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Abstract. Laminated composite structures find wide range of applications in many branches of
technology. They are much suited for weight sensitive structures (like aircraft) where thinner and lighter
members made of advanced fiber reinforced composite materials are used. The orientations of fiber
direction in layers and number of layers and the thickness of the layers as well as material of composites
play a major role in determining the strength and stiffness. Thus the basic design problem is to determine
the optimum stacking sequence in terms of laminate thickness, material and fiber orientation. In this
paper, a new optimization technique called Cellular Automata (CA) has been combined with Genetic
Algorithm (GA) to develop a different search and optimization algorithm, known as Cellular Genetic
Algorithm (CGA), which considers the laminate thickness, angle of fiber orientation and the fiber material
as discrete variables. This CGA has been successfully applied to obtain the optimal fiber orientation,
thickness and material lay-up for multi-layered composite hybrid beams plates and shells subjected to
static buckling and dynamic constraints.
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1. Introduction

Most of the methods used for design optimization assume that the design variables are continuous
In Structural optimization, almost all design variables arereis. A simple Cellular Genetic
Algorithm is used to obtain the optimal laminate thickness, fiber orientation and material of multi-
layered composite plates. Cellular Automata combined with simple Genetic Algorithm is based on
two operators namely cross over and mutation.

Cellular Automata(CA) are mathematical idealization of physical systems originally introduced
by Von Newmann and Ulam (1974) to biological systems to model self reproduction in which
space and time are discrete and physical quantities take on finite set of discrete values. CA evolve:
in discrete time steps, with the value of the variable at one set being affected by values of variables
at sites in its “neighbourhood” in the previous time step. The variables at each site are updated
simultaneously (“Synchronously”) based on the values of neighbourhood and according to definite
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set of local rules involving Darwinian theory of survival of the fittest and applying genetic
operators such as crossover and Mutation. The working of Simple Genetic Algorithm is explained
by Goldberg (1989). Rajeev and Krishnamoorthy (1992) have applied simple Genetic Algorithm to
the optimization of two and three-dimensional pin-jointed members subjected to stress and
deflection.

2. Cellular Genetic Algorithm (CGA) for the optimal lay-up of structures made of
composite laminates

A beam, plate or shell is optimized for its weight considering laminate thickness, fiber orientation
and material adopting Cellular Genetic Algorithm. The multetag structure composed o,
four, six... to sixteen layered plates of different thickness are considered separately and analysed fol
free vibration. With reference to the middle plane symmetrical and anti-symmetrical fiber
orientations are adopted. The discrete variables are laminate thickness, fiber orientation and the type
of material.

Binary coding system is used to represent the variable and a sub string of 4-bit length is used for
representing laminate thickness, fiber orientation and material. A total lengtinxd/2 bit
represents one solution for even layers both for symmetric and anti-symmetric orientations. For
symmetric orientation, the layers at center may be combined to make it as one layer. If the layers
are even and are symmetric lay-up the same orientation is repeated for the other half and in case ¢
anti-symmetric lay-up the angles are repeated with change in sign for the other half. For 4-bit string
we can represent minimum and maximum values of any variable as 0000 and 1111 and the rea
coding being 0 to 15. If the minimum and maximum values for any variable are given one can find
the incremental value as

Xinc = (Xmax_xmin)/15 (1)

The decoded value of binary number 1101 is shown in Fig. 1 and the corresp®ndahge is
given by

X = Xmin +13x Xinc (2)

1101

| e—— 1 x?%= |
—ﬂx1:=ﬂ
ix2=4

Ix2=8

13

Fig. 1 Decoded value of 1101
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The maximum and minimum values for the laminate thickness are given depending on the
problem and the maximum and minimum values of the angles of fiber orientations are given as 90
deg and 0 deg and for the material 4.75 and 1 respectively. Herein we consider only four materials
and the integer value is taken as the material value.

The composite structure is analysed and the objective function for each population in a cell of
cellular automata is computed using the closed form solution as indicated below. The objective is to
get the laminate thickness, optimal fiber orientation and material to give the least weight design
subjected to deflection, buckling and frequency constraints. The population is matted with the best
population in its neighbourhood and crossed between the cross-sites along the random lengths of th
full string. The process is repeated till to get the minimum weight or minimum total thickness.

Composite materials are used for various applications and are ideal for structural applications
where high strength-to-weight ratio is required. Aircraft and other vehicles are typical weight
sensitive structures in which composite materials such as Boron/epoxy, Carbon/epoxy and
Graphite/epoxy and Glass/epoxy have resulted in an increase in the use of laminated fiber
reinforced plates.

Composite materials are nothing but the combination of two or more materials on a microscopic
scale to form a macroscopic high strength &ghtweight material. Usually the composite shows
the best qualities of its ingredients and sometime desirable qualities that cannot be obtained by the
use of parent material alone can also be achieved. Moreover the properties, which can be improvec
by combining proper materials for a composite are strength, stiffness, corrosion resistance, wear
resistance, attractiveness, weight, fatigue life, temperature dependent behaviour, thermal insulation
thermal conductivity and acoustical insulation.

Composite structures which are made up of more than one material have found widespread
applications in various fields of engineering such as aerospace, marine, automobile, electronic
equipment, structures, etc. The term composite is used to denote layered laminates where each laye
is made up of an orthotropic material, distinct from sandwich plate which is typically a plate having
a core material that separates two relatively thin face sheets of higher modulus material. In the
present work, the composite laminates composed of strazghtigd fibres are used. Each layer is
assumed to be a homogeneous orthotropic material having a value of Young’'s modulus considerably
greater in longitudinal directiorE() than in transverse directioit), but the longitudinal axes of
adjacent laminae are generally not parallel. In composites the fiber bears the mechanical load while
the matrix distributes the loads and holds the shape of the part. The main advantage of composite
is the possibility of tailoring a laminate to suit the structural requirements. The properties of the
materials are given in Table 1 as given by Kao (1997).

Table 1 Material properties

. E E E G .
Composites e KNmm? KNmn? W KN/mme ~ Mass density
1.Graphite/Epoxy _ 181.0 10.30 10.30 0.28 717 0.022e-4
2. Boron/Epoxy 204.0 185 185 0.23 5.5 0.0208e-4
3. Kevlar/Epoxy 83.0 5.6 5.6 0.34 2.1 0.01e-4

4. Glass/Epoxy 38.6 8.27 8.27 0.26 4.14 0.025e-4
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2.2 Cellular genetic algorithm: An introduction

In the last six years Genetic Algorithms have emerged as a practical rqbosization and
search method. First proposed by Holland (1975), GAs are attractive classes of computational
models that mimic natural evaluation to solve the problems in wide variety of domains. Pioneering
work by Holland, Goldberg (1989), Dejong Grefenstette Davis, Muhlenbein, Srinivas (1997) and
others fueling the spectacular growth of GAs.

A genetic algorithm emulates biological evolutionary theory to solve optimization problems.
Genetic Algorithm comprises a set of individual elements (the populations) and a set of biologically
inspired operators defined out the population itself. According to evolutionary theory only the most
suited element in a population is likely to survive and generate off spring, thus itiiagsithe
biological heredity to new generation. In computing terms a GA maps a problem on to a set of
(typically binary) strings each string representing a potential solution.

Cellular automata evolves in discrete time steps, with the value of the variable at one site being
affected by the values of variables at sitestsnneighbourhood on the previous time step. The
neighbourhood of a site is typically taken to be the site itself and all inmediately adjacent cells. The
variables at each site are updated simultaneously i.e. synchronously, based on the values on th
variables in their neighbourhood at the preceding time steps according to set of local rule. There are
several possible lattices and neighbourhood structures for two-dimensional cellular automata. Four
cells (5 including its own) in the neighbourhood is known as Von Neumann neighbourhood, and
eight cells (9 including its own) known as Moore neighbourhood and 6 cells in a hexagonal pattern
known as uniform neighbourhood respectively. In this paper Moore neighbourhood is considered as
shown in Fig. 2.

2.2.1 Comparison between GA and other traditional methods

GAs differs from traditional optimization algorithm in many ways. A few are listed here.

» GA does not require a problem specific knowledge to carryoetecls. For instance, Calculus-
based search algorithms use derivative information to carryout a search.

» GA works on coded design variables, which are finite length strings. These strings represent
artificial chromosomes. Every character in the string is an artificial gene. GA processes
successive populations of these artificial chromosomes in successive generations.

» GA uses a population of points at a time in contrast to the single point approach by the
traditional optimization methods. That means, at the same time GAs process a number of
designs.

» GA uses randomized operators in place of the usual deterministic ones.
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2.2.2 Comparison between the biological terms and the corresponding terms in GA

» “Chromosome”, a small rod like body found in the living cells, which is responsible for the
transmission of genetic information denotes coded design vector in GA.

 “Gene” which is a part of the chromosome carrying the hereditary information denotes each bit
in the coded design vector in GA.

* “Population” denotes a number of coded design variables in a cell whereas “Generation” denotes
the population of design vectors, which are obtained after one computation.

2.3 Power of genetic algorithm

Genetic Algorithm combines the Darwinian survival of the fittest procedure. Genetic algorithms
are search procedures based on mechanics of natural genetics and natural selection. Genet
Algorithm derives its power from the following genetic operators.

1) Reproduction 2) Cross over 3) Mutation 4) Inversion 5) Dominance 6) Deletion 7) Intra-
chromosomal duplication 8) Translocation 9) Segregation 10) Speciation 11) Migration 12) Sharing
13) Mating

In this paper a simple Genetic Algorithm combined with Cellular Automata uses Crossover and
mutation operators to find the optimal lay-up of composite Laminates.

2.4 Working of Cellular Genetic Algorithms

The weight of a composite structure varies with the laminate thickness and the deflection,
buckling load and frequency of the structure depends on fibre orientation, laminate thickness and the
material in the laminates. The design problem of composite structure is to find the minimum weight
or minimum thickness such that maximum deflection is less than allowable deflectiregurehcy
is greater than the allowable maximum frequency or the buckling load is greater than the allowable
load. To find the optimum parameters of fibores CGA is used. The orientation of fibres in layers is
such that the laminates are either symmetric or anti-symmetric of layers in the structure and the
scheme has been eloyped for the genetic algorithm. In case of even number of layers, the first half
of the layers about the middle surface are taken as design variable for CGA and for second half
layer, if symmetric orientation the same layers as the first half are used and if anti-symmetric the
layers of first half with negative sign are used. Only one half of the layer orientations are used for
all the operations of Reproduction and Crossover.

In this subsection, the working of CGA is explained with reference to a five-layered symmetric
orientation of thin composite square plate composed of different subjected to dynamic loading. The
assumed data for the plate is 40 x 40 mm and thickness 0.8 mm.

In this example, the design variable for five layered plates is three because only half of the layers
above the middle layer and the middle layer itself are considered for the symmetric orientation of
fibres. The orientation of fibres can be varied as discrete values and varies from 0 to 90 as
minimum and maximum values and similarly the thickness of a lamina. For the material the
minimum and maximum values are assumed to be 1 to 4.75 and hence the truncated value of the
material is chosen.

A twelve bit binary string is used to code three variables in which case a variable can take 16
discrete values. Hence for five-layered symmetric orientation we require 36 bits as (5 + 1) x 12/2. In
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the cellular automata, we consider cells consisting of four rows and four columreaemcell
representing a population. The number of cells or the populations depends on the importance of the
problem and the complexity involved.

2.4.1 Survival of the fittest

Each cell in the cellular automata represents a population containing the thickness, fiber
orientation and material information for the square plate. Each population is analysed using closed
form solutions for deflection, the minimum circular frequency and the buckling load and thus the
objective function i.e. the weight for all the cells are determined. After the objective functions for all
the populations are obtained, the next step is to generate the population for the next generation
which are the offspring for the current generation. Every cell is examined with the cells of its
neighbourhood and the cell having minimum weight is determined.
The objective function is given by

n
Min weight W = p Z ty 3
k=1
Subjected to constraints as
o) P w
—=<l;, —=21;, —=21 4
5a|l Pcr Wy ( )

The constraint equations may be written as

o) 0 .

C, = e 4 if o0>9
1 EBaII D all
= 0 otherwise
PO .

C, = - if P<P
2 Pch cr
= 0 otherwise

- w0 o
Cg_%_wallm if  w<awy

= 0 otherwise (5)
C = G (6)

whered, P, wy are the deflection buckling load and the natural maximum allowable frequency of
the plate.

Using the method of Rajeev and Krishnamoorthy (1992) the constrained optimisation can be
converted to unconstrained optimisation by modifying the objective fungtam

@ = W(1+ kC) (7)

For all practical purposeg,can be assumed as 10.
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The cross over operator, which is responsible for the search in genetic space, is carried out now
The populations in the referred cell is matted with that of the cell of minimum value of objective
function using the randomized cross-sites keeping the population of the cell having minimum
objective function thus keeping the fittest individuals for the next population according to Darwinian
Theory.

It can be observed that the minimum objective function in the second iteration is less than the
previous generation. It clearly shows the improvement among the set of populations. As proceeds
with more generations there may not be much improvement among the set of populations and the
best individuals with only slight deviation from the fithess of the best individual may progress. The
populations get filled by more fit individuals with only slight deviation from the fitness of the best
individual so far found and the average fithess comes very close to the fithess of the best individual.
Number of generations is left to the personal interest. If the satisfied result is obtained, iteration can
be stopped when there is no significant improvement in the performance from generation to
generation.

2.4.2 Cross over

Crossover operator is applied to the cells with a hope that it would create a better string. In this
paper, strings are selected from the mating pool at random and some portions of the strings are
exchanged between strings. The following types of cross over operators are available in GA. 1) Single
point cross over 2) Two point cross over 3) Multi-point cross over 4) Uniform cross over and 5)
Two dimensional cross over. In this paper two point cross over is applied.

In the first generation as shown in Fig. 3, assume each cell contains 12 bit strings and with
reference to the first cell, the mating takes place between first and second cell according to the
Darwinian theory of survival of the fittest for minimum objective function by considering itself (1
celll) and its neighbor cells 2,8 & 9. Individuals are taking place in mating cells with cross-site 1 as
1 and cross-site 2 as 10 and the cross over takes place between the cells first and second. Similar
the crossover operator was applied for all the 16 cells by considering itself and its neighbors
assuming the probability of cross over is one. The populations obtained after cross over will form
new population set for the next generation as shown in Fig. 4. The process is repeated until to ge
optimal design without the violation of constraints or with a little violation.

Generation 1.

IR TICTIORDI 1 L1 OMHHN] GO0 101 10101 [ Q000 11000111
1 | 4
| 230754 ENjP 21 |2amm [3 1] 419 |
0100 L0010 011000101 RO RO 100 1000 1 1{CHN |
. | L | — L8]
{31280 28326 29953 | 7 | 31784
I 100 1000 11100 D10 I0LT 1] 10001 101 101 | OO0 L 100 1
| 3.1423 El 2 855] 2.997] El 10642 EI
| 1RO001 101110 D100 110101 ] TR 101 CHE 1N 10101 100G
13 14 E | | 185 |
24532 13 | 2 0866 14 | 3.3802 - | 27242

Fig. 3 4 x 4 Cells representing Moore neighbourhood Ydtetation
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Generation 2.

| L1000 [ 1T T000000100 D001 100001 000011000011
2 3 | Vi | 4 |
230754 IZI 3.1301 3.3821 = | 3287 — |
DOOTORTTI10] BOLO0TILIT] DO 100000 |00 1 10K
L2 ] 3 5
13255 3.2897 L7 _]]33384 & 30784
1001000 111040 DOO0101011 1 L1010 101 01010111
E El 2]
3.1423 El 33131 10 ] | 1.9642 o |- 024
L0010 L1 E 10 OO01010111 1 OOO010101 100 100010101110
2l
2 THOD 34117 l 33802 L2573

Fig. 4 4 x 4 Cells representing Moore neighbourhood 1oit@ration

2.4.3 Mutation

After Crossover strings are subjected to mutation. Mutation of auailves flipping it, changing
0 to 1 and vice versa. Just as PC (probability of the crossover rate assumed as 1) controls the cros
over, another parameter PM (probability of the mutation rate assumed as 0.03), gives the probability
that a bit will be flipped. The bits of strings are independently mutated, i.e., the mutation of a bit
does not affect the probability of mutation of other bits. The Simple GA treats the mutation as a
genetic operator with the role of restoring lost genetic material. For example suppose all the strings
in a population has converged to 0 at a given position and optimal solution has a 1 at that position,
the cross over cannot regenerate 1 at that position while a mutation could do. Thus mutation is
simply an insurance policy against irreversible loss of genetic material.

The mutation operator introduces new genetic structure in the population by randomly modifying
some of its building blocks, helping theasch algorithm escape from local minima’s traps. Since
the modification is not really to the previous genetic structure representing other sections of the
search space.

3. Formulation

Stacking different composite materials and/or fiber orientations forms composite laminates.
Composite laminates are used in applications that require axial and bending strengths. Therefore
composite laminates are treated as plate elements. Even though there are many theories such as
Equivalent single layer theory a) Classical laminate theory b) shear deformation laminate theory 2)
three dimensional elasticity theory 3) multiple model methods in this formulation we use classical
laminate theory as given by Reddy (2001).

Consider a plate shown in Fig. 5 of total thicknésscomposed of ' orthotropic layers with the
principal natural coordinatds T, Z directions withZ axis is taken positive upward at middle plane.
The following assumptions are made.

1) The layers are perfectly bonded together

2) The material of each layer is linearly elastic and has two planes of natural symmetry

3) Each layer is of uniform thickness

4) The strains and displacements are small
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Fig. 6 X, Y andL, T system

5) The transverse shear stresses on the top and bottom surfaces of the laminates are zero.

6) Kirchhoff's assumption holds good.

7) The transverse normal does not suffer any elongation

8) The transverse normal rotates such that they remain perpendicular to the mid surface after
deformation.

Taking a laminate shown in Fig. 6 and using the notations commonly adopted in composite
literature as given by Kao (1997), one can give stresseéYicoordinate directions in terms of
stresses in principal material coordinates narhdlas
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00y« O o 0
O 0O o 0O
0oyyO = [TIOorO
O 0O o 0O
Oy oLt

where [] is the stress transformation matrix.

Using the constitutive law, the stress - strain relationshiplisystem can be given as

E]]U'-'-E] Qu @ @ E]]ELE
E]]UTTE]]z Qun Q QOérO

where

[Q] =

Using the transformation law the constitutive matrixXivi system is obtained as

where

g 0O

O Qe @ QgNTO

E VirEr
(I-vrvr) (1=virvr)
vr B Er

(1-virvr) (=viqvr)

ool [s, s 050
OovyO =[S, & 080

O O o 0O
oxvO  |Se1 & & O¥yO

[S] = [TI[QI[T]

and the transformation matrix is given by

Co<6 sia - sa

[T] = |Sin"8 Ct8  Si@
Sin26  Sin260

> - Cos2

where @ is the fiber orientation with respect Xoaxis.

Referring to Fig. 5 the displacements of any point in a laminate is given by

u(xX, Y, 2 = ug(X, Y)—Z%)
V(X Y, 9 = vy(X Y)—Z%)

WX, Y, 2 = w(X, V)

0 0 G|

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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whereuy, Vo andw, are the displacements along the coordinate lines of a material pof gliane
whereZ = 0 (mid plane)
For small displacement problem, the strain displacement relation is written as

T
38 8 o 0
v
D& 0=0 5 O (15)
Hod  Oay a0
XY
oMy N
oY oXQ
Substituting foru, v we get
O O
o 9% 0O SEALNS
0O 5x 0 DOgx2 O
0%8 0 o O 0dw, O
o°w,
Oev0=0 =/ 0-Z0—10 (16)
38 B ad B
XY
dl¢)+%)ﬂ E]Q(?ZWOD
. D D(?X(?YE]]
or
{e} = {&}°+Z{x} (17)

The above equation shows the linear relationship of the strain in a laminate to the curvature of the
laminates. Now the stresses can be written as

{o} = [S{&}°+ Z[S{K} (18)

From Eq. (18) it is clear that the stresses vary linearly through the thickness of each lamina as
shown in Fig. 7. Even though strain is linear, the stresses however jump from lamina to lamina

—

Laminates Strain Stress Distribution

Distribution

Fig. 7 Stress strain variation across laminates
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since the transformed reduced stiffness mat8x dhanges from ply to ply asS[ depends on
material orientation of the ply. Consider a laminate made up’gdlies shown in Fig. 5 each ply
having the thickness df. The thickness of the lamina is given by

=St (19)
k=1

and
h, = -h/2 (bottom suface)
h, = h/2 (top surfacg (20)

The forces and moments related to the mid plane are given in terms of strains and curvatures as

[NxxD ,  HoxxO

|:| n k+1|] D
DNYYD = z O0yy[HZ (21a)

O «¥m1z 0O 0O

xy[J 9%y

0
A A A E]]t‘—'x E] Bii B Bis E]]KXXE

= Ay A,, AyOVO+|By By, By DevvD (21b)
As1 Aoz Asg ) 0 [Ber Bez Beo IKxv[
OMxD 5, 00w
OMyO= S [ DowZ dz (222)
E]M O «1z0O_ 0O
xY[] 09xvy [

0
Biy Bz Bis E]EXE] Dy Dy, Dgs E]KXXE

= |By, By, B,O& O+ |Dy D, Dog CKvyO (22b)
Bs:1 Bes2 Bss Dy?wE] De1 Dgz Degg| OKxv[O

where A, Bj and D; are extensional, bending and extensional coupled and bending matrices
respectively given by
k+1 k)
(A, By, Dy) = z [s°(1.z27) dz (23)

k=1 Z

The coefficients of the above three matrices explicitly given by

Z S (Zii1-2 (24a)
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n
3 2 2
By = ¥ S°(Z61-2) (24b)
k="1

5 S9(z2.,-2) (240)

k=71

In the following problems, the objective function is the total thickness, which has to be minimized
subjected to deflection, buckling and dynamic constraints.

4. Numerical results and discussion

Example 1. Flexural - torsional buckling of thin-walled symmetric | beam made of com-
posite material (Lee and Kim 2001)

Consider a simply supported composite beam of sparas shown in Fig. 8 subjected to
uniformly distributed loadd'. The object is to find the optimal lay up of the composite beam. It is
assumed that stacking sequence is symmetric andhihevalled leam is also symmetric with
respect taZ axis. Assumes, D1g do not contribute much, the differential equations are uncoupled
and one can calculate deflection and buckling loads very easily.

The deflection is given by (Lee and Kim 2001)

_ 5qL
5= 5. (25)

where

Ess = Elzz = leil + ZylblBil + YiblAil + bZDil + ZYszBil + ygbZAil + bgA:‘il/lz (26)

by
AY
[ ] hy
X Y
z N
b3 h3 » *+
A e Y;
A h,
- I
b,

Fig. 8 Composite | beam
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The various buckling loads in Euler and Torsional buckling modes are given by

rrZE
Py_er = ?22 (27a)

PE
Pz_er = ?33 (27b)

A, 2 2

where
b3 bS , 5
Ez = oA+ T5A* DDl (28a)
3.2 3.252
E = blylAil_i_ boyoA (28)
a4 12 12

Ess = leel‘)G"‘ szgz (28¢c)
lo = Iy+1, (28d)

vy lzz, A are the moments of Inertia df section abouty and Z axes and area of section
respectively. The buckling load is the minimum of values of Euler Buckling abemdZ axes as
well as torsional buckling loads.

Numerical Example. A hybrid Composite Beam of symmetric | section is simply supported over
a span of 8 m and subjected to uniformly distributed load of 1 N/m acting through shear centre. The
widths of top and bottom flanges are 100 mm and the depth of the web is 200 mm. It is required to
find the optimal lay-up of the hybrid beam such that the deflection should not exceed 5 mm and the
buckling load should not be less than 7 kN. Cellular Genetic Algorithm (CGA) is applied to find the
optimal lay-up of the beam. For each layer 12 bit binary string for each layer representing a
population in which first four represents the thickness and the second four the angle of fibres and
the last four representing the material. Varying the ratio of thickness of web to the fijnge (
analysis is carried out and the objective function is arrived at for each population. Table 2 represents
the optimal lay-up of laminates giving the thickness, fibre angle and the material. Fig. 9 shows the
variation of thickness with respect to number of layers both for symmetric and anti-symmetric
orientation of fibres. The minimum weight is obtainedrfer 1 for the composite | beam with anti-
symmetric laminates with 4 layers consisting of top layer of Graphite of 2.3 mm (18 deg) thickness
and the next layer of Boron of 1.7 mm (18 deg) thickness. Similarly 0.5 minimum weight is
obtained with anti-symmetric laminate of top layer of Graphite of 3.2 mm (12 deg) and the next
layer of Boron 0.8 mm (6 deg). This is obvious from Fig. 9. For any other number of layers also it
is possible to get the design parameters.
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Table 2 Optimal lay-up for simply supported composite thin-walled | beam

Symmetry/ Optimum _Opt|mu_m Unknowns
d r Thickness in mm : ;
Antisymmetry Layer Thickness Angle Material
(total)
2.4 18 1
Symmetry 1 4 8.2 17 18 5
. 2.3 18 1
Antisymmetry 1 4 8 17 18 5
Symmetry 0.5 2 8.8 4.4 60 1
. 3.2 12 1
Antisymmetry 0.5 4 8 08 6 1

(Note:-r = thickness of web/thickness of flange)

1.5
11.0 4
10.5
10.0 4
9.5 4
9.0
8.5

Total Thickness (Flange)

8.0
7.5
7.0 4 - r=1 (Sym) ——r=1 {Antisym)
6.5 —@— 1=0.5 (Sym) =X=r=0.5 (Antisym)
6.0 . . : r
0 2 4 6 8 10 12

No of Layers

Fig. 9 Optimal lay-up for | section (thickness in mm)

Example 2. Thin walled composite beam with channel section (Lee and Kim 2002)

Consider a channel section simply supported with a spah ahd subjected to uniformly
distributed load g as shown in Fig. 10. Assuming the stacking sequence is symmetric, and the
thin-walled composite-beam is symmetric with respecZtaxis and assumingys Dis do not
contribute much we get uncoupled differential equations and the deflection and the frequency can be
calculated very easily.

(29a)

1
Ess = [Ailﬁ - 25113/1 + Dil] b, + [Ailyg - 2Biﬂ/z + Dil] b, + 1_2Ai1b§ (29b)
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Fig. 10 Composite channel

and the natural frequency is given by

where
bi 1 bg 2 1 2 N2 2 A3 2 3 3
Ex = 1_2A11 + 1_2A11 + A1 XT + A, X5 + A b X3 +[ B X5 + Diy] by (31)
m, = Igby, +12b, + 13D, (32)
where
I, = pt (33)

Numerical Example. A hybrid Composite Beam of Channel section is simply supported over a
span of 8 m and subjected to uniformly distributed load of 1 N/m acting through shear centre. The
widths of top and bottom flanges are 200 mm and the depth of the web is 400 mm. It is required to
find the optimal lay-up of the hybrid beam such that the deflection should not exceed 3 mm and the
fundamental frequency should not be less than 1 rad/sec. Cellular Genetic Algorithm (CGA) is
applied to find the optimal lay-up of the beam. Table 3 represents the optimal lay-up of laminates
giving the thickness, fibre angle and the material. Fig. 11 shows the variation of thickness with
respect to number of layers both for symmetric and anti-symmetric orientation of fibres. The
minimum weight is obtained for the channel sectiorr (1) with a symmetric laminate of 4 layers
with thickness of 0.8 mm (24 deg) of top layer of Boron and the next layer of 0.5 mm thickness
(60 deg) of Graphite. The variation of thickness with respect to the number of layers is drawn in
Fig. 11.
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Table 3 Optimal lay-up for simply supported composite thin-walled chanrell}

Symmetry/ Optimum Optimum Unknowns
Antisymmetry Layer Thickness Thickness Angle Material
Svmmet 4 2.6 0.8 24 2
ymmetry 05 60 1
6 3.0 0.5 12 2
Antisymmetry 0.5 12 2
0.5 18 1
45
T 4
£
=
% 35
3
g
€ 37
-
s
© 25
——r=1 (Sym) —i—r=1 (Antisy)
2 1 : : : :

0 2 4 6 8 10 12
No of Layers

Fig. 11 Optimal lay-up for channel section

Example 3. Simply supported rectangular composite Plate (Reddy 2001)

We use either symmetric or anti-symmetric fiber orientation with respect to the middle layer in
practice. It is now necessary to calculate the deflection due to uniformljputestt load, buckling
load and the natural frequency for a rectangular plate shown in Fig. 12

N
_ Ny
k=S (34a)

X
- a
P=5 (34b)
The following constants are to be calculated
Ty, = AMTE + Agrtn’p? (35a)

T = (A + Ag) Tanp (35b)
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Y“ Ny
R R
= i
Nx _)) a ]
—: :_‘ » X
frrrrrm

Fig. 12 Simply supported rectangular plate

T3 = —(3Ble7fm2+ Bzerfnzpz)rmp+ Bnnamg"‘ (B1z + 2Bg) nsnzpz
T, = A66rr2m2 + Azzrfnzp2
Tos = — (B M’ + 3Byerfn,p*)mm+ Bo,itn’p’+ (B, + 2Bgg) m’np
Tas = Dyyrim’ + 2(Dy, + 2Dgg) T M°N°p° + Do,iin’p?

and the deflection due to uniformly distributed loadyefs given by

16q,

0= rfmnd‘B(Tlszz_

Tr)
where
(Moo =TI (2TiaTosTis= TooTia= TuTon)
33
a’ g (T1aTe— Tiz) g

Buckling loadN,(cri) is given by

D =

1 + (2T, Tp3T 45— Tstis - T11T§3) g

N,(cri) = O
" al(m? + kn’p?)d (ToiToo—T22) 0

The natural frequency is given by

4 4
m
W = W{Dllm"gg + 2(Dyyp + 2D66)m2n2£g+ Dznq
0
where
lo = |0+|2[E%"52+ E%”Eﬂ

(35¢)

(35d)

(35€)

(351)

(36)

(37)

(39)

(40)
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wherely, I, I, are mass moments and are given by

ol ,, 010
0 0- 0
0.0= [ po04 ¥Z (41)
O 0O e EIZZD
020 0

Numerical Example. A hybrid Composite plate of side 360 mm is simply supported on all sides
and subjected to uniformly distributed load of 0.01 N/sg.mm. It is required to find the optimal lay-
up of the hybrid plate such that the deflection should not exceed 2.75 mm and the buckling should
not be less than 80 N and the fundamental frequency should not be less than 25 rad/sec. Cellula
Genetic Algorithm (CGA) is applied to find the optimal lay-up of the plate. Analysis is carried out
by varying the aspect ratio and the ratio of axial load/ idirection to axial load irX direction.

Table 4 represents the optimal lay-up of laminates giving the thickness, fibre angle and the material.

Table 4 Optimal lay-up for simply supported rectangular composite plate

Aspect ratio Optimum Optimum Optimum

alb Ny/Nx Layer (material) Thickness Angle Sym/Antisy
0 4(2,1) 3.8(1.1,0.8) 12,48
1 1 6(1,3,3) 4.8(0.5,1.4,0.5) 0,60,36 Symmetry
4 6(2,2,4) 5.4(0.8,1.4,0.5) 24,84,72
0 8(1,1,3,1) 4(0.5,0.5,0.5,0.5) 0,12,0,48
1 1 6(2,1,1) 4.2(0.5,0.8,0.8) 66,18,36 Antisym
4 4(1,2) 4.4(1.7,0.5) 54,0
0 8(1,2,3,4) 4(0.5,0.5,0.5,0.5) 30,18,48,24
1.5 1 4(1,2) 4.4(1.1,1.1) 72,24 Symmetry
4 4(1,4) 5(0.8,1.7) 12,18
0 4(1,1) 4.4(1.7,0.5) 0,30
1.5 1 4(1,3) 4.40.8,1.4) 36,48 Antisym
4 6(2,2,3) 4.8(0.5,1.4,0.5) 6,48,36
6.00
E 550
g 500
§ 450
=
¥ 400
£
= 350 [—e— Ny/N=D Sym  —t— Ny/N=0 Antisym —e— Ny/Nx=1 Sym
]—~A—-M/M(=1Anﬁsym—x—w/l\k=49/m i Ny/N=4 Antisym|
3.00
0 2 4 6 8 10 12
No of layers

Fig. 13 Optimal lay-up for simply supported square plata £ 1)
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2 4 6 8 10 12
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Fig. 14 Optimal lay-up for simply supported rectangular plata £ 1.5)

Figs. 13 and 14how the variation of thickness with respect to number of layers both for symmetric
and anti-symmetric orientation of fibres for two aspect ratios of 1 and 1.5 respectively.

Example 4. Orthotropic circular cylindrical composite shell (Yao and Xiao 1987)

Optimal design for orthotropic circular cylindrical shell shown in Fig. 15 of hybrid laminate
composites subjected to deflection and free vibration is carried out. From the equilibrium equation
for the shell subjected to uniformly distributed loayl the maximum deflection and the natural
frequency are obtained by Yao and Xiao (1987) as

Fig. 15 Simply supported shell
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=9 42
3 (42)
where
5= |0uff7 + 20u+ D T I + 01 +
where
f
a= - 44
g (44)
f andg are given by
(AuAr,—AT) %“f%z
f = (45a)
a
2
_ [m_ [D[] (A1Ag — A= 2A1LAs) [D[fljm'l[f
g - |: llD L + AZZ&D A33 &D D L D (45b)
The natural frequency is given by
le
ph%\ (46a)
_ [p. o mofmaf, 5 ool
a = |:D11|:] Lo’ 2(Dy, + Dﬁe)[h[] oLo’ DZZEhD} (46Db)
4
1= (A11A22—Aiz)% (46c¢)
4 4
= o AT s a0 (A A 2AA EE T AL (a60)

The above formulae are applicable only if the shell is simply supported and subjected to
uniformly distributed load ofd'. If the supports are changed different formulae must be used.

Numerical Example. A hybrid Composite simply supported tube of radius of 2000 mm and
length of 8 m is simply supported and subjected to uniformly distributed load of 1 N/m. It is
required to find the optimal lay-up of the hybrid composite tube such that the deflection should not
exceed 0.095 mm and the fundamental frequency should not be less than 2 ratidec Geeetic
Algorithm (CGA) is applied to find the optimal lay-up of the tube. Analysis is carried out by
varying the aspect ratio (radius/length). Table 5 represents the optimal lay-up of laminates giving the
thickness, fibre angle and the material. Figs. 16 and 17 show the variation of thickness with respect
to number of layers both for symmetric and anti-symmetric orientation of fibres for different aspect
ratios.
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Table 5 Optimal lay-up for simply supported composite tube

" Optimum Optimum Unknowns Symmetry/
r .
layer thickness Thickness Angle Material Antisymmetry
1.6 60 2 .
0.5 4 4.2 05 12 5 Antisymmetry
0.733 60 2 .
1 4 7.606 307 72 5 Antisymmetry
4.53 72 2 .
15 4 12.92 193 84 5 Antisymmetry
0.773 72 1
0.5 8 5.014 0507 % ! S t
' ' 0.72 36 1 ymmetry
0.507 54 3
1 2 7.6 3.8 66 2 Symmetry
2 84 2
15 4 13.86 4.93 60 5 Symmetry
Antisymimetny
Symmetry 18

20

—
D
L
()

d

Total Thickness in mm
Y]
Tebal Thickness in mm
=
F %

@®
.

'___.—/-l\./. i .

-
\.\_.\._’. n & - = -
. . ‘ ' : . — . . .
0 2 4 6 8 10 12 . 2 e v, B o 12
No of Layers ke
—te /= 0.5 /1= 1 ——1/1=1.5 — = =05 == =1 —dr—r1=15

Fig. 16 Optimal symmetric lay-up for simply supportedFig. 17 Optimal anti-symmetric lay-up for simply
composite tube supported composite tube

4. Conclusions

In this paper, the optimum fiber orientations, thickness and material and number of layers are
obtained for multi-layered composite hybricedms, plates and shells subjected to static and
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dynamic analysis. For composite | beam for 1, 4 layers of hybrid material of Graphite and
Boron with anti-symmetric orientation give the minimum weigtithwthickness of 8 mm and for

r =0.5, 4 layers of Boron with anti-symmetric orientation give the minimum weight with thickness
of 8 mm.

For hybrid composite channel, symmetric orientation with 4 layers of Graphite and Boron gives
the minimum thickness of 2.6 mm.

For composite plates, the thickness of the plate vary from 3.8 to 4.8 mm depending on the ratio of
axial loads inY to X directions and the aspect ratio.

For the hybrid composite tube, 4 layers give the minimum weight for all ratiagL ofvith
thickness varying from 4.2 mm to 12.92 mm for anti-symmetric orientation and 5 mm to 13.86 for
symmetric orientation. With the program developed, it is possible to get the minimum weight design
of hybrid composite beams, plates and tube.

Acknowledgements

The authors thank the management and the principal Dr. S. Vijayarangan of PSG College of
Technology, Coimbatore, India for giving the necessary facilities to the authaario out the
work reported in this paper.

References

Goldberg, D.E. (1989)Genetic Algorithm in Search Optimization and Machine Leatniddison-Wesley
Publishing Company Inc., Reading Massachusetts.

Holland, J.H. (1975)Adaptation on Natural and Artificial Systergniversity of Michigan Press, Ann Arbor,
Michigan, USA.

Kaw, A.K. (1997),Mechanics of Composite MaterialSRC Press, USA.

Lee, J. and Kim, S.E. (2001), “Flexural - torsional buckling of thin-walled | section composi@siput.
Struct, 79, 987-995.

Lee, J. and Kim, S.E. (2002), “Flexural - torsional coupled vibration of thin-walled composite beams with
channel section"Comput. Struct.80, 133-144.

Rajeev, S. and Krishnamoorthy, C.S. (1992), “Discrete optimization of structure using genetic algodthms”,
Struct. Engg ASCE,1185), 1233-1250.

Reddy, J.N. (2001)Viechanics of Laminated Composite Plates - Theory and Analy|i€ press., USA.

Srinivas, S.A.S. (1997), “Genetic algorithm to optimal lay-up in thin composite panels”, ME Thesis, Bharathiar
University, Coimbatore.

Ulam, S. (1974)Some Ideas and Prospects in Biomathemating. Rev. Bio, 255.

Yao, A. and Xiao, F. (1987), “Free vibration analysis of an orthotropic circular cylindrical shell of laminated
composites” 1, Analysis and Design StudjeSIsevier Applied Science, 1.502-508.

Notation

The following symbols are used in the paper
a : Length inX direction of the plate

Alj : Extensional Constant

b : Length inY direction of the plate
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: Coupling constant

: Constraint

: Bending constant

: Modulus of elasticity in Longitudinal direction
: Modulus of elasticity in Transverse direction
: Modulus of elasticity in Normal direction
: Modulus of rigidity in L-T direction

: Thickness of the laminate

: Moment of Inertia

: Moments

: Mass

: a/b aspect ratio

: Lateral Load on the plate

: Constitutive constants

: Displacement inX direction

: Displacement inY direction

: Displacement irZ direction

: Variable

: Distance of the lamina from centre

: Deflection

: Normal Strains

: Objective function

: Shear Strain

: Poison’s ratio in L-T direction

: Density

. Stress
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