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Abstract. This paper presents the lateral-torsional buckling (LTB) of beams or girders with contin
lateral support at top flange. Traditional moment gradient factors (Cb) given by AISC in LRFD
Specification for Structural Steel Buildings and by AASHTO in LRFD Bridge Design Specifications  were
reviewed. Finite-element method buckling analyses of doubly symmetric I-shaped beams with cont
top bracing were conducted to develop new moment gradient factors. A uniformly distributed loa
applied at midheight and either or both end moments were applied at the ends of beams. The p
solutions are simple and accurate for use by engineers to determine the LTB resistance of beams.

Key words: lateral stability; stability analysis; buckling; beam; bracing.

1. Introduction

Continuous span multigirder steel bridges are widely used in the highway bridge system
steel girders spans in the direction of traffic flow from bent to bent and serve as the primary load
carrying members. The structural system is tied together by a reinforced concrete deck sl
transverse steel members, or diaphragms, which are connected to the girders. The top flang
continuous girders is continuously braced against lateral or torsional movement by metal form
during construction and in the completed bridge by the slab attached to the top flange. In th
of bridge, lateral-torsional buckling of the girders can only result from negative bending mom
near the interior supports of the continuous spans. 

American Association of State Highway and Transportation Officials (AASHTO) Specifications
(Standard 1996) have required transverse diaphragms to be placed in multigirder steel bridg
spacing not exceeding of 7.6-m (25-ft) between lines of diaphragms since 1949. A theo
explanation for the required maximum spacing is not available. Between 1931 and 
diaphragms were required at a maximum spacing of 6.1-m (20-ft). With regard to recent re
results of diaphragm behavior (Walker 1987, Moore et al. 1990, Keating and Crozier 1992
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Azizinamini et al. 1994, Stallings et al. 1996, 1999), AASHTO LRFD Bridge Design Specifications
(LRFD Specifications, 1994) do not have a strict requirement for diaphragms but allow the des
to use diaphragms as needed. The new AASHTO LRFD Specifications (1998) also do not have the
mandatory 7.6-m diaphragm spacing limit.

For girders with non-composite section that do not meet the criteria set forth for wid
thickness ratios and lateral bracing required for reaching the plastic moment capacity by AASHT
LRFD Specifications (1998), AASHTO Equation defines the lateral-torsional buckling mom
resistance of I-shaped girder as

 (1)

where Cb is the moment gradient modifier; Iyc is the moment of inertia of the compression flang
about an axis in the plane of the web; Lb is the laterally unbraced length; J is the torsional constant
of the beam; d is the depth of the beam; E is the modulus of elasticity of steel; My is the yield
moment resistance of beam. Eq. (1) with Cb = 1 is the elastic lateral-torsional buckling resistance
(Mocr) for an I-shaped section under the action of constant moment in the plane of the web o
laterally unbraced length.

The Cb factor in Eq. (1) is applied to account for the effects of variable moment along
unbraced beam length. The equation for the Cb factor that has been used in many past des
specifications is

(2)

where Ms and ML are the smaller and larger moments at the ends of the unbraced le
respectively. The ratio of Ms/ML is taken as positive for moment causing reverse-curvature ben
and negative for moment causing single-curvature bending. Eq. (2) was developed for beam
no applied loading between points of bracing. Due to this restriction, the equation is
theoretically applicable for many practical problems. 

The AASHTO LRFD specifications (1998) and the AISC LRFD specifications (1998) have
incorporated the following expression for Cb, which is applicable for linear and nonlinear mome
diagrams

(3)

where Mmax is the maximum moment along Lb; MA, MB, and MC are the respective moments at Lb/4,
Lb/2, and 3Lb/4; and Lb is the spacing between braced points. There is no sign convention asso
with Eq. (3); the absolute value is used for all moments. 

Most commonly in bridge design, the unbraced length Lb in Eq. (1) is interpreted to be the
distance between diaphragm lines. For this interpretation, the lateral-torsional buckling m
resistance does not account for any additional capacity provided by bracing between the end
segment. In multigirder steel bridges, continuous lateral or torsional bracing at top flan
provided by deck slab. Eq. (2) and Eq. (3) for Cb cannot account for continuous top flange braci
and produce very conservative estimates of lateral-torsional buckling moment resistances
flange bracing is present.

Mn 3.14ECb

Iyc

Lb

----- 
  0.772

J
Iyc

----- 
  9.87

d
Lb

----- 
  2

+ My≤=

Cb 1.75 1.05
Ms

ML

------- 
  0.3

Ms

ML

------- 
 

2

+ + 2.3≤=
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12.5Mmax

2.5Mmax 3MA 4MB 3Mc+ + +
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Trahair (1979) categorized the types of continuous restraint that may act, and studied their 
on the elastic buckling of simply supported mono-symmetric beam-columns under uniform be
and axial load. Trahair (1993) also provided a summary of the various theoretical studies tha
been conducted on beams with continuous braces. The general solutions provided are in
instances too complicated for design purposes, or are in graphical forms that are diffic
incorporate into design codes. SSRC Guide (1998) presented new moment gradient factors 
beams braced at the ends and with continuous lateral bracing of the top flange. The loa
applied at the top flange that is the most detrimental case because of the increase in the tor
as the beam buckles laterally. The proposed equation in the SSRC Guide (1998) includes only the
effect of lateral restraint and its accuracy is not well documented.

It is, therefore, the impetus of this study to investigate numerically the lateral-torsional buc
behavior of beams with continuous top flange bracing and to develop methods for general 
cases that are analogous to current lateral-torsional buckling solutions (Cb method) used in the
design of beams. The numerical tools used in this study are a commercially available finite-e
program MSC/NASTRAN (1998), and a graphical package MSC/PATRAN (2000). Finite-ele
models with uniformly distributed loading at midheight and moments at ends include only the 
of lateral restraint and conservatively neglect torsional restraint provided by concrete deck slab.
First, comparisons between solution from Trahair study (1979) and FEM results of beams with
continuously lateral top flange bracing under uniform moment are considered to evaluate the
element model appropriateness. Second, FEM results for the LTB moment resistances of beams
subjected to uniformly distributed load at midheight and moments at either or both ends were used
to develop new moment gradient factors using the ratio of the length of bottom flang
compression to the unbraced length of the beam, Lcb /Lb. 

2. Finite element modeling 

Kirby and Nethercot (1979) were able to show in their book, Design for Structural Stability, that
the ratio of the LTB capacity of an I-shaped beam to that of a box section beam changes as t
of the length to the depth of the beam changes. Therefore, the effect of the ratio of the length
depth of the beam was considered. Although a number of cross sections and load case
considered in the finite element model verification study, the results described here focus on
load cases and one cross section (W33 × 169). Fig. 1 shows three basic simple span cases
subjected to uniform bending, beams subjected to only one concentrated load at the center o
and beams subjected to uniformly distributed load along entire span. The loading was app
midheight of the cross section. Table 1 and Table 2 show the analytical results of these loa
and comparisons of FEM results to values from the SSRC Guide (1998) or AASHTO LRFD
Specifications (1998), Eq. (3). These tables present a good agreement between the SSRC Guide and
FEM results in the range of Lb/d from 20 to 40. 

The critical moment resistance of beams with continuous lateral top flange bracing under unifo
bending can be obtained by using Trahair’s solution (1979). A comparison between Trahair so
and FEM results under uniform bending was also conducted to verify the finite element m
used in this study. Five rolled I-shaped beams with different ratios of unbraced length to depthLb/d,
were considered. The FEM models consist of 6 four-node plate elements through the depth
web and 2 elements across each flange. At the ends of the unbraced length, the beam wa
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Fig. 1 Three load cases on simple span beams 

Table 1 Analytical results of three basic load cases

Lb (m)
(1)

Lb/d
(2)

Cb

Case 1
(3)

Case 2
(4)

Case 3
(5)

12.2 14.19 1.00 1.304 1.137
15.2 17.74 1.00 1.330 1.138
25.9 30.16 1.00 1.350 1.135
36.6 42.58 1.00 1.350 1.131

1 ft = 0.3048 m

Table 2 Comparisons of moment gradient modifier Cb

(1)
SSRC Guide

(1998)
(2)

AASHTO LRFD 
Specification (1998)

(Eq. 3)
(3)

FEM Results
(Lb/d = 30.16)

(4)

Case 1 1.00 1.00 1.00
Case 2 1.35 1.32 1.35
Case 3 1.12 1.14 1.13
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warp. The critical moments of these beams under uniform bending are presented in Table 3. 
shows that the LTB moments from FEM analyses are in very good agreement with the value
the Trahair’s solution. 

Although there are a variety of finite elements available in MSC/NASTRAN (1998), only QUA
is used throughout the FEM analyses because of its simple yet numerically stable performance. So
the full three-dimensional configuration of the cross-section using QUAD4 elements was considered.
Three load types shown in Fig. 2 were considered to investigate the lateral-torsional buckl
beams with continuous lateral top flange bracing. Fig. 2 also shows the moment diagrams o
three load types. The typical buckling mode shapes of beams with continuous lateral top 
bracing are shown in Fig. 3. The models of Fig. 3 are subjected to uniformly distributed loa
two negative end moments. Since the second eigenvalue of each model is meaningless, o
eigenvalue needs to obtain critical moment.

Table 3 Comparisons between Trahair’s Solution (1979) and FEM Results

Cross Section
(1)

h/tw
(2)

Lb/d
(3)

Critical Moment (kN-m)

Trahair Solution
(4)

FEM Results
(5)

Diff. (%)
(6)

W30 × 477 19.2 42 12593 12176 3.3
W30 × 391 22.6 20 8947 8550 4.4
W36 × 230 45.6 40 1210 1218 0.7
W36 × 135 57.9 20 480 479 0.3
W40 × 149 59.3 38 309 320 3.5

1 ft = 0.3048 m, 1 kip = 4.45 kN, 1 kip-ft = 1.356 kN-m

Fig. 2 Three load types and moment diagrams 



618 Jong Sup Park and Young Jong Kang

ts of the
lange
braced
ay to

veloped

 

buted

f

3. Finite-element method results and design recommendations

FEM results for five beams subjected to 54 load cases are considered here. From the resul
finite element investigation, it was found that LTB resistance of a beam with continuous top f
bracing can be characterized by the ratio of length of bottom flange in compression to the un
length, Lcb/Lb. This ratio of lengths is also used to plot the results because it is a convenient w
summarize results for various applied loading cases. Two types of design equations were de
for beams with midheight loading. One of them is as below:

(4)

In which

   

(5)

where Lcb is the length of bottom flange in compression; Lb is the unbraced length; Mocr is the LTB
moment of beams in uniform bending as presented in Eq. (1) with Cb of 1; Mcr is the LTB moment
of beams with continuously lateral bracing at the top flange subjected to a uniformly distri
load and end moments. 

FEM results for load type I, load type II, and load type III are shown in Figs. 4(a), (b), and (c),
respectively. The graphs show plots of the critical moment ratio, Mcr/Mocr, versus the ratio of Lcb/Lb.
Figs. 4(a) and (b) for load type I and type II show that the ratio of Mcr /Mocr increases as the ratio o

Mcr Cb1Mocr=

Cb1 2.86
Lcb

Lb

------- 
 – 7.86+= 0.3

Lcb

Lb

------- 1.0≤ ≤

Cb1 200
Lcb

Lb

------- 
 

2

110
Lcb

Lb

------- 
 – 22+= 0.15

Lcb

Lb

-------≤ 0.3<

Fig. 3 Typical buckling mode shapes of beams with top bracing 
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h/tw increases in the range of less than Lcb/Lb = 0.5. Fig. 4(c) for load type III also shows that th
ratio of Mcr /Mocr increases as the ratio of h/tw increases in the range of less than Lcb/Lb = 0.25.
Moreover, the ratio of Mcr /Mocr increases as the warping resistance Cw/J of the beams increases. 

Fig. 4(d) shows comparison between the FEM results and the proposed equations for a
types. As shown in Fig. 4(d), although the predictions from Eq. (4) are very conservative for s
values of Lcb/Lb, Eq. (4) produces reasonable estimate of the Cb1 values with respect to the finite
element method results for all ranges of Lcb/Lb. The use of Eq. (5) should be limited for beams w
0.15 ≤ Lcb/Lb < 1.0. For beams with Lcb/Lb less than 0.15, Cb1 must be taken as very high value
and as a results, the LTB moment in this range should not control the flexural strength of
beams. 

The other new design equation for LTB behavior of beams subjected to distributed load at
midheight and end moments was developed as:

(6)Mcr Cb2CbMocr=

Fig. 4 FEM results and proposed solution for Cb1
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where the definition of Lcb, Lb, Mocr, and Mcr are the same as in Eq. (4) and Eq. (5); Cb is the
traditional moment gradient factor as presented Eq. (3). Therefore, a lateral-torsional bu
moment resistance of a steel beam with continuous lateral top flange bracing can be ob
multiplying proposed Eq. (7) for Cb2 by LTB moment resistance, Mn, from Eq. (1).

FEM results for load type I, type II, and type III are shown in Fig. 5(a), (b), and (c), respect
Fig. 5(d) is a graph for all these load types. Fig. 5(d) shows that LTB capacities of these 
would be calculated by 1.6 times than the values from Eq. (1) in the range of 0.5 ≤ Lcb/Lb ≤ 1.0,
and that the proposed solution produces somewhat conservative values for some cases (r
stocky beam) in range of 0.15 ≤ Lcb/Lb ≤ 0.5. Fig. 5(d) indicates that the equations for Cb2 can be
used conservatively for beam design to calculate the LTB capacity of a beam.

Cb2 1.6= 0.5
Lcb

Lb

------- 1.0≤ ≤

Cb2 35.2
Lcb

Lb

------- 
 

2

35.2
Lcb

Lb

------- 
 – 10.4+= 0.15

Lcb

Lb

-------≤ 0.5<

Fig. 5 FEM results and proposed solution for Cb2



Lateral buckling of beams with top bracing 621

he 
6 are
ach end
 that
 shows

ions and
arp at
3. Applicatons

Existing continuous multispan bridges shown in Fig. 6 were considered to investigate tCb

equations. Fig. 6 shows beam details and applied loading. Model I and model II of Fig. 
interior spans of continuous beams so that these models have a negative end moment at e
and a uniformly distributed load. Model III of Fig. 6 is a end span of a continuous beam so
these model has a negative end moment at one end and a uniformly distributed load. Table 4
each cross-section property of all models. 

Table 5 presents comparisons between the LTB moment resistances from the design equat
the FEM results for the continuous multispan bridges of Fig. 6. The beam models are free to w

Table 4 Cross-section properties in the existing multispan bridge

Web Flange

Section
(1)

Depth (d)
(cm)
(2)

Thickness (tw)
(cm)
(3)

Width (bf)
(cm)
(4)

Thickness (tf)
(cm)
(5)

W36 × 150 91.06 1.59 30.42 2.39
W36 × 160 91.47 1.65 30.48 2.59
W36 × 182 92.28 1.84 30.67 3.00

1 in. = 2.54 cm

Fig. 6 Beam details for applications
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the ends of the unbraced length. The last column of Table 5 is the difference percentage betw
results from several equations for Cb presented in previous section, and the results of finite elem
models having each loading and constraint condition of design equations. As shown in this tab
Cb

Eq. (2) equation for simply supported beams produces very conservative values for all these
and the Cb

Eq. (3) equation in the current AISC and AASHTO LRFD Specifications gives reasonably
conservative values. The Cb1 and Cb2 equations proposed in this study for beams with continu
lateral top bracing subjected to midheight loading provide conservative values; in particular, theCbCb2

equation gives more conservative value than the Cb1 equation. These two new equations can be u
to obtain the LTB moment resistance of beams with continuous lateral top bracing. 

4. Conclusions

Lateral-torsional buckling resistance of beams was found to be dramatically increased 
providing continuous bracing along the length. It was shown that the LTB resistance of beams with
continuous bracing depended upon the ratio of the length of bottom flange in compression 
unbraced length, Lcb/Lb. Two types of design equations for beams with midheight loading w
proposed using the ratio of Lcb/Lb. The proposed equations indicated that the LTB capacity o
beam is improved significantly by continuous lateral bracing, especially, in the range of Lcb/Lb less
than 0.3. The critical moment can be estimated as approximately 1.6 times the nominal m
based on LTB capacity, Mn, from current AASHTO LRFD specifications (1998) in the range of
0.5 ≤ Lcb/Lb ≤ 1.0. The proposed solutions are simple and accurate for use by designe
determine the LTB resistance of beams.

Table 5 Comparisons between FEM results and design equation

Model
(1)

Mocr

(kN-m)
(2)

Moment
Gradient 
Modifier

(3)

Bracing
(4)

Mcr (kN-m)
Diff.
(%)
(8)

Design 
Eq. 
(6)

FEM
(7)

I 541

Cb
Eq.(2) = 1.0 Ends 541 1088 50.3

Cb
Eq.(3) = 1.95 Ends 1055 1088 3.0

Cb1 = 6.78 Continuous 3668 5226 29.8
Cb

Eq.(3) Cb2 = 4.17 Continuous 2256 5226 56.8

II 697

Cb
Eq.(2)= 1.13 Ends 788 2792 71.8

Cb
Eq.(3)= 3.03 Ends 2111 2792 24.4

Cb1 = 6.48 Continuous 4517 5462 17.3
Cb

Eq.(3) Cb2 = 4.88 Continuous 3401 5462 37.7

III 538

Cb
Eq.(2) = 1.75 Ends 942 1604 41.3

Cb
Eq.(3) = 2.31 Ends 1243 1604 22.5

Cb1 = 6.94 Continuous 3734 4023 7.1
Cb

Eq.(3) Cb2 = 7.18 Continuous 3863 4023 3.9

1 ft = 0.3048 m, 1 kip = 4.45 kN, 1 kip-ft = 1.356 kN-m
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Appendix I. Example problems

Determine the critical moment resistances of the continuous beam spans shown in Fig. 7. All beam
A36 steel (Fy = 36 ksi).

(1) Center Span 
Mp = 2156 k-ft for W36 × 182 > Mmax = 1579 k-ft
Mmax = 1579 k-ft, MA = 359 k-ft, MB = 1005 k-ft, MC = 359 k-ft, 
Lb = 83 ft, Lb/h = 30, Lcb/Lb = 2(15.62)/83 = 0.376

= 399 k-ft for W36×182 with Lb = 83 ftMocr 3.14E
Iyc

Lb

----- 
  0.772

J
I yc

----- 
  9.87

d
Lb

----- 
 

2

+=

Cb1 2.86
Lcb

Lb

------- 
 – 7.86+ 6.78= =
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Mcr = Cb1Mocr = (6.78) (399) = 2705 k-ft > Mmax = 1579 k-ft     
Or Mcr = Cb2CbMocr = (2.14) (1.95) (399) = 1664 k-ft > Mmax = 1579 k-ft ∴O.K. 

(2) End Span 
Mp = 1744 k-ft for W36 × 150 > Mmax = 1579 k-ft
Mmax = 1579 k-ft, MA = 172 k-ft, MB = 561 k-ft, MC = 618 k-ft, 
Lb = 60 ft, Lb/h = 20.63, Lcb/Lb = 17.56/60 = 0.293

= 397 k-ft for W36× 150 with Lb = 60 ft

Cb2 35.2
Lcb

Lb

------- 
 

2

35.2
Lcb

Lb

------- 
 – 10.4+ 2.14= =

Cb
12.5Mmax

2.5Mmax 3MA 4MB 3Mc+ + +
---------------------------------------------------------------------- 1.95= =

Mocr 3.14E
Iyc

Lb

----- 
  0.772

J
I yc

----- 
  9.87

d
Lb

----- 
 

2

+=

Cb1 2.86
Lcb

Lb

------- 
 – 7.86+ 6.94= =

Cb2 35.2
Lcb

Lb

------- 
 

2

35.2
Lcb

Lb

------- 
 – 10.4+ 3.11= =

Fig. 7 Three-span continuous bridge for example
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;

Mcr = Cb1Mocr = (6.94) (397) = 2755 k-ft > Mmax = 1579 k-ft     
Or Mcr = Cb2CbMocr = (3.11) (2.31) (397) = 2852 k-ft > Mmax = 1579 k-ft ∴O.K.

Appendix II. Notation

The following symbols are used in this paper:
Cb, Cb1, and Cb2 : modifier for moment gradient;
d : depth of a beam;
E : modulus of elasticity of steel;
Iyc : moment of inertia of the compression flange about an axis in the plane of the web
J : torsional constant for a section;
Lb : laterally unbraced length;
Lcb : length of bottom flange in compression;
MA : absolute value of moment at quarter point of the unbraced beam segment;
MB : absolute value of moment at centerline of the unbraced beam segment;
MC : absolute value of moment at three-quarter point of the unbraced beam segment;
Mcr : lateral torsional buckling strength of beam with general loading condition;
ML : larger moments at the ends of the unbraced length;
Mmax : absolute value of maximum moment in the unbraced beam segment;
Mn : nominal moment based on lateral-torsional buckling resistance;
Mocr : lateral torsional buckling strength of beam under constant moment;
MS : smaller moments at the ends of the unbraced length;
My : yield moment resistance of beam.

Cb

12.5Mmax

2.5Mmax 3MA 4MB 3Mc+ + +
---------------------------------------------------------------------- 2.31= =
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