domain methods, FFT analyses were carried out using 4096 data points with a

Hanning window and 50% overlapping. In the case of the PS method, two measurement data (at
15th and 16th sensors in x- and y-directions, respectively) on the roof were used as the referencing
measurement points in two directions. Fig. 3 shows the PSD components at two sensors and the
first singular value (σ1(ω)) of the PSD function matrix. It can be observed that each individual PSD
function gives partial information on the natural frequencies, i.e. the component of 11 Hz is missing
in , while the one of 9 Hz is missing in . However all components can be obtained from
the first singular value (σ1(ω)), since all of the measured data were processed in the FDD method. It
can be observed that the magnitudes of the PSD functions and first singular value are not the same,
because most of the power in the measurement acceleration data was concentrated on the first
singular value.

3.1.3 Time domain methods
For the ITD method, two measurement data at the 15th and 16th sensors on the roof were utilized

as reference points in two directions as in the PS method. In the cases of the ITD and ERA
methods, the cross-correlation functions were calculated to obtain the free vibration responses
(James et al. 1996, Yam et al. 1997). Table 1 shows one of the most essential procedures in the ITD
method to distinguish the real structural modes among many estimated modes. In the case of the
ITD method, different modal parameters might be identified from the cases using different reference
sensors, so many trivial modes may appear as shown in Table 1. In such situation, the modal
confidence factor (MCF, Ibrahim 1978) can play an important role to distinguish the real structural
modes. In this example, the modes in x-direction were identified using the 15th sensor as a
reference sensor, while the modes in y-direction were estimated using the 16th sensor. If there are
similar modes, the MCF value can be used to select the real structural modes. For example, in the
case with the 15th sensor as the reference, both of the 12th and 13th identified natural frequencies
are very similar, i.e. 60.12 Hz and 60.69 Hz, but the MCF value of the 12th mode is larger than the
value of the 13th mode. Therefore, the 12th identified modal parameter can be selected as the 4th
bending mode in x-direction (Bx4) even though there is just a very small difference between the
MCF values of the 12th and 13th identified modes.

Sy15y15
Sy16y16

Fig. 3 PSD functions of the responses and its singular value
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Fig. 4 shows the stabilization charts to identify the natural frequencies from the measured
acceleration data with 60% measurement noises by the ERA, SSI/BR and SSI/CVA methods. There
are 8 detectible modes for the ASCE benchmark structure, and all of those appear to be identified
reasonably from the figures. However, in the case of the SSI/CVA, it is found that the modes can be
more clearly identified than the other cases, since the SSI/CVA considers the canonical variety
analysis to maximize the correlation between the measured data at different locations.

Table 1 Determination of real modes by ITD method: with 20% RMS noise

Estimated natural frequencies
(Ref. Signal: 15)

Estimated natural frequencies
(Ref. Signal: 16)

No MCF Freq(Hz) Index No MCF Freq(Hz) Index

1 0.9991 11.7567 Bx1 1 0.9985 9.4494 By1
2 0.9896 14.6538 2 0.9975 12.6553
3 0.9883 28.0645 3 0.9969 25.5075 By2
4 0.9969 31.9643 Bx2 4 0.9077 32.4606
5 0.9544 32.8436 5 0.9719 32.6640
6 0.9534 38.8631 6 0.9961 38.6841 By3
7 0.9982 48.1083 7 0.9514 39.1053
8 0.9989 48.6257 Bx3 8 0.8953 46.6978
9 0.9631 51.3504 9 0.9968 48.0885 By4
10 0.8842 51.4968 10 0.8112 48.3362
11 0.8681 57.1474 11 0.9987 48.6660
12 0.9474 60.1154 Bx4 12 0.8575 53.3518
13 0.9438 60.6881 13 0.9856 60.1079
14 0.9299 61.5883 14 0.8024 61.5037
15 0.8306 66.8176 15 0.6932 62.4923

Fig. 4 Comparison of stabilization charts (⊕: stable mode, +: unstable mode, ×: noise mode,  −: 1st singular
value σ1(ω))
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3.1.4 Comparisons of estimated results
Tables 2 and 3 show the identified modal parameters including the natural frequencies and modal

damping ratios for the case of 20% measurement noise along with the exact values. Figs. 5 and 6
present comparisons of the errors estimated by several methods under various measurement noise
levels. Figs. 7 and 8 show the estimated results of the mode shapes. Generally, the performances of
the time domain methods are better than those of the frequency domain methods.

Between two frequency domain methods, the FDD method gives more accurate results than the
PS method. In the case with 60% measurement noise, the maximum estimation error for the natural
frequencies is about 0.4% in the PS method, while it is about 0.2% in the FDD method. In the case
of the mode shapes shown in Figs. 7 and 8, the estimated mode shapes are very close to the exact
mode shapes and their modal assurance criteria (MAC, Ewin 1984) values are above 0.99 for the
isolated modes. But for the closely space modes such as the 6th and 7th modes (By4 and Bx3), the
estimated mode shapes are quite corrupted and the MAC values reduced to a range of 0.4-0.9, since
their modes are affected by each other. However the estimated results by the FDD method are found
to be better than those by PS method. The damping ratios were not identified by the frequency
domain methods, since the results by the frequency domain method are generally not reliable.

Among the time domain methods, the SSI/CVA method gives the best estimates. Estimation errors
for the natural frequencies by the ITD are less than 0.4%, while those by the ERA, SSI/BR and SSI/
CVA are less than 0.1%. The estimated modal damping ratio for the 1st mode by the ITD method
has almost 200% error for the case with nose of 60%, however those by the ERA and SSI/BR are

Table 2 Estimated natural frequencies (Hz): with 20% RMS noise

Frequency Domain Time Domain

Mode Exact PS FDD ITD ERA SSI/BR SSI/CVA

By1 9.411 9.413 9.413 9.426 9.407 9.406 9.414
Bx1 11.791 11.773 11.773 11.776 11.792 11.792 11.800
By2 25.545 25.499 25.513 25.546 25.537 25.537 25.543
Bx2 32.006 32.023 32.023 32.017 31.997 31.997 32.007
By3 38.663 38.696 38.683 38.686 38.671 38.675 38.669
By4 48.007 48.164 48.096 47.962 47.947 47.945 47.964
Bx3 48.443 48.462 48.448 48.557 48.481 48.481 48.485
Bx4 60.151 60.289 60.181 60.154 60.163 60.162 60.133

Table 3 Estimated damping ratio (%): with 20% RMS noise

Mode Exact ITD ERA SSI/BR SSI/CVA

By1 1.000 1.976 1.220 1.065 1.029
Bx1 1.000 1.048 0.871 1.096 0.969
By2 1.000 1.142 1.089 0.968 0.981
Bx2 1.000 1.038 1.046 1.035 1.005
By3 1.000 1.143 1.089 0.968 0.981
By4 1.000 1.038 1.048 1.030 1.003
Bx3 1.000 1.165 1.101 0.961 0.961
Bx4 1.000 1.017 1.020 1.009 1.032
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Fig. 5 Estimation errors of the natural frequencies for various methods (Noise levels with :: 0% ð: 20%,
1 : 40%, ×: 60%)

Fig. 6 Estimation errors of damping ratios for various methods (Noise levels with :: 0% ð: 20%, 1 : 40%,
×: 60%)
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less than 40%, and the errors by the SSI/CVA is under than 20%. In other word, the best results
have been obtained by the SSI/CVA. For the case of the mode shapes, MAC values estimated by all
the time domain methods are found to be over 0.96, even though some of them are closely spaced
(By4 and Bx3).

Fig. 7 Estimated mode shapes by SSI/CVA: case with 20% RMS noise

Fig. 8 MAC values by various methods (Noise levels with :: 0% ð: 20%, 1 : 40%, ×: 60%)
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3.2 Example 2: NTU structure subjected to earthquake loadings 

Modal identification was carried out on a 5 story steel frame structure tested on a shaking table in
National Taiwan University (NTU) shown in Fig. 9 (Loh et al. 2000). Similar procedures to those in
the ASCE benchmark structure were used. El Centro earthquake records with reduced peak
accelerations (20% in x-dir and 30% in y-dir) and Kobe earthquake records with reduced peak
accelerations (8% in x- and y-directions) shown in Fig. 10 were used, and the consistency of the
estimates from the responses for two different inputs were examined. The present identifications

Fig. 9 NTU benchmark structure

Fig. 10 Input ground accelerations
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were carried out using only two sets of the response measument data for different input excitations
without using the input information at all.

The natural frequencies and modal damping ratios estimated for two cases with different
earthquake excitations are summarized in Table 4. In Table 4, the values in the parentheses are
modal damping ratios (%), and EC and KO stand for El Centro EQ and Kobe EQ, respectively. As
far as the natural frequencies are concerned, it can be observed that the estimates are very
consistent: i.e. the differences due to the different excitations are less than 1.5%, and those owing to
the different methods are less than 4.0%. And it can be observed that the estimates are very close to
the reference values identified by Loh et al. (2000). On the other hand, the estimates for modal
damping ratios show relatively large discrepancy. For example, the modal damping ratio for the first
x-dir bending mode is estimated as 1.3-2.8% for the case with El Centro EQ and 4.2-6.1% for the

Table 4(a) Estimated natural frequencies (Hz) and modal damping ratios (%): Bending modes in x-dir

Modes EQ PS FDD ITD ERA SSI/BR SSI/CVALoh et al. 
(2000)

Bx1
EL 1.367 1.367 1.392(2.80) 1.390(1.72) 1.390(1.71) 1.400(1.39)
KO 1.367 1.367 1.338(4.19) 1.303(4.48) 1.303(4.47) 1.411(6.14) 1.40

Bx2
EL 4.492 4.492 4.510(0.77) 4.495(1.54) 4.495(1.54) 4.499(1.76)
KO 4.492 4.492 4.539(1.07) 4.547(0.63) 4.547(0.63) 4.531(0.63) 4.52

Bx3
EL 8.301 8.301 8.269(0.74) 8.242(0.75) 8.249(0.77) 8.233(0.76)
KO 8.203 8.203 8.208(0.83) 8.200(1.56) 8.199(1.56) 8.196(1.53)

Bx4
EL 12.500 12.598 12.450(0.91) 12.424(0.83) 12.423(0.84) 12.395(0.69)
KO 12.402 12.695 12.411(0.79) 12.407(0.50) 12.407(0.50) 12.405(0.46)

Bx5
EL 16.016 16.016 16.021(0.17) 16.018(0.22) 16.018(0.22) 16.009(0.22)
KO 16.016 16.016 16.035(0.23) 16.027(0.30) 16.027(0.30) 16.011(0.36)

Difference Indices (%) 0.198 0.196 0.574(12.79) 0.832(32.34) 0.840(32.25) 0.204(37.62)

Table 4(b) Estimated natural frequencies (Hz) and modal damping ratios (%): Bending modes in y-dir

Modes EQ PS FDD ITD ERA SSI/BR SSI/CVALoh et al. 
(2000)

By1
EL 2.051 2.051 1.997(1.65) 2.062(3.46) 2.062(3.48) 2.074(3.33)
KO 2.246 2.246 2.160(4.12) 2.174(4.32) 2.173(4.32) 2.096(3.14) 2.14

By2
EL 6.836 6.836 6.854(0.12) 6.854(0.24) 6.854(0.24) 6.852(0.22)
KO 6.836 6.836 6.840(0.92) 6.866(0.89) 6.866(0.88) 6.866(1.03) 6.99

By3
EL 12.695 12.695 12.674(0.17) 12.674(0.12) 12.674(0.12) 12.672(0.12)
KO 12.695 12.109 12.678(0.18) 12.668(0.09) 12.668(0.09) 12.667(0.11)

By4
EL 18.164 18.164 18.217(0.32) 18.247(0.35) 18.244(0.36) 18.231(0.15)
KO 18.164 18.164 18.153(1.31) 18.185(0.45) 18.191(0.44) 18.216(0.60)

By5
EL 25.098 25.000 25.074(1.14) 25.136(0.78) 25.157(0.78) 25.167(0.69)
KO 25.098 25.098 25.171(1.08) 25.321(1.08) 25.322(1.08) 25.246(1.10)

Difference Indices (%) 0.908 1.419 0.882(37.21) 0.658(22.30) 0.641(21.67) 0.169(31.00)
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case with Kobe EQ. The large discrepancies of the estimated damping ratios in the lower frequency
range may be caused by the different frequency contents of two excitations in this range.

The MAC values between two mode shapes estimated from two different excitations using El
Centro EQ and Kobe EQ are larger than 0.95 for most of the cases, so it may be considered that the
mode shapes have been reasonably estimated (see Table 5). However, the MAC values of the 4th
bending mode in x-direction (Bx4) are less than those of the other modes. It may be caused by the
fact that the Bx4 mode is very closely spaced with the By3 mode: i.e. those for the Bx4 and By3
modes are about 12.4-12.7 Hz and about 12.6-12.7 Hz, respectively.

Table 4(c) Estimated natural frequencies (Hz) and modal damping ratios (%): Torsional modes

Modes EQ PS FDD ITD ERA SSI/BR SSI/CVA

T1
EL 3.516 3.516 3.529(0.16) 3.522 (0.21) 3.522 (0.20) 3.524 (0.39)
KO 3.516 3.516 3.531(0.42) 3.530 (0.34) 3.530 (0.29) 3.535 (0.38)

T2
EL 11.426 11.426 11.436(0.41) 11.419(0.27) 11.419(0.27) 11.410(0.36)
KO 11.426 11.426 11.426(0.23) 11.435(0.28) 11.436(0.28) 11.428(0.49)

T3
EL 21.191 21.191 21.150(0.20) 21.144(0.58) 21.174(0.58) 21.160(0.77)
KO 21.191 21.191 21.234(0.46) 21.223(0.34) 21.215(0.27) 21.251(0.34)

T4
EL 32.031 32.031 31.985(0.80) 32.115(0.42) 32.117(0.42) 32.015(0.45)
KO 32.129 32.129 32.179(0.26) 32.162(0.28) 32.162(0.28) 32.142(0.42)

T5
EL 42.090 40.430 40.645(3.72) 40.435(0.41) 40.434(0.41) 40.631(0.85)
KO 40.723 40.625 40.645(1.24) 40.587(0.37) 40.594(0.35) 40.606(0.55)

Difference Indices (%) 0.361 0.079 0.115(42.66) 0.126(15.33) 0.110(16.91) 0.136(16.04)

Note1) Difference Index (a, b)  �(a − b)/(a + b)�*  100(%)=ÿ

Table 5 Comparison of MAC between estimated mode shapes using different inputs

Modes PS FDD ITD ERA SSI/BR SSI/CVA

Bx1 0.9671 0.9880 0.8830 0.9284 0.9278 0.9431
By1 0.9634 0.9559 0.9885 0.9883 0.9885 0.9923
T1 0.9715 0.9308 0.9942 0.9184 0.9267 0.9472
Bx2 0.9953 0.9916 0.9969 0.9949 0.9948 0.9929
By2 0.9989 0.9987 0.9991 0.9999 0.9999 0.9980
Bx3 0.9956 0.9905 0.9952 0.9883 0.9879 0.9908
T2 0.9596 0.9148 0.9772 0.9783 0.9780 0.9866
Bx4 0.6160 0.9175 0.8004 0.7316 0.7318 0.7536
By3 0.9996 0.9434 0.9881 0.9996 0.9996 0.9993
Bx5 0.9995 0.9990 0.9988 0.9990 0.9990 0.9952
By4 0.9517 0.8807 0.9600 0.9785 0.9755 0.9757
T3 0.9969 0.9835 0.9982 0.9961 0.9992 0.9974
By5 0.8958 0.8221 0.9101 0.9727 0.9759 0.9903
T4 0.9972 0.9931 0.9934 0.9987 0.9983 0.9986
T5 0.8465 0.9959 0.9429 0.9979 0.9978 0.9910

Mean 0.9436 0.9537 0.9617 0.9647 0.9654 0.9701
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3.3 Example 3: bridge model under traffic loadings

Fig. 12 shows a bridge model with a composite deck and vehicle models on it. The deck consists
of two steel girders and a concrete slab. Accelerometers were installed along two girders as shown
in Fig. 13. Ten (10) sets of round-trip tests were carried out using vehicle models, and the vertical
acceleration responses were measured with a sampling rate of 1000 Hz for 30 sec (Lee et al. 2002).

Fig. 11 Estimated mode shapes (SSI/CVA; EL Centro EQ)

Fig. 12 Bridge model with traffic loading Fig. 13 Accelerometers on girders (unit:mm) 
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Fig. 14(a) shows the typical acceleration time history of Sensor 4, and Figs. 14(b) and 14(c) show
the PSD functions at Sensors 2 and 4, and the first singular value (σ1(ω)) of the PSD matrix. 

By observing Fig. 14(b), the second bending mode (appeared near 40 Hz) is expected to be
extracted well from the acceleration data at Sensor 2 using the PS method, while poorly from
the data at Sensor 4, since the mode has a nodal point at Sensor 4 and the maximum amplitude
at Sensor 2. However, all the modes can be identified from the FDD method since it utilizes the
responses at all the sensors. From the PSD amplitude, it can be also expected that the 2nd
bending mode around 40 Hz would be estimated most reliably, because the amplitude of the
peak of the PSD is higher than the other peaks, which also means the 2nd bending mode was
sufficiently excited by traffic loading. It can be verified by looking into the coefficient of
variation (COV) values of the estimated results for 10 sets of test data particularly by the time
domain methods.

Tables 6 and 7 summarize the estimated natural frequencies (Hz) and modal damping ratios (%),
respectively, and the values in the parentheses in the tables are the COVs of the estimated results
(%). The COVs of 10 natural frequencies estimated using each of the identification methods are
found to be less than 3.4%, which means each method gives very consistent natural frequencies.
The mean natural frequencies by each method are also very consistent. Among the results, those by
the SSI/CVA are most consistent. However, the COVs of the estimated damping ratios are in the
range of 10-52%. The discrepancies among the estimated damping from different methods are fairly
big particularly for the first two modes.

Table 6 Means of estimated natural frequencies (Hz)

Modes PS FDD ITD ERA SSI/BR SSI/CVA Lee et al.
(2002)

B1 10.42(2.42) 10.42(2.42) 10.51(3.40) 10.14(0.71) 10.14(0.68) 10.46(0.39) 10.42
T1 21.57(0.92) 21.32(1.18) 20.87(1.36) 21.31(0.69) 21.30(0.67) 21.54(0.47)
B2 40.53(0.76) 40.53(0.76) 40.61(0.12) 40.63(0.15) 40.62(0.15) 40.66(0.08) 40.47
T2 51.43(0.78) 51.51(0.52) 51.45(0.61) 51.52(0.57) 51.52(0.55) 51.67(0.30)
B3 80.65(1.24) 81.14(0.89) 81.10(0.68) 81.41(0.61) 81.38(0.62) 81.04(0.41) 81.37
T3 91.23(0.53) 91.15(0.44) 91.08(0.17) 91.15(0.14) 91.15(0.13) 91.18(0.15)

Mean of COV 1.11 1.03 1.06 0.48 0.47 0.30

Fig. 14 Time history, PSD functions, and 1st singular value
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4. Conclusions
 
The following conclusions have been obtained on the modal parameter identification methods

without input information through the numerical and experimental investigations on three example
structures:

(1) The frequency domain methods (PS and FDD) are generally more vulnerable to the
measurement noise than the time domain methods (ITD, ERA, SSI/BR and SSI/CVA), and the
estimates by the frequency domain methods are less accurate than those by time domain
methods particularly when the two adjacent modes are closely spaced. 

(2) The FDD method is more attractive than the conventional PS method, since the FDD method
requires no reference sensors and gives more accurate estimates.

(3) The ITD can give reliable estimates even for the close modes, if the reference points for the
cross-correlation functions are appropriately specified. The SSI/CVA method gives most
accurate estimates under the large measurement noise. The ERA and SSI/BR methods may
yield the estimates with a similar level of accuracy for the mode shapes and natural
frequencies, but not for the modal damping ratios.

Fig. 15 Estimated mode shapes (SSI/CVA)

Table 7 Means of estimated modal damping ratios (%)

Modes ITD ERA SSI/BR SSI/CVA

B1 16.15(51.99) 2.56(45.78) 2.59(45.80) 14.17(31.96)
T1 28.59(24.70) 4.23(17.54) 4.24(17.93) 7.03(24.86)
B2 3.64(17.76) 4.01(15.88) 3.99(15.70) 3.95(15.05)
T2 3.97(19.55) 3.34(20.44) 3.34(20.93) 3.61(12.60)
B3 2.22(20.89) 2.11(15.40) 2.13(16.92) 2.39(9.77)
T3 1.83(15.57) 1.70(12.57) 1.70(12.63) 1.85(14.87)

Mean of COV 25.08 21.27 21.65 18.19
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(4) In general, the estimates using the various methods in this study are very good and consistent
for the natural frequencies and the mode shapes, but those for the damping ratios are neither
accurate nor consistent particularly under large measurement noise, such as 40 or 60% in the
RMS level.

(5) The techniques dealt in this study were originally developed under the assumption that the
input excitation is a Gaussian white-noise random processes or the structure is under the free
decaying. However, it has been found from the second and the third examples that the present
methods can be reasonably applied to the cases with more general wide-band random
excitation.

(6) The ERA, SSI/BR, and SSI/CVA methods require larger computation time than the others,
however the results are more reliable and accurate. The SSI/CVA is most time consuming,
since it requires the SVD calculations three times. The FDD or ITD method may be used in
the preliminary tests due to the computational efficiency and the reasonable accuracy, and then
the ERA, SSI/BR, or SSI/CVA method may be used to enhance the estimates in the finalizing
procedure.
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