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Abstract. Two real-time modeling prediction (RMP) schemes are presented in this paper for ana
the behavior of deep excavations during construction. The first RMP scheme is developed fro
traditional AR(p) model. The second is based on the simplified Elman-style recurrent neural network
on-line learning algorithm is introduced to describe the dynamic behavior of deep excavations. As 
study, in-situ measurements of an excavation were recorded and the measured data were used 
the reliability of the two schemes. They proved to be both effective and convenient for predictin
behavior of deep excavations during construction. It is shown through the case study that the
scheme based on the neural network is more accurate than that based on the traditional AR(p) model.

Key words: neural network; excavation; real-time modeling prediction; construction.

1. Introduction

Underground excavation is very complicated and is always influenced by various engine
conditions. Currently, the design of excavations relies mainly on empirical roles, assisted by
numerical or theoretical analysis. Even though theoretical and numerical analysis has
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conducted, engineers still have to rely on in-situ measurements for making their decisions. T
dynamic process of excavation is usually depicted by observing changes of items such as
deformation and displacement over time. There observations are used to help predict the beh
the excavation, and to ensure its safety and engineering reliability. 

Traditionally three methods are used in geotechnical engineering, namely numerical (e.g. using
finite elements), empirical and semi-empirical ones. Of these the finite element method is often
for excavation design (Souley et al. 1997, Ou et al. 1996, Zhang 1999). However, the dynam
process of deep excavation is a very complicated nonlinear system, because it depends o
factors such as temperature, geology, opening geometry, excavation sequence etc.(Kwon and
1999). Hence many parameters need to be selected. This makes it difficult for the finite el
method (FEM) to be used to predict the dynamic process of deep excavation accurately, de
being a powerful tool for solving many engineering problems in other fields (Li et al. 2001b,
Fang et al. 1998, Li et al. 2001a, 1999a, Luo et al. 2002, Yang et al. 2001, Luo et al. 2001). 

Empirical and semi-empirical methods are usually based on the data collected from simila
conditions and are extremely dependent on the range of site conditions represented in the da
It is difficult to adopt simple empirical formulae and regression curves to describe the compl
dynamic process of excavation.

Because of the difficulties in using numerical or theoretical methods (Xiao et al. 2002, 2003),
engineers are now paying more attention to field monitoring and real-time prediction of exca
behavior (Ishida and Uchita 2000, Yanagizawa et al. 1995) to confirm the safety of excavatio
during construction and improve the design of subsequent stages of construction. In this pap
efficient schemes are presented for predicting the precise behavior of excavations.  

The stress and strain in the soil is gradually released during construction, and the re
displacement is related not only to time, but also nonlinearly to the local stress level and to the tim
the stress is sustained for. In addition, many constitutive relations of soil are complex and their
parameters are difficult to determine. Experimental monitoring shows that series of data formed by
taking readings at successive time intervals are related to each other, i.e. the present state 
on the previous state (Li and Li 2001). Furthermore, because the construction of excavations 
disturbed by uncertain factors, the measured data often shows various random charact
Considering that excavation often progresses by layers and by sections, the model for pre
behavior is usually not available at the commencement of excavation. Therefore the data col
modeling and predicting should be done simultaneously. Besides, the model established
previous data cannot show the recent and real-time characteristics of excavation, and the da
of the model will vary with time during the excavation. It is therefore of benefit to develop an
efficient real-time modeling and prediction method which accounts for these real characteris
excavation construction. 

Supposing  is the data series describing the excavation behaviour as
changes. Then in order to carry out real-time modelling and prediction (RMP) of the excavat
model G is required to describe the relationship between xj and the previous observed value

, i.e.

(1)

It is necessary to find a mathematical model to describe G. But G is usually a non-linear function
and so it is difficult to describe it accurately by means of existing theoretical models and numerical

xt{ } t 1 2 3 … p, , , ,=( )

xj 1– xj 2– … xj k–, , ,( )

xj G xj 1– xj 2– … xj k–, , ,( ) j k 1+ k 2+ …, ,=( ),=
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methods. Such modelling should be convenient and simple, to ensure completion of the mo
and prediction in time. In this paper, two efficient RMP schemes are developed for predictin
dynamic behaviour of excavation.   

2. RMP scheme based on AR(p) model

2.1 AR(p) model

A very general class of prediction model is the ARMA(p, q) model (Reinsel 1993, Box and
Jenkins 1970, Choi 1992, Hamilton 1994, Elman 1990). 

  
(2)

where: xt is the autoregressive variable; et is the moving average variable; ϕi is the autoregressive
parameter; θj is the moving average parameter; p and q are the orders of the autoregressive a
moving average parameters, respectively.

It is usually assumed that . For example, this condition is satisfied w
et is a zero mean, uniformly distributed and independent variable. It is assumed that et has a finite
value of variance σ2. For a zero mean process xt the intercept γ is zero. To simplify Eq. (2), it is
assumed that γ = 0. 

An AR(p) process model is the special case of an ARMA(p, q) process model (Li et al. 2000a) for
which q = 0. Eq. (2) changes to the following form

(3)

Its style is simpler and it is easier to calculate the parameters. Therefore the AR(p) model is the
preferred model for the real-time modelling and prediction of engineering problems. 

There are probably some abnormal points in the observation values and so it is beneficia
some pre-process work to acquire the stable data series {Xt} of the excavation behaviour. We hav
used the following simple formula to achieve this for the most abnormal values: 

(4)

2.2 Least squares estimator of parameters 

The least squares method is usually used to estimate parameters. Letting 
in Eq. (3), this enables the values of the parameters to be expressed as:

(5)

where: (6)

(7)

xt γ ϕi xt i–
i 1=

p

∑ θ jet j–
j 1=

q

∑ et+ + +=

E et xt 1–⁄ xt 2– …, ,( ) 0=

xt ϕ1xt 1– … ϕpxt p– et+ + +=

xi xi 1– 2xi xi 1++ +( ) 4⁄=

t n 1+ n 2+ … N, , ,=

φφφφN XN
T XN( ) 1–

XN
T YN⋅ ⋅=

φφφφN φ1 φ2 … φn, , ,[ ]T
=

YN xn 1+ xn 2+ … xN, , ,[ ]T
=
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(9)

Supposing the new value xN+1 is observed, the least squares estimation is:

(10)

where: (11)

(12)

(13)

Then the expression obtained for the parameter estimation is: 

(14)

where: (15)

2.3 Prediction 

According to the AR(q) model and the estimation of the parameters presented above
prediction for step l is:

(16)

As a special case, the one-step prediction is

(17)

Because more information is contained in the newly observed data series, the one-step pr
can be sufficiently accurate and so, because it is simpler than the multiple-step prediction
adopted in this paper. However, the multiple-step prediction has also been introduced herein as a
general approach.

XN

xn  xn 1–   …  x1

xn 1+   xn  …  x2

…   …   …  …
xN 1–   xN 2–   …  xN n–

=

σa
2 1

N n–
------------- xt φ i xt i–

i 1=

n

∑–
 
 
 

2

t n 1+=

N

∑=

φφφφN 1+ XN 1+
T XN 1+( )

1–
XN 1+

T YN 1+=

YN 1+
YN

xN 1+

=

XN 1+
XN

X S 1+( )

=

X S 1+( ) xN xN 1– … xN n– 1+, , ,[ ]=

φφφφN 1+ φφφφN KN 1+ xN 1+ X S 1+( )– φφφφN⋅( )+=

KN 1+
1

1 X S 1+( ) XN
T XN( ) 1–

X S 1+( )
T

+
---------------------------------------------------------------- XN

T XN( ) 1–
X S 1+( )

T⋅=

X̂t l( ) φi X̂t l i–( ) l n>( )
i 1=

n

∑=

X̂t l( ) φ1X̂t l 1–( )=
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3. RMP scheme based on the recurrent neural network

Neural networks have recently emerged as a successful tool in the field of pattern classif
and control of dynamic systems (Kerh and Yee 2000, Goh 1995, Rafiq et al. 2001, Li et al. 2000b
1999b). This is due to the computational efficiency of the back-propagation algorithm an
versatility of the three-layer feed forward neural network in approximating arbitrary sta
nonlinearity. One of the early journal articles on neural network application in civil/struc
engineering was published in 1989 (Adeli and Yeh 1989). The great majority of civil engine
applications of neural networks are primarily based on the BP algorithm because of its simplicity
(Nerrand et al. 1994). In this paper, a simple Elman-style architect of recurrent neural network
(Pham and Karaboga 1999, Kremer 1995, Adeli 2001) is developed for real-time modellin
prediction of excavation behaviour. 

3.1 The architecture of the neural network

The architecture of the neural network applied in this study is illustrated in Fig. 1. The ne
consists of four layers of nodes: an input layer with one unit, a context with n units, a hidden layer
with n units and an output layer with one unit. The input unit is connected to every hidden un
every context unit does.  Similarly, every hidden unit is connected to the output unit. 

A traditional forward feedback neural network lacks the ability of online learning, and trai
can only be done after enough samples have been accumulated. So, it is actually a static no
mapping. In comparison, recurrent neural networks (Nerrand et al. 1994) can have nonlinear an
dynamic functions in training. In Fig. 1 x(t) and y(t) are respectively the input and output of 
network at time t. In contract to forward feedback neural networks, context units are introduce
addition to input nodes, hidden nodes and output nodes. This provides the network with a dy
memory function by saving the characteristics of hidden nodes at the previous time ste
exporting it to context units at the next time step. Therefore, the context units can be conside

Fig. 1 Architecture of an Elman-style neural network 
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input units whose input is the output of the hidden units at the previous time step. In a sen
hidden units are defined as the ‘status’ of the network, so it is obvious that the input of the ne
is related to both the present and previous ‘status’ of the network, as is the case for exc
behaviour. The data for the excavation behaviour at time t, x(t), is not only related to the observatio
data at previous time, but also depends on the present status of the excavation.

3.2 The network algorithm

The algorithm for the neural network adopted in this study can be expressed as:

(18)

Here, and Fig. 1, wi is the weighting between the input unit and the hidden units (i); Wi(t) is the
weighting between the hidden units and the output unit; vij(t) is the feedback weighting between th
hidden units and the context units; Hi(t) is the output of the hidden units; h is the number of the
hidden units; θi(t) is the threshold value of a hidden unit; f (·) is a nonlinear impulsive function
which is normally Sigmoid. Here the augmentation coefficient of feedback is introduced as α.

Let y(t) and ye(t) be the actual and expected output of the networks. Then an error function 
training cycle can be defined as

(19)

where: (20)

The weighting in the networks is adjusted by the gradient descent method, i.e.

(21)

(22)

(23)

where: η1, η2, η3 are training modulus of Wi, vij, wi respectively; 
In Eq. (22), 

(24)

y t( ) Wi t 1–( )Hi t( )
i 1=

h

∑=
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 
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In Eq. (23), 

(25)

3.3 Pre-processing of input serial

The ‘peak’ points were deselected before prediction, and then the stability of the input data was
checked. If it was not stable, it was smoothed by the difference method. The last value of the
serial expresses the trend of the system in the future and it greatly influences the prediction
so it must be ensured that it is accurate and trustworthy. 

3.4 On-line learning method

Since the model built on previous data cannot describe the characteristics of the system at
absolutely, an online learning method is used here to depict the dynamic characteristics of deep
excavation behaviour. It is supposed that the observation values x(1), x(2), ..., x(k) have been
obtained as the learning samples of training and they are defined as the learning serial, i.e. th
been observed in advance. The number of values in the learning serial cannot be too sma
accuracy of the prediction is to be ensured. 

The learning process can be described as follows. First let x(1) and x(2) be respectively the input
and output of the neural network and adjust the weightings to minimize the error function. Then let
x(2) be the input and x(3) be the output, and train the network again. At the last step, let x(k − 1) be
the input and x(k) be the output, and adjust the weightings again. Hence the previous and p
information is mostly contained in the weightings of the neural network obtained by this contin
training.

Let x(k) be the input of the neural network and let y(k) be the output obtained from the traine
network. Then defining the step (k + 1) prediction value as x'(k + 1) gives  

(26)

from which the prediction for step (k + 1) can be obtained.
For a further prediction, supposing the observation value is close to the prediction value, let 

. (27)

The newly obtained data x(k + 1) can be added to the learning serial, while simultaneously dele
the oldest data in the serial. In this case x(1) is deleted. Then a new input serial, i.e. x(2), x(3), ...,
x(k + 1) in this case, is constructed to predict the next value x(k + 2). Therefore, every time the inpu
serial is updated, its length remains constant. Then the neural network can be trained by t
input serial by adjusting the weightings, and the prediction of the next step can be carrie
Doing this continually, the status of the excavation can be tracked and the trend of its subs
behaviour predicted.

In fact, the observation values are accumulated during construction. The newly observe
contain more recent information about the excavation. Once the real value of x(k + 1) is observed,
we may substitute the observed value for the supposed one in order to ensure the predict
express the new state of the excavation. 

∂Hi t( )
∂wi t 1–( )
------------------------ f ′ hi t( )( ) x t( ) vij t 1–( )

∂Hj t 1–( )
∂wi t 2–( )
------------------------

j 1=

h

∑+
 
 
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=

x′ k 1+( ) y k( )=

x k 1+( ) x′ k 1+( )=



650 Li-Feng Ni, Ai-Qun Li, Fu-Yi Liu, Honoré Yin and J.R. Wu

forty
t
m are
tinuous
ibution

 of the
 in the
ere
urement

ations
., using
4. Engineering case study

4.1 General introduction

The Long Gang Commercial Centre is located in Nanjing, China. The main building has 
storeys above ground and two floors underground. Fourteen horizontal displacement measuremen
points and fifteen stress measurement points were selected for this study. Some of the
indicated in Fig. 2. The excavation was 11.6 meters deep. The retaining structure was a con
reinforced concrete wall and three sets of braces were set up vertically. The horizontal distr
of the braces was a symmetrically-supported truss. The elevations of the braces were −2.0 m and
−7.8 m, respectively. Fourteen theodolites were placed to monitor the horizontal displacement
selected measurement points. Clinometers of Model BC-1 strain-measurement were installed
continuous wall to monitor its deformation during construction. Twenty soil pressure gauges w
embedded at different depths to measure stress. Measurements from sine frequency-meas
instruments were converted into the stress values of the reinforcing steel bars. 

4.2 Calculation and prediction by the two RMP schemes

Monitoring of the excavation was conducted from Oct. 13 to Dec. 21 in 1999. The observ
commenced at 10 a.m. every day and the associated prediction work commenced at 4 p.m
the two RMP methods presented above. 

Fig. 2 Arrangements of the monitoring of excavation
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A 1-7-7-1 structure recurrent network was established by comparing the theoretical analysi
the field measurement, where 1-7-7-1 means that the numbers of input, hidden, context and
units were 1,7,7 and 1 respectively. The feedback coefficient α was determined mainly from
experience as α = 0.65 and the predicted results showed this choice to be reasonable. The initial
step length for learning was selected as η = 0.65. The training of the network aimed to adjust t
values of the weightings W, v and w and to learn the dynamic behaviour of the system. 

The observed values from Oct. 13 to Oct. 22 were used as the initial learning serial x(1), x(2), ...,
x(10). The learning process was that described in the paragraph above Eq. (26), with k = 10. The
trained network contained the information of the previous and present states. By using x(10) as
input, the results for Oct. 23 were predicted.

Letting k = 10 implies that the number of terms in the learning serial is 10. The newly obta
Oct. 23 data was then added to the input serial, and the oldest data was deleted to obtain
input serial, retrain the network, adjust the weightings of the network and hence to predi
behaviour of the excavation at Oct. 24. This process was repeated every day until De
Modelling and calculation took about twenty minutes. 

Fig. 3 The soil stress distribution of the measurement
point C4

Fig. 4 The soil stress distribution of the measuremet
point C6

Excavation depth −2 m −4 m −7.8 m
Soil stress distribution curves _ _ _ ----- _____

Observed values � � �
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Fig. 3 shows the soil stress distribution curve at the measurement point C4 for excavation depths

of −2 m, −4 m and −7.8 m, as predicted by the neural network. Fig. 4 repeats these results, b

Fig. 5 Horizontal displacement curve at the
measurement point C5

Fig. 6 Horizontal displacement curve at the
measurement point C6

1-observations
2-neural network
3-AR(q)

Fig. 7 Horizontal displacements at the measurement point C4  



Real-time modeling prediction for excavation behavior 653

ontal

network
the
ted at

ork is
n

tuating
factors.

ors. It
cated
-style
e
t: 
d for

of the

ior of

FEM
the measurement point C6. The points are the observed values. Figs. 5 and 6 show the horiz
displacement curves of the continuous wall at the measurement points C5 and C6, respectively. Here
curve 1-3 represent, respectively, the observed results, the results predicted by the neural 
and those predicted by the AR(q) model. Fig. 7 shows the one-step prediction results of 
horizontal displacement for the thirty days from Oct. 23. The observation position was loca
elevation −7.8 m and at the measurement point C4. 

4.3 Analysis and comparison of the prediction results

From the monitoring results, it seems that the scheme which is based on the neural netw
more accurate than that based on the AR(q) model. In Fig. 7, the maximum error of the predictio
given by the neural network is 2.8% which is less than that of the AR(q) model. From Fig. 7, it is
seen that at the beginning of the monitoring, the predicted and observed data show a fluc
trend. This is because the progress of excavation is usually affected by various random 
Additionally, there is a hysteretic period between the excavation phases and the stability phases.
This usually takes about 25 days and reflects the time effect for soft soil.

5. Conclusions

Underground excavation is generally very complicated and always influenced by various fact
is difficult to adopt a simple empirical formula or regressive curve to describe this compli
dynamic process. An attempt is made in this paper to simulate it by a simplified Elman
recurrent neural network model and by a one-step traditional AR(p) model. These are both real-tim
modeling prediction (RMP) schemes. The major conclusions from an engineering case study are tha

(1) Both RMP schemes proved to be effective and convenient for real-time modeling an
prediction of excavation behavior.

(2) The recurrent neural network scheme was able to describe the dynamic behavior 
excavation more accurately than was the traditional AR(p) model scheme. 

(3) Hence the recurrent neural network scheme is an effective tool for predicting the behav
deep excavations during their construction.
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