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Abstract. In gradient-dependent plasticity theory, the yield strength depends on the Laplacian of an
equivalent plastic strain measure (hardening parameter), and the consistency condition results in a
differential equation with respect to the plastic multiplier. The plastic multiplier is then discretized in
addition to the usual discretization of the displacements, and the consistency condition is solved
simultaneously with the equilibrium equations. The disadvantage is that the plastic multiplier requires a
Hermitian interpolation that has four degrees of freedom at each node. Instead of using a Hermitian
interpolation, in this article, a 3-node incompatible (trigonometric) interpolation is proposed for the plastic
multiplier. This incompatible interpolation uses only the function values of each node, but it is continuous
across element boundaries and its second-order derivatives exist within the elements. It greatly reduces the
degrees of freedom for a problem, and is shown through a numerical example on localization to yield
good results.
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1. Introduction

Classical continuum plasticity, which does not incorporate an internal length, suffers from
pathological mesh dependence when strain-softening models are employed in humerical analyses. It
leaves the size of the localization zone unspecified. In order to introduce a localization limiter
(Belytschko and Lasry 1989, dgorst et al. 1993), Cosserat plasticity theory (Muhlhaus 1989, de
Borst 1991, de Borst and Sluys 1991, de Borst 1993) and gradient-dependent plasticity theory (de
Borst and Muhlhaus 1992, Pamin 1994, Meftah and Reynouard 1998) have been suggested as
methods to incorporate an internal length.

In gradient-dependent plasticity theory, the yield strength depends not only on an equivalent
plastic strain measure (hardening parameter), but also on the Laplacian thereof. The consistency
condition results in a differential equation with respect to the plastic multiplier, instead of an
algebraic equation as in conventional plasticity. Moreover, in gradient-dependent plasticity, the
plastic multiplier cannot be decided at a local level (Gauss integration point) without referring to
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other material points. In order to solve the consistency conditioBodt and co-workers (de Borst

and Muhlhaus 1992, Pamin 1994, de Beisél. 1995) introduce the weak forms of the equilibrium
equations and yield condition, and discretize the plastic multiplier as well as the displacements. The
consistency condition is then solved simultaneously with the equilibrium equations.

The yield criterion depends on the Laplacian of the plastic strain measure that is related to (or
equal to, for von Mises criterion) the plastic multiplier. Thus, in conventional formulation, a bending
plate element is used to discretize the plastic multiplier to guarantee the existence of its second-
order derivatives. At each node, four degrees of freedgm\,( A,, A,) are required, where for
exampleA, = dA/dx . Hence, it significantly increases the total degrees of freedom of the problem
concerned. The interpolation (Hermitian interpolation) not only has a continuous function but also
continuous first-order derivatives, which are superfluous. For both classical plasticity and gradient-
dependent plasticity, the plastic multiplier is decided by different rules in elastic (equal to zero) and
plastic zones, i.e., it is not a smooth function. Hence, it is not necessary to enforce the continuity of
its derivatives.

Several improvements were proposed for gradient-dependent plasticity. Vardetilaki$1992)
approximated the plastic multiplier at a local level, alternatively, Zeetca. (2001) proposed a
unified theory that allows the formulation of the rate boundary value problem in terms of
displacements only. Li and Cescotto (1996) presented a finite element scheme in which the
Laplacian of the effective plastic strain at a quadrature point is evaluated by using the values of the
effective plastic strains at neighboring quadrature point.

The aim of this paper is to propose an incompatible mode (shape functions) for the plastic
multiplier, and to test the accuracy and efficiency of the formulation. The results of the one-
dimension problems (de Borst and Mihlhaus 1992) shows that plastic strain has a bell-like shape
across an element. Hence, in this paper, trigonometric “bell-shaped” functions are adopted as
interpolation functions instead of Hermitian polynomials. Importantly, the proposed interpolation
only involves the function values of each nodeand not the derivatives. It is continuous across
element boundaries and both its first and second-order derivatives are continuous within the element.

The paper begins with a review of the formulation of gradient-dependent plasticity, together with
its finite element discretization, highlighting the main features for consideration. The main
contribution, namely the finite element implementation of the “bell-like” incompatible 3-node
interpolation, follows. The performance of gradient-dependent plasticity with these elements is
discussed through a classic localization problem.

2. Formulation of gradient-dependent theory

This section briefly states the standard formulation of gradient-dependent plasticity that was found
in de Borst and Muhlhaus (1992), de Bashal (1995), and Pamin (1994).

Gradient-dependent plasticity theory is identified by the dependency of yield function on the
Laplacian of the hardening parameter, i.e.,

f(o,k, 0°k) = O 1)

where g is stress tensok, the hardening parameter, aid = &/9x° + d°/dy° . This makes the
consistency conditionf = 0 , a differential equation with respedkto
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n'do—h A +g D*(dk) = 0 )

where n = /da , h = ((k/A) Wf/dk , g = d/3(0°k) , andA is the plastic multiplier.
Generally, the hardening parameterand the plastic multiplierd, are related byglk=n - dA, with
n being a constant depending on the yield function. For a von Mises yield function, it has been
shown thatdk = dA (Owen and Hinton 1980).

Eqg. (2) results in a differential equation of plastic multipligr, which cannot be solved directly.
de Borstet al. (1995) solved the equilibrium equations and the yield condition (or equivalently the
consistency condition) simultaneously by the finite element method. For this purpose, it is necessary
to employ a weak satisfaction of the yield condition and to discretize the plastic multiplier, in
addition to the discretization of the displacement field. The weak satisfaction of the equilibrium
equations is:

[ou’(L'g;,1)dV = 0 ©)

where the subscrigt+ 1 refers to the current iteration, arluifq-+l = 0 represents equilibrium
equations.
Moreover, unlike conventional plasticity, the yield criterion is satisfied in a distributed sense, that is:

[OM(G a1, Ay, OPAj,0)AV = 0 (4)
Vi

whereV, is the volume that has plastic strain developed in the current load step.

In the field Eq. (3) and vyield condition (4), there appear the first-order derivatives of the
displacements and the second-order derivatives of the plastic multiplier. Therefore, for the
displacement fields, the standard interpolation functions, which are assembl®&y are used; for
A, a set of incompatible interpolation functions containell improposed. That is

u=Na A=h'A (5)

wherea is a nodal displacement vector, aha vector of nodal values of the plastic multiplier. The
discretization of strains has the form

£=Ba (6)

whereB = LN, and the discretization for the gradient and the Laplacian of the plastic multiplier are:
OA=q'A  O°A=p'A @)

WhereqT = Oh', pT = DZ(hT) .

Substitution of (5), (6) and (7) into Egs. (3) and (4) results in the following set of algebraic
equations for admissible variations daf and A:

Kaa Ka||da — fo+ fa (8)
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where the sub-matrix (de Borst al. 1995) are defined as:

Kaa = [B'DBAV
\%
_ T T _ T
Ka = —[B'Denh’dV Ky, = —fhn'D.BdV
\ \%

Ky = Jl(h+n'Den)hh’ —ghp'ldV (9)

\%

and the force vectors are:

f, = J’NTtJ-+1dS f, = —J’BTUjdV
S \Y
fo = [f(g;, A, O°A)hadv (10)
\Y

wheret is the tractions on the stress boundary.
Gradient plasticity lacks a stress update algorithm, the residual forces are introduced into the
global iterations, so it requires many more iterations than classical plasticity.

3. Imcompatible 3-node elements
3.1 General properties

For gradient dependent plasticity theory, both the displacement field and the plastic multiplier
need to be discretized. For the displacements, the interpolations are the same as in the normal
elements. For the plastic multiplier, the yield function requires the existenté dof . In order to
guarantee the existence afA , de Bastal. (1995) and Pamin (1994) use théd@ntinuous
interpolation. Thus at each node, four degrees of freedom, (A, A,) for the plastic multiplier
are required in addition to the normal displacement interpolation.

Considering thatA is decided by different rules in the elastic zone (equal to zero) and in the
plastic zone, it is not a smooth function and does not have continuous derivatives. Thus, only the
existence of its second-order derivatives but not its continuity is needed to enforce within each
element. In this article, the standard 3-node interpolations (Zienkiewicz and Taylor 2000) are used
for displacements and geometrical coordinates, new shape functions are proposed for the
interpolation of the plastic multiplier. The interpolations are defined in the local area coordinate
system.

The area coordinate is defined with the aid of Fig. 1. For any @infithin a triangular element
123, its three area coordinates are defined as:

_ AP23 _AP31 | _AP12_

~ Al123 27 A123 57 A123 7 1-Li-L (11)

whereAP23, for example, is the area of the trianggs.

Ly
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L.
3(x3, y3) L
(x5 y) 3(0,0) 10
(a) Global coordinate (b) Local coordinate

Fig. 1 Triangular element

Thus, for any point, after knowing its global coordinatgsyj, its area coordinates can be
obtained. The transformation between the global coordinates and the area coordinates is linear,

which can be written as
3

x=3xL y= 3L, (12)

i=1 i=1

The interpolations for the normal displacements and the plastic multiplier are expressed as:

3 3
u= uL, V= z ViL;
i=1 i=1
3 .
2.7
in which
- 1 . 2[TT, 0_ - 2[T0 [
N: = 1-sin E12LZD sin [QL3D
- 1 . 2[TT, 0_ - 2[T0 [
N2 = 1-sin EQL3D sin @le
N; = 1—sin2Engg—sin2Engg (14)

By applyingL; = 1-L;-L, , they have the forms:

Ni(Ly, L) = 1—sin2EgL25—cosz[g(Ll+ LZ)J

Na(Ly, Ly) = 1—sin2%L1E—cosz[g(Ll+ LZ)J

Ns(Ly, L,) = 1— sinz%ng— sinzgl_zg (15)
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It is easy to verify thatN:i(L,,L,) =0 on boundary 23 for whi¢h =0, similarly

N2(L4, L) = 0 on boundary 31 anllz(L;, L,) = O on boundary 12. Hence, on each bouhdary

is only related to the values of the two nodes of the concerned boundary. This property guarantees
that A is continuous across the element boundaries. Their first and second-order derivatives, which
are required in the following context, are:

oLy dLy dLy| _
o, JdL, L,
iy sinm(L, + L) —sinmL, + sinf(L, + L) —sinri,; (16)
2 —sinmlL, + sinm(L, + L,) sinf(L, + L) —sinmi,
and
IN. N, PNs
o> a o)
FNi N, N
oL,0L, oJL,0L, JdL,oL,
N1 IN, N
oL, dL aLy |
7 cosm(L, +L,) —cowi; + cosri(L, + L,)
B cosm(L, + L,) cos(L, +L,) (17)
—cosri, + cosri(L, + L,) cogi(lL, +L,)

3.2 Laplacian

The vyield criterion requires the Laplacian &fin the global coordinate system, which can be

obtained by finding the global derivatives in time-honored fashion using the Jacobian and local
derivatives:

A _ N, Ny
oL, ~ oxdL, dyL,

A _ N, Ny

oL, ~ axal, dydl, (18)

whence,
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The real objective is to find the Laplacian from the second-order global derivatives. By
differentiating the first equation of (18) with respectip the second equation of (18) with respect
to L, and either with the cross derivative, three conditions are obtained from which the three
second-order derivative& A/ dx%, A/ dxdy, A/ dy°)

matrix format is:

can be solved. The result summarized in

O O 02,0 [
C A [oxg e v [R5 | &y
E;Ll % oL,0 oL, oL,0 LoL,0 EZZX é I B‘Z—QE
A =—|0o9x oxp Oox 9y , Ox oy ooy dy[=dA Fx &y
([ 2 = =—=—0+ 0,,0 20
pL.dl,o |DL,oL0 DL,aL, dL,oL,0 Do oL, Umoxdyn |dL6L,  dAL,aL,PAD (20)
O O O, O O
0A 0| oG kv oad 0 | Ax Fy | Y
E aLZZ E L |]9'.2'1 szdLZD |$|_2|:| _Edyzg i dLZZ dLZZ |

As shown in (12), the transformation between the global coordinateg) (and the local
coordinatesl(;, L) is linear; the second derivatives &f y) with respect tol(, L,) are all equal to
zero. Hence, the global derivatives are expressed in terms of the local derivatives:

Op, 0 T 170 O
ARG [ xavn o |0 22 G
Eax E ChL,0 hL, dL,0 CoL,0 E JL; E
UPA B _ |,odx oxg o &y , dx g ,ody dyg H,_dA
L= X L2 21
SaxayE |20aL,oL,0 2OBL,aL, T aL,aL0 2eLaL0 oLl (21)
0o, 0 O O
Ao | oo H19% 0y [ v | 0 @A 0
2
E ay E L |ﬁl—zlj szdLZD |$|_2|:| | E dLZZ E
The Jacobian is formulated in the usual way from (12)
ox 9y
oL, dLy| _ |:X1_X3 h‘)ﬂ (22)
ox oy Xo—=X3 Y2—Y3
L, dL,

whence
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0% Dy [ oyt |

0ox (f
ChL,0 hL, dL,0 Lo U
S[9X OX[] (10X Oy , OX Y[ 09y Y[ =
pL,oL,0 “0hL,dL, dL,oL,0 “1BL,dL,L
0% 7 N oy 7
I CoL,0 [HL,aL,U LoL,0 |
(Xl—xa)z 2(X1 = X%3) (Y1 —Y3) (Y1—Y3)2
2(Xy = X3) (X2 =X3)  2[(Xy =X3)(Y2—VYa) + (X2 =X3) (Y1 —Y¥3)] 2(Y1—VY3)(Y2—Y3) (23)
(Xz—xs)2 2(X, = X3) (Y2 —Ys) (YZ—Y3)2

The local derivatives of plastic multiplier are found from (13):

O 0 0 28 O

i 0 ’32—}\2 O maz—N; O

oA Uan; O 0oL, O 0oLy O

0% o moNig g 0 0O 0
DU safeE BPA B gaR SN E (24)

Ao & ong PLdl.g 4 polidlen

.0 MO0 O O 0 L~ 0O

oL, Pl:g g &) O 0N 0O

il fad

In general, having formed (23) and (24), at a given sampling point, Eq. (21) can be solved
numerically for the second-order global derivatives only two of which are required to finally
calculate the Laplacian:

%A
P 0.,y2

(25)

4. Numerical test

Consider the example of a softening panel under compression analyzed in det Bbr&t995).

For explicit comparison, the same properties are adopted: width B = 60 mm, height H= 120 mm,
elastic shear modulus = 4,000 N/mn3, Poisson’s ratios= 0.49, yield stress;,= 100.0 N/mn3, and
constant softening modulus=-0.1G. Pamin (1994) shows the gradient (length scale) constant to
be g=-1%h, wherel is the internal length scale. For this cage; 3,600 N. A linear softening law

and von Mises yield criterion are used.

Two meshes of crossed triangular elements, a 6 x 12 grid of 288 elements and a 12 x 24 grid of
1152 elements, are tested. An imperfection of 10% is introduced at either a corner or the center.
The solution is convergent for all the cases. The load-displacement curves are shown in Fig. 2.
Evidently, the responses with mesh refinement are very close using the gradient plasticity model.
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6000
5750
— No imperf
5500 —— 288 elements, corner imperf
—=— 288 elements, center imperf
5250 —— 1152 elements, corner -1mperf
—— 1152 elements, center imperf
500 ; ; ‘
0.5 1 1.5 2

Fig. 2 Load-displacement curves

Fig. 3 shows the contour plots of the equivalent plastic multiplier. The cases with the imperfection
at the right bottom corner are shown in (a) for the mesh of 288 elements and (b) for the mesh of
1152 elements respectively. The plastic strain develops in the direction of abatartibg from
the imperfect elements, which is consistent with those given in de &oa$t(1995). The refined
mesh has a relatively narrow plastic strain zone. The cases with the imperfection in the center are
shown in (c) for the mesh of 288 elements and (d) for the mesh of 1152 elements respectively. The
plastic strain develops in “X” shape emitting from the imperfect elements. The refined mesh also
has a relatively narrow plastic strain zone.

Fig. 4 shows the deformed shapes of the panel for the cases corresponding to Fig. 3.

Though the proposed interpolation for the plastic multiplier does not satisfy the “patch test”
(Zienkiewicz and Taylor 2000), it yields excellent results. The interpolation is continuous
everywhere, its first-order derivatives, however, are only continuous within the element but not

(a) (b) (c) (d)

Fig. 3 Contour plots of the equivalent plastic strain (a) imperfection at a corner, 288 elements;
(b) imperfection at a corner, 1152 elements; (c) imperfection in the center, 288 elements;
(d) imperfection in the center, 1152 elements
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(b) (©) (d)

Fig. 4 Deformed shapes (a) imperfection at a corner, 288 elements; (b) imperfection at a corner, 1152
elements; (c) imperfection in the center, 288 elements; (d) imperfection in the center, 1152 elements

across element boundaries. Its second-order derivatives only exist within the elements. By recalling
Eqg. (4), it can be seen that the yield criterion, in which the second-order derivatives are involved, is

satisfied in a distributed sense. Thus, the integral in Eq. (4) can be calculated even though the
second-order derivatives are singular on element boundaries. The numerical results show that this
interpolation possesses good convergence characteristics. It implies that the error in yield criterion
calculation induced by the singularity of the second-order derivatives on element boundaries is

smaller than that induced by the lack of stress mapping, which can be eliminated through the

iteration process.

5. Conclusions

This paper has presented the formulation for gradient-dependent plasticity based on triangular
elements using incompatible (trigonometric) functions to discretize the plastic multiplier. The
Laplacian is formulated from the second-order derivatives of differentiable functions, and hence only
three degrees of freedom per node are required, instead of the Hermitian polynomial approach
requiring six. The accuracy and efficiency techniqgue was assessed against a localization problem
involving shear banding in compression.

Our motivation has been to provide a more efficient computational tool for gradient-dependent
plasticity. It has been shown that the incompatible element has the following important characteristics:

1. The interpolation of the plastic multiplier uses only function values of nodes, so the degrees of
freedom and computational time are largely reduced;

2. The interpolation guarantees the existence of the second-order derivatives within the elements.
Thus the yield criterion, in which the second-order derivatives are required, can be evaluated;

3. The numerical results show that this interpolation has good convergence characteristics. It
implies that the error in yield criterion calculation introduced by the non-existence of the
second-order derivatives on element boundaries can be eliminated through the iteration process.
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