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Real-time modeling prediction for excavation behavior
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Abstract. Two real-time modeling prediction (RMP) schemes are presented in this paper for analyzing
the behavior of deep excavations during construction. The first RMP scheme is developed from the
traditional AR(p) model. The second is based on the simplified Elman-style recurrent neural networks. An
on-line learning algorithm is introduced to describe the dynamic behavior of deep excavations. As a case
study, in-situ measurements of an excavation were recorded and the measured data were used to verif
the reliability of the two schemes. They proved to be both effective and convenient for predicting the
behavior of deep excavations during construction. It is shown through the case study that the RMP
scheme based on the neural network is more accurate than that based on the traR{pdmabdel.
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1. Introduction

Underground excavation is very complicated and is always influenced by various engineering
conditions. Currently, the design of excavations relies mainly on empirical roles, assisted by some
numerical or theoretical analysis. Even though theoretical and numerical analysis has been
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conducted, engineers still have to rely on in-gieasurements for making their decisions. The
dynamic process of excavation is usually depicted by observing changes of items such as stress
deformation and displacement over time. There observations are used to help predict the behavior o
the excavation, and to ensure iggety and engineering reliability.

Traditionally three methods are used in geotechnical engineering, nammebrical (e.g. using
finite elements), empirical and semi-empirical ones. Of these the finite element method is often used
for excavation design (Soulest al. 1997, Ouet al 1996, Zhang 1999). However, the dynamic
process of deep excavation is a very complicated nonlinear system, because it depends on man
factors such as temperature, geology, opening geometry, excavation sequence etc.(Kwon and Wilsol
1999). Hence many parameters need to be selected. This makes it difficult for the finite element
method (FEM) to be used to predict the dynamic process of deep excavation accurately, despite i
being a powerful tool for solving many engineering problems in other field®t(lal 2001b,

Fanget al. 1998, Liet al 2001a, 1999a, Luet al 2002, Yanget al. 2001, Luoet al. 2001).

Empirical and semi-empirical methods are usually based on the data collected from similar field
conditions and are extremely dependent on the range of site conditions represented in the data bas
It is difficult to adopt simple empirical formulae and regression curves to describe the complicated
dynamic process of excavation.

Because of the difficulties in using numerical or theoretical methods @iad 2002, 2003),
engineers are now paying more attention to field monitoring and real-time prediction of excavation
behavior (Ishida and Uchita 2000, Yanagizagtaal. 1995) to confirm the safety of excavation
during construction and improve the design of subsequent stages of construction. In this paper, two
efficient schemes are presented for predicting the precise behavior of excavations.

The stress and strain in the soil is gradually released during construction, and the resulting
displacement is related not only to tineit also nonliearly to the local stress level and to the time
the stress is sustained for. In addition, many constitutive relations o&reoitcomplex and their
parameters are difficult to determine. Experimental monitosimgws that series of datarfieed by
taking readings at successive time intervals are related to each other, i.e. the present state depen
on the previous state (Li and Li 2001). Furthermore, because the construction of excavations is often
disturbed by uncertain factors, the measured data often shows various random characteristics
Considering that excavation often progresses by layers and by sections, the model for predicting
behavior is usually not available at the commencement of excavation. Therefore the data collecting,
modeling and predicting should be done simultaneously. Besides, the model established from
previous data cannot show the recent and real-time characteristics of excavation, and the data serie
of the model will vary with time during the excavation. It ieré#fore of benefit to develop an
efficient real-time modeling and prediction method which accounts for these real characteristics of
excavation construction.

Supposing{x;}(t=1,2 3 ...,p) is the data series describing the excavation behaviour as time
changes. Then in order to carry out real-time modelling and prediction (RMP) of the excavation, a
model G is required to describe the relationship betweemnd the previous observed values
(X1 Xj_ g0 s Xj k), 1€

X = G(X_p, %_2 n X)), (J =k+ 1 k+2, ...) Q)

It is necessary to find a mathematical model to des&ibBut G is usually a non-linear function
and so it is difficult to describe it accurately by means aftiexg theoretical models and merical
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methods. Such modelling should be convenient and simple, to ensure completion of the modelling
and prediction in time. In this paper, two efficient RMP schemes are developed for predicting the
dynamic behaviour of excavation.

2. RMP scheme based on AR(p) model
2.1 AR(p) model

A very general class of prediction model is tABMA p, ) model (Reinsel 1993, Box and
Jenkins 1970, Choi 1992, Hamilton 1994, Elman 1990).

P q
X = y+ Z PiXe_i+ Z ge_j+ & (2)

i=1 =1

where: X, is the autoregressive variabkg;is the moving average variablg; is the autoregressive
parameter;§ is the moving asrage parametep and q are the orders of the autoregressive and
moving average grameters, respectively.

It is usually assumed th&i(e/X,_1, X_5 ...) = 0 . For example, this condition is satisfied when
e is a zero mean, uniformly diginted and independent variable. It is assumedeghlaas a finite
value of variances?®. For a zero mean processthe intercepty is zero. To simplify Eq. (2), it is
assumed thay = 0.

An AR(p) process model is the special case oA&MAPp, q) process model (Let al. 2000a) for
which q = 0. Eg. (2) changes to the following form

Xp = @11t oot OXi ot & 3)

Its style is simpler and it is easier to calculate the parameters. Therefofdfh)emodel is the
preferred model for the real-time mddey and prediction of engineering problems.

There are probably some abnormal points in the observation values and so it is beneficial to do
some pre-process work to acquire the stable data setlesf{the excavation behaviour. We have
used the following simple formula to achieve this for the most abnormal values:

Xi = (Xi_1+ 2% +X,.1)/4 (4)
2.2 Least squares estimator of parameters

The least squares method is usually used to estimate parameters. Letting 1, n+2, ..., N
in Eq. (3), this enables the values of the parameters to be expressed as:

@ = (XWXy) " DX DYy (5)
where: &= e @@l (6)
(7)

.
YN = [Xnew Xnszr - Xal
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Xn Xnoa Xy
XN - Xn+1 Xn X5 (8)
Xn-1 Xn-2 XN-n
1 N @O 0 of
0h = —— Xe— ) @X_il 9)
TR, 02, M
Supposing the new valug., is observed, the least squares estimation is:
-1
K1 = (X1l\—l+1XN+1) X1l\—l+1YN+1 (10)
: _ | Yn
where: Yyl = (11)
XN+1
Xyoq = | N (12)
><(S+1
Xs+1) = [Xno Xno1 s Xncneal (13)
Then the expression obtained for the parameter estimation is:
o1 = A+ Ky (X = Xseg) U0 (14)
where: Kyey = : XX Xls (15)

-1
1+ X5 (X Xn) " X(s 1)
2.3 Prediction

According to theAR(q) model and the estimation of the parameters presented above, the
prediction for steg is:

X(1) = i ax(l-i)  (I>n) (16)

=1

As a special case, the one-step prediction is
(1) = gX(1-1) (17)

Because more information is contained in the newly observed data series, the one-step predictior
can be sufficiently accurate and so, because it is simpler than the multiple-step prediction, it is
adopted in this paper. However, the multiple-step prediction has also been introdusiadal a
general approach.
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3. RMP scheme based on the recurrent neural network

Neural networks have recently emerged as a successful tool in the field of pattern classification
and control of dynamic systems (Kerh and Yee 2000, Goh 1995, &a#iq2001, Liet al 2000b
1999b). This is due to the computational efficiency of the back-propagation algorithm and the
versatility of the thee-layer feed forward neural network in approximating arbitrary static
nonlinearity. One of the early journal articles on neural network application in civil/structural
engineering was published in 1989 (Adeli and Yeh 1989). The great majority of civil engineering
applications of neural networks are primarily based on the BP algorithm because ofpitsitgim
(Nerrand et al 1994). In this paper, a simple Elman-st@echitect of recurrent neural network
(Pham and Karaboga 1999, Kremer 1995, Adeli 2001) is developed for real-time modelling and
prediction of excavation behaviour.

3.1 The architecture of the neural network

The architecture of the neural network applied in this study is illustrated in Fig. 1. The network
consists of four layers of nodes: an input layer with one unit, a contexnwitiits, a hidden layer
with n units and an output layer with one unit. The input unit is connected to every hidden unit, as
every context unit does. Similarly, every hidden unit is connected to the output unit.

A traditional forward feedback neural network lacks the ability of online learning, and training
can only be done after enough samples have been accumulated. So, it is actually a static non-linee
mapping. In comparison, recurrent neural networks (Nereinal 1994) can have nonlinear and
dynamic functions in training. In Fig. &(t) and y(t) are respectively the input and output of a
network at timet. In contract to forward feedback neural networks, context units are introduced in
addition to input nodes, hidden nodes and output nodes. This provides the network with a dynamic
memory function by saving the characteristics of hidden nodes at the previous time step and
exporting it to context units at the next time step. Therefore, the context units can be considered as

y®

Output Unit

Hidden Units

w(t)

Input Unit

x(1)

Context Units

Fig. 1 Architecture of an Elman-style neural network
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input units whose input is the output of the hidden units at the previous time step. In a sense, the
hidden units are defined as the ‘status’ of the network, so it is obvious that the input of the network
is related to both the present and previous ‘status’ of the network, as is the case for excavation
behaviour. The data for the excavation behaviour at tjm), is not only related to the observation

data at previous time, but also depends on the present status of the excavation.

3.2 The network algorithm

The algorithm for the neural network adopted in this study can be expressed as:

O h
HO = 3 W(t-1)H (1)
g

i=1

() = H(h() (18)

OO

Chi(t) = w(t=1)x(t) + aivij(t—l)Hj(t—1)+ 6,(t)

i=1

OO

Here, and Fig. 1w; is the weighting between the input unit and the hidden unjtsM(t) is the
weighting between the hidden units and the output w{if; is the feedback weighting between the
hidden units and the context unitdi(t) is the output of the hidden units;is the number of the
hidden units;8(t) is the threshold value of a hidden uri;) is a nonlinear impulsive function,
which is normally Sigmoid. Here the augmentation coefficient of feedback is introduced as

Let y(t) andye(t) be the actual and expected output of the networks. Then an error function for a
training cycle can be defined as

E(t) = 2¢(t) (19)
where: e(t) = veo(t) —y(1) (20)
The weighting in the networks is adjusted by the gradient descent method, i.e.
W(t+1) = W(t) =1y Gt = WA(D) + 7, Ce() CH (1) (21)
_ M0E(Y) oH;(t)
vi(t+1) = V”(t)_é’vizj(t—l) = v(t) + nze(t)wi(t_l)é’vij(t—l) (22)
OH, (t

Wi(t+1) = w(t) ngm&% = Wi(t) + 15 Ce(t) Wi (t - 1)D&T(_)l) (23)

where:ny, 1y, N3 are training modulus oM, v, w; respectively;
In Eq. (22),
OH, (1) oH;(t—1)0
a—p = ™ (t))tH (t-1)+ ,Zlv”(t_ D v (-2)- (24)
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In Eq. (23),
oH(t) 0 h oH;(t-1)0
aw(i-1) = MO+ 3 vi(t-D5 G (25)

3.3 Pre-processing of input serial

The ‘peak’ points were deselected before prediction, and then thétystabithe input data was
checked. If it was not stable, it was smoothed by the difference method. The last value of the input
serial expresses the trend of the system in the future and it greatly influences the prediction result,
so it must be ensured that it is accurate anshviirthy.

3.4 On-line learning method

Since the model built on previous data cannot describe the characteristics of the system at preser
absolutely, an online learning method is used here to depict the dynamic clsictef deep
excavation behaviour. It is supposed that the observation va{dgsx(2), ..., x(k) have been
obtained as the learning samples of training and they are defined as the learning serial, i.e. they hav
been observed in advance. The number of values in the learning serial cannot be too small if the
accuracy of the prediction is to be ensured.

The learning process can be described as follows. Firg(lletandx(2) be respectively the input
and output of the neural network and adjust the weightings to minimiz=ritrefunction. Then let
X(2) be the input and(3) be the output, and train the network again. At the last stex(kletl) be
the input andx(k) be the output, and adjust the weightings again. Hence the previous and present
information is mostly contained in the weightings of the neural network obtained by this continuous
training.

Let x(k) be the input of the neural network and yét) be the output obtained from the trained
network. Then defining the step € 1) prediction value as'(k + 1) gives

X' (k+1) = y(Kk) (26)

from which the prediction for stef ¢ 1) can be obtained.
For a further prediction, supposing the observation value is close to the prediction value, let

x(k+1) = x'(k+1). (27)

The newly obtained datgk + 1) can be added to the learning serial, while simultaneously deleting
the oldest data in the serial. In this caék) is deleted. Then a new input serial, X&), x(3), ...,
x(k+ 1) in this case, is constructed to predict the next vekie 2). Therefore, every time the input
serial is updated, its length remains constant. Then the neural network can be trained by the new
input serial by adjusting the weightings, and the prediction of the next step can be carried out.
Doing this continually, the status of the excavation can be tracked and the trend of its subsequent
behaviour predicted.

In fact, the observation values are accumulated during construction. The newly observed data
contain more recent information about the excavation. Once the real vaklle+of) is observed,
we may substitute the observed value for the supposed one in order to ensure the prediction will
express the new state of the excavation.
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4. Engineering case study
4.1 General introduction

The Long Gang Commercial Centre is located in Nanjing, China. The main building has forty
storeys above ground and two floors underground. Fourteen horizontalcdisgint measurement
points and fifteen stress measurement points were selected for this study. Some of them are
indicated in Fig. 2. The excavation was 11.6 meters deep. The retaining structure was a continuous
reinforced concrete wall and three sets of braces were set up vertically. The horizontal distribution
of the braces was a symmetricaflypported truss. The elevations of the braces wr@ m and
—7.8 m, respectively. Fourteen theodolites were placed to monitor the horizontal displacement of the
selected measurement points. Clinometers of Model BC-1 strain-measurement were installed in the
continuous wall to monitor its deimation during construction. Twenty soil pressure gauges were
embedded at different depths to measure stress. Measurements from sine frequency-measureme
instruments were converted into the stress values of the reinforcing steel bars.

4.2 Calculation and prediction by the two RMP schemes
Monitoring of the excavation was conducted from Oct. 13 to Dec. 21 in 1999. The observations

commenced at 10 a.m. every day and the associated prediction work commenced at 4 p.m., using
the twoRMP methods presentetave.

Roadside line

RS
N . F Cs
' Stress measurement points S
\\

{P- Horizon displaccment
measurement points

Fig. 2 Arrangements of the monitoring of excavation
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A 1-7-7-1 structure recurrent network was established by comparing the theoretical analysis with
the field measurement, where 1-7-7-1 means that the numbers of input, hidden, context and outpu
units were 1,7,7 and 1 respectively. The feedbackffmment o was determined mainly from
experience a®r = 0.65 and the predicted results showed this choice tedmonable. The initial
step length for learning was selectedrps 0.65. The training of the network aimed to adjust the
values of the weightingd/ v andw and to learn the dynamic behaviour of the system.

The observed values from Oct. 13 to Oct. 22 were used agitiaelearning seriak(1), x(2), ...,

X(10). The learning process was that described in the paragraph above Eq. (26)=wlith The
trained network contained the imfoation of the previous and present states. By uz{@Q) as
input, the results for Oct. 23 were predicted.

Letting k = 10 implies that the number of terms in the learning serial is 10. The newly obtained
Oct. 23 data was then added to the input serial, and the oldest data was deleted to obtain a ne\
input serial, retrain the network, adjust the weightings of the network and hence to predict the
behaviour of the excavation at Oct. 24. This process was repeated every day until Dec. 21.
Modelling and calculation took about twenty minutes.

Soil stress distribution (K P Soil stress distribugion (K Pa)
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Fig. 3 The soil stress distribution of the measuremerfig. 4 The soil stress distribution of the measurémen
point C, point Cs
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Fig. 7 Horizontal displacements at the measurement @gint

Fig. 3 shows the soil stress distribution curve at the mesmuint pointC, for excavation depths
of -2 m, -4 m and-7.8 m, as predicted by the neural network. Fig. 4 repeats these results, but for
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the measurement poiid;. The points are the observed values. Figs. 5 and 6 show the horizontal
displacement curves of the continuous wall at the measurement @giatsl Cs, respectively. Here

curve 1-3 represent, respectively, the observed results, the results predicted by the neural networl
and those predicted by th&R(g) model. Fig. 7 shows the one-step prediction results of the
horizontal displacement for the thirty days from Oct. 23. The observation position was located at
elevation—-7.8 m and at the measurement pd@nt

4.3 Analysis and comparison of the prediction results

From the monitoring results, it seems that the scheme which is based on the neural network is
more accurate than that based on AliRég) model. In Fig. 7, the maximum error of the prediction
given by the neural network is 2.8% which is less than that oAB{g) model. From Fig. 7, it is
seen that at the beginning of the monitoring, the predicted and observed data show a fluctuating
trend. This is because the progress of excavation is usually affected by various random factors.
Additionally, there is a hysteretic period between the excavation phases and tliy gladées.

This usually takes about 25 days and reflects the time effect for soft soil.

5. Conclusions

Underground excavation is generally very complicated and always influenced by various factors. It
is difficult to adopt a simple empirical formula or regressive curve to describe this complicated
dynamic process. An attempt is made in this paper to simulate it by a simplified Elman-style
recurrent neural network model and by a one-step tradit®Rgd) model. These are both real-time
modeling predictiofRMP) schemes. The major cdumsions from an engineering case study are that:

(1) Both RMP schemes proved to be effective and convenient for real-time modeling and for

prediction of excavation behavior.

(2) The recurrent neural network scheme was able to describe the dynamic behavior of the

excavation more accurately than was the traditiédp) model scheme.

(3) Hence the recurrent neural network scheme is an effective tool for predicting the behavior of

deep excavations during their construction.
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