
Structural Engineering and Mechanics, Vol. 16, No. 3 (2003) 327-340 327

Feedback control of intelligent structures with 
uncertainties and its robustness analysis

Zongjie Cao†

Department of Engineering Mechanics, Shanghai Jiaotong University, Shanghai, 200240, P.R. China
The Second Aeronautic Institute of Air Force, Changchun, 130022, P.R. China

Bangchun Wen†

School of Mechanical Engineering and Automation, Northeastern University, 
Shenyang, 110004, P.R. China

Zhenbang Kuang†

Department of Engineering Mechanics, Shanghai Jiaotong University, Shanghai, 200240, P.R. China

(Received January 13, 2003, Accepted June 9, 2003)

Abstract. Variations in system parameters due to uncertainties of parameters may result in system
performance deterioration and create system internal stability problems. Uncertainties in structural
modeling of structures are often considered to ensure that the control system is robust with respect to
response errors. So the uncertain concept plays an important role in the analysis and design of the
engineering structures. In this paper, the active control of the intelligent structures with the uncertainties is
studied and a new method for analyzing the robustness of systems with the uncertainties is presented.
Firstly, the system with uncertain parameters is considered as the perturbation of the system with
deterministic parameters. Secondly, the feedback control law is designed on the basis of deterministic
system. Thirdly, perturbation analysis and robustness analysis of intelligent structures with uncertainties
are discussed when the feedback control law is applied to the original system and perturbed system.
Combining the convex model of uncertainties with the finite element method, the analysis theory of the
robustness of intelligent structures with the uncertainties can be developed. The description and
computation of the robustness of intelligent structures with uncertain parameters is obtained. Finally, a
numerical example of the application of the present method is given to show the validity of the method.
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1. Introduction

Analysis and design methods for the engineering structures are generally on the basis of
deterministic parameters. Because of the inaccuracy of measurement, errors in manufacture, etc., in
practice, there are often uncertainties such as material and geometric properties, external forces, and
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boundary conditions. In most situations, the effect of uncertainties to the dynamic stabilities is
small, but the combination of those uncertainties can lead to large and unexpected excursion of the
response that may cause structural instability, which may lead to a drastic reduction in accuracy and
precision of operation, especially in multicomponent systems.

Many techniques are developed to solve the uncertain problems, such as a random vector methods
(Conlreras 1980), fuzzy set methods (Ibrahim 1987) and the probabilistic approaches (Chen et al.
1992, Contracts 1980, Chen 1992). The probabilistic approaches are not able to deliver the reliable
results at the required precision without sufficient experiment data to validate the assumptions made
regarding the joint probability densities of the random variables. For the fuzzy model, uncertainties
in the fuzzy statistics still exist such as the fuzzy statistical errors or uncertainties in the fuzzy
statistics, and the choice of subjection degree function has the artificial uncertainties (Liu and Cheng
1989). Recently, modeling of uncertainties in parameters have drawn interest both from the system
control robustness analysis and from the structural failure measure field. Ben-Haim and Elishakoff
(1990) presented an unknown-but-bounded imperfection model, later the study of dynamic response
and failure of structures under pulsed parametric loading were discussed by Lindberg (1991). An
unknown-but-bounded models of uncertainties in parameters has also been used in determining the
robustness of a control system by Shi and Gao (1987). Ibbini and Alawneh (1998) presented two
different approaches to improve the robustness of the resulting closed-loop system based on the
source of eigenvalues perturbation. The free parameters are adjusted to minimize the closed-loop
system condition number which is well known as a robustness measure with respect to system
parameter variation (Karbassi and Bell 1993). Minimizing the system entropy as a measure of an
upper bound on  norm can be used to improve the robustness of the closed-loop system
(Kautsky et al. 1985) when external disturbance simulated as white noise input presented. Chen and
Cao (2000) only discussed determining locations of the piezoelectric sensor/actuator for vibration
control of intelligent structures, feedback control was not considered. Cao et al. (2001) only studied
feedback control and robustness of intelligent structures with deterministic parameters, but not
discussed robustness of intelligent structures with uncertainties. The robustness of a closed-loop
system is one of the most important concerns of control system designers. Variations in system
parameters due to uncertainties of parameters may result in system performance deterioration and
even in system internal stability. Uncertainties in structural modeling are often considered to ensure
that the control system is robust with respect to response errors. So the uncertain concept plays an
important role in the analysis and design of the engineering structures.

In this paper, the active control of the intelligent structures with the uncertainties is studied and a
new method for analyzing the robustness of systems with the uncertainties is presented. First, the
system with uncertain parameters is considered as the perturbation of the system with deterministic
parameters. Second, the feedback control law is designed on the basis of deterministic system.
Third, perturbation analysis and robustness analysis of intelligent structures with uncertainties are
discussed when the feedback control law is applied to the original system and perturbed system.
Combining the convex model of uncertainties with the finite element method, the analysis theory of
the robustness of intelligent structures with the uncertainties can be developed. The expressions for
computing the upper and lower bounds of the robustness of intelligent structures with the
uncertainties are obtained. Finally, a numerical example of the application of the present method to
show the validity of the method is given.
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2. Motion equations of intelligent structures

The vibration control equations of intelligent structures with distributed sensors and actuators are
given as follows (Chen et al. 1999)

(1)

where M, K and  are the mass, stiffness and damping matrices of intelligent structures
with uncertain parameters, respectively;  is a displacement vector;  is a control
force vector;  is the controllable matrix determined by placements of actuators;  is
the output vector of sensors;  is the observable matrix determined by placements of sensors.

Suppose the uncertain parameters are denoted by δmj , δkj and δcj ( j = 1, 2, ..., N), and the mass,
stiffness and damping matrices of systems with uncertainties can be expressed as

(2)

where M0, K0 and  are the mass, stiffness and damping matrices of structures with
deterministic parameters; M j , Kj and Cj are changes of the jth element mass, stiffness and damping
matrices of the intelligent structures with uncertainties, respectively. δmj, δkj and δcj ( j = 1, 2, ..., N)
are their uncertain parameters and N is the total number of the elements with uncertainties. Using
the following notations

(3)

then Eq. (2) can be expressed as

(4)

Mq·· t( ) Cq· t( ) Kq t( )+ + B0F t( )=

Vs D0q t( )=



C Rn n×∈
q Rn∈ F t( ) Rp∈

B0 Rn p×∈ Vs Rp∈
D0 Rp n×∈

M M 0 δmjM j
j 1=

N

∑+=

K K0 δkjKj
j 1=

N

∑+=

C C0 δcjCj
j 1=

N

∑+=











C0 Rn n×∈

δmjM j
j 1=

N

∑ Mu=

δkjK j
j 1=

N

∑ Ku=

δcjCj
j 1=

N

∑ Cu=












M M 0 Mu+=

K K0 Ku+=
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As can be seen from Eq. (4) matrices of systems with uncertain parameters are equal to matrices
of systems with deterministic parameters and changes corresponding to matrices. Thus the system
with uncertain parameters can be considered as the perturbation of the system with deterministic
parameters. The vibration control equations of intelligent structures with deterministic parameters
are written as follows:

(5)

The eigenproblem corresponding to Eq. (5) is

(6)

where  is a diagonal of eigenvalues matrix; Φ0 = [φ01, φ02, ..., φ0n]
 is a modal matrix. φ0 and λ0 satisfy following equation

(7)

Transforming Eq. (5) into the modal coordinates through the coordinate transformation

yields

(9)

(10)

where . It can be seen that Eq. (9)
does not illustrate the relation between the feedback control force. (F(t)) and controllability and that
Eq. (10) does not illustrate the relation between Vs and observability. In order to reveal the relation
between F(t) and controllability and between Vs and observability, the singular value decomposition
of B is taken, the following equation can be obtained

(11)

where U0 and V0 are left and right singular vectors of B, respectively; , ,

, ; , , in which  is the number

of controllable modes. σai is a measure of the controllability of the ith mode, σai > 0. We assume
that  here. Similarly, the singular value decomposition of D can be obtained

(12)

where , , in which  is the number of observable

M0q·· t( ) C0q· t( ) K0q t( )+ + B0F t( )=

Vs D0q t( )=



K0Φ0 λ0M0Φ0=

λ0 diag ω01
2 ω02

2 … ω0n
2, , ,( ) Rn n×∈=

Rn n×∈

K0φ0i ω0i
2

M0φ0i=

φ0i
T M0φ0i 1=




q t( ) ΦΦ0η t( )=

η·· t( ) Zη· t( ) λ0η t( )+ + BF t( )=

Vs Dη t( )=

Z Φ0
TC0Φ0 Rn n× ; B Φ0

TB0 Rn p× , D D0Φ0 Rp n×∈=∈=∈=

B U0 V0
T∑=

U0 Rn n×= V0 Rp p×=

U0
TU0 I n= V0

TV0 I p= Σ Σ0  0

0  0
=

n p×

Σ0 diag σa1 σa2 … σaa, , ,( )= a

a p=

D V0Σ′U0
T

=

Σ′ Σ0
′   0

0  0 p n×

T

= Σ0
′ diag σs1 σs2 … σs s, , ,( )= s
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modes. σsi is a measure of the observability of the ith mode, σsi > 0. We assume that  here. If
the sensor is not only used for measuring the motion but also for controlling and suppressing the
vibration of intelligent structures as the actuator, then and . The modal
transformation, , can be used, Eqs. (9) and (10) can be changed into the following
forms

(13)

(14)

where .

3. The feedback control of intelligent structures with uncertainties

For a direct output feedback control system, the control force f (t) of Eq. (13) is assumed to be the
following form

(15)

where G1 and G2 are the feedback gain matrices of displacement and velocity, . Coefficients
of G1 and G2 are to be determined. From Eq. (15), it can be seen that f (t) is proportional to

when G1, G2, x(t) and  are given. The greater σsi is, the smaller the feedback gain is
required to produce the same control effect on xi. It is assumed that G1 = diag(g11, g12, ..., g1p) and
that G2 = diag(g21, g22, ..., g2p). Substituting Eq. (15) into Eq. (13), then Eq. (13) can be expressed as

(16)

Eq. (16) is decoupled, so we have

(17)

The key factor of control and suppression vibration is the damping factor. It is assumed that the
poles of the closed-loop system are . Then we have

(18)

From Eq. (18) we obtain

(19)

Then the control force F(t) in Eq. (1) is

(20)

s p=

U0
T
U0 = I n V 0

T
V0 = I p

η t( ) U0x t( )=

x·· t( ) 2ω0ξ0x· t( ) ω0
2
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TF t( )=,=
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′ x· t( )

x·· t( ) 2ω0ξ0 Σ0G2Σ0
′+( )x· t( ) ω0

2( Σ0G1Σ0
′ )x t( )+ + + 0=

x··i t( ) 2ω0iξ0i σaiσsig2i+( )x·i t( ) ω0i
2 σaiσsig1i+( )xi t( )+ + 0=

S0j αj– iβj±=( ) i 1 2 … p α j 0>, , , ,=,

2ω0iξ0i σaiσsig2i+ 2αi=

ω0i
2 σaiσsig1i+ β i

2 α i
2+=
 , i





1 2 … p, , ,=

g1i β i
2 αi

2 ω0i
2–+( ) σaiσsi( )⁄=

g2i 2 αi ω0iξ0i–( ) σaiσsi( )⁄=



F t( ) V0G1Σ0
′ U0

TΦ0
Tq t( )– V0G2Σ0
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4. Perturbation analysis of intelligent structures with uncertainties

When the control force F(t) of Eq. (20) is applied to Eq. (5), we have

(21)

where The eigenvalue problem
with deterministic parameters corresponding to Eq. (21) is

(22)

where  is a complex diagonal matrix. Let us introduce a state vector

(23)

where u0 is the eigenvectors. Hence Eq. (22) becomes

(24)

where

(25)

where  is a complex diagonal matrix. If the uncertain parameters (Mu, Cu and Ku) are
small, the corresponding state equation with uncertain parameters like Eq. (24) is as follows:

(26)

where

(27)

and

(28)

According to the perturbation theory (Chen 1992), the eigenvalue and eigenvector can be expressed
as the power series in ε, that is

(29)

(30)

M0q·· t( ) C0q
· t( ) K0q t( )+ + 0=
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=
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0  K0
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0  P0

==
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A1
0  Mu

Mu  Cu

= , E1
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0  Ku
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S S0 εS1 ε2
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where S0j = −αj ± iβj. According to the matrix perturbation theory (Chen 1992), the 1st order
perturbation of eigenvalues structures with uncertain parameters is

(31)

where S0i is the ith eigenvalue of the deterministic structure. Φ0i is the corresponding ith mode.
Substituting Eq. (28) into Eq. (31), Eq. (31) can be changed as follows:

(32)

Substituting Eq. (3) into (32), yields

(33)

where  is the element mode of the jth element in the ith mode. Using the following notations

(34)

Eq. (33) becomes

(35)

Let

(36)

Eq. (35) can be expressed as

(37)

The ith eigenvalue of the perturbed system with uncertainties can be expressed as

(38)
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5. Robustness analysis of intelligent structures with uncertainties

As mentioned above, the uncertainty is not equal to the randomness, and the probability model is
not the only way to illustrate uncertainties. The uncertainties of the convex model theory can be
described by the non-random bounded models (Ben-Haim and Elishakoff 1990), δmj, δkj and δcj

( j = 1, 2, ..., N) satisfy the following constraint conditions

(39)

where Ω1, Ω2 and Ω3 are the N-dimension symmetric positive weighted matrices; δ1, δ2 and δ3 are
the given positive real numbers. It can be seen from the above discussion that if Eq. (38) takes the
extremum where the uncertain parameters δm, δc and δk satisfy the constraint condition Eq. (39), the
upper and lower bounds of robustness of intelligent structures with uncertain parameters can be
obtained. The Lagarange Multiplier Method can be used to seek the upper and lower bounds, we
construct a function Hi

(40)

where t1, t2 and t3 are the Lagarange multipliers, respectively. Let the partial derivatives of Eq. (40)
with respect to δm, δc and δk be zero, yield

(41)

From Eq. (41), we get

(42)

Substituting Eq. (42) into the constraint condition (39), we have

δm
T Ω1δm δ1

2≤

δc
TΩ2δc δ2

2≤

δk
TΩ3δk δ3

2≤





Hi S i( ) t1 δm
T Ω1δm δ1

2–( ) t2 δc
TΩ2δc δ2

2–( ) t3 δk
TΩ3δk δ3

2–( )+ + +=

∂Hi

∂δm

--------- S0i
2 M– 2t1Ω1δm+ 0= =

∂Hi

∂δc

-------- S0iC– 2t2Ω2δc+ 0= =

∂Hi

∂δk

-------- K– 2t3Ω3δk+ 0= =










δm

S0i
2 Ω1

1– M
2t1

---------------------=

δc

S0iΩ2
1– C

2t2

--------------------=

δk

Ω3
1– K

2t3

-------------=
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(43)

Substituting Eq. (43) into Eq. (42) yield

(44)

Substituting Eq. (44) into (37), the expression for the extremum of the 1st perturbation of
eigenvalues can be obtained

(45)

Substituting  into Eq. (45), the following equation can be obtained

(46)

where

(47)

It is well known that the change of the jth damping factor of the closed-loop system with
uncertainties only concerns with the real part of . We define , =

, then

(48)

t1

S0i
2 M

TΩ1
1– M

2δ1

---------------------------------±=
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S0i C
TΩ2
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------------------------------±=
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TΩ3

1– K
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TΩ1
1– M± S0i± δ2 C
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i( ) S1I
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Then the jth modal damping factor (ηj) of the closed-loop system of intelligent structures with
uncertainties satisfies the following condition

(49)

It can be seen from Eq. (49) that if αj is suitably selected, intelligent structures will have enough
dynamic stability tolerance. 

6. Numerical example

The numerical example of a cantilever beam is given to illustrate the application of the method
presented in this paper. The cantilever beam with S/As(shown in Fig. 1), made of the graphite/epoxy
materials, is sandwich with piezoelectric polymeric PVDF layers which are bonded on both the
upper and bottom surfaces of the beam. The PVDF layers are assumed to be perfectly bonded to the
surfaces of beam and modelled as thin films. Piezoelectric polymeric PVDF layers are each 0.5 mm
thick. The mass density of the PVDF is equal to 1680 Kg/m3, and Young’s modulus
E1 = E2 = 0.20E + 10 N/m2, and Poison ratio ν12 = ν21 = 0.28. Dielectric constants in coulomb per
square meter, with Z direction (thickness) being the poling direction, are Γ11 = Γ22= Γ33= 0.1062E-9
and piezoelectric constants e31 = e32= 0.046, e33= e24= e15= 0.0. The mass density of the graphite/
epoxy materials equals 2680 Kg/m3, and Young’s modulus E1 = E2 = 0.80E+10 N/m2, and Poison
ratio ν12= ν21=0.29.

The finite element method of the cantilever beam is utilized to model the system in Fig. 1, which
consists of 32 elements with 133 nodes. The eigenvalue analysis of original determinate structures is
carried out with the finite element method, the eigenvalues of the first ten lower modes are shown in
Table 1. In Table 1, ω0 denotes the eigenvalues of the original open-loop system of denotes the
eigenvalues of determinate structures. It is assumed that αj is equal to 0.6 and βj = ω0j. It can be
assumed that the 4th, the 10th, the 20th and the 26th elements are uncertain. Then whole stiffness
and mass matrices of the beam with uncertainties can be expressed as

(50)

0 S1R
i( )( )min η j≤< S1R

i( )( )max≤

M M 0 δm4M4 δm10M10 δm20M20 δm26M26+ + + +=

K K0 δk4K4 δk10K10 δk20K20 δk26K26+ + + += 



Fig. 1 The cantilever beam with uncertain parameters
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In the computations, we assume that δ1 = δ2 = δ3= δ = 0.01, Ω1= Ω2 = Ω3= I4×4, let δcj = 0.0. In
this case, the constraint condition (39) can be changed as

(51)

where δmj, δkj ( j = 1, 2, ..., 4) are the uncertain parameters. Two cases can be considered as the
perturbation of the system with deterministic parameters. Firstly, assumed that the mass and stiffness
of each element mentioned above is changed into ±1% to those of the determining system at the
same time. Then the robustness of intelligent structures with uncertain parameters is obtained,
shown in Fig. 2; secondly, assumed that the mass and stiffness of each element mentioned above is
changed into ±10% to those of the determining system at the same time. Then the robustness of
intelligent structures with uncertain parameters is obtained, shown in Fig. 3. Similarly, if uncertain

δm4
2 δm10

2 δm20
2 δm26

2+ + + δ1
2; δk4

2 δk10
2 δk26

2 δk26
2+ + + δ3

2;= =

Table 1 The first lower eigenvalues of determinate structures

Mode No Eigenvalues(ω0)

1 0.86338238902092E+01
2 0.54036695336482E+02
3 0.13218764044069E+03
4 0.15117686023797E+03
5 0.29606045562640E+03
6 0.39952573826196E+03
7 0.48920254320226E+03
8 0.67561320365956E+03
9 0.73069077978485E+03
10 0.96587764277874E+03

Fig. 2 The upper and lower bounds of robustness of
different modes

Fig. 3 The upper and lower bounds of robustness of
different modes
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Table 2 Robustness of intelligent structures with uncertainties (αj = 0.4 and changes as ±5%)

δ
order bounds 0.000 0.002 0.004 0.006 0.008 0.010 

1
upper 0.400000 0.400336 0.400673 0.401009 0.401345 0.401682
lower 0.400000 0.399664 0.399327 0.398991 0.398655 0.398318 

2
upper  0.400000 0.401384 0.402767 0.404151 0.405535 0.406918
lower 0.400000 0.398616 0.397233 0.395849 0.394465 0.393082 

3
upper 0.400000 0.400928 0.401856 0.402785 0.403713 0.404641
lower 0.400000 0.399072 0.398144 0.397215 0.396287 0.395359 

4
upper 0.400000 0.408250 0.416500 0.424750 0.433000 0.441251
lower 0.400000 0.391750 0.383500 0.375250 0.367000 0.358749 

5
upper 0.400000 0.417338 0.434677 0.452015 0.469354 0.486692
lower 0.400000 0.382662 0.365323 0.347985 0.330646 0.313308 

6
upper 0.400000 0.405982 0.411964 0.417946 0.423928 0.429910
lower 0.400000 0.394018 0.388036 0.382054 0.376072 0.370090 

7
upper 0.400000 0.409315 0.418630 0.427945 0.437261 0.446576
lower 0.400000 0.390685 0.381370 0.372055 0.362739 0.353424 

8
upper 0.400000 0.479140 0.558281 0.637421 0.716562 0.795702
lower 0.400000 0.320860 0.241719 0.162579 0.083438 0.004298 

9
upper 0.400000 0.402240 0.404481 0.406721 0.408961 0.411202
lower 0.400000 0.397760 0.395519 0.393279 0.391039 0.388798 

10
upper 0.400000 0.430346 0.460692 0.491038 0.521385 0.551731
lower 0.400000 0.369654 0.339308 0.308962 0.278615 0.248269 

Table 3 Robustness of intelligent structures with uncertainties(αj = 0.4 and changes as ±10%)

δ
order bounds 0.000 0.002 0.004 0.006 0.008 0.010 

1
upper 0.400000 0.400673 0.401345 0.402018 0.402690 0.403363
lower 0.400000 0.399327 0.398655 0.397982 0.397310 0.396637 

2
upper 0.400000 0.402767 0.405535 0.408302 0.411070 0.413837
lower 0.400000 0.397233 0.394465 0.391698 0.388930 0.386163 

3
upper 0.400000 0.401856 0.403713 0.405569 0.407426 0.409282
lower 0.400000 0.398144 0.396287 0.394431 0.392574 0.390718 

4
upper 0.400000 0.416500 0.433000 0.449501 0.466001 0.482501
lower 0.400000 0.383500 0.367000 0.350499 0.333999 0.317499 

5
upper 0.400000 0.434677 0.469354 0.504030 0.538707 0.573384
lower 0.400000 0.365323 0.330646 0.295970 0.261293 0.226616 

6
upper 0.400000 0.411964 0.423928 0.435892 0.447856 0.459820
lower 0.400000 0.388036 0.376072 0.364108 0.352144 0.340180 

7
upper 0.400000 0.418630 0.437261 0.455891 0.474521 0.493151
lower 0.400000 0.381370 0.362739 0.344109 0.325479 0.306849 
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parameters of intelligent structures are changed, the robustness of systems can be obtained with the
method presented in this paper.

Similarly, if let α = 0.4, robustness of intelligent structures with uncertain parameters can be
obtained. Here we only consider two cases as follows: firstly, assume that the mass and stiffness of
each element mentioned above is changed into ±5% to those of the determining system at the same
time, the robustness of intelligent structures with uncertain parameters is obtained, shown in Table 2;
secondly, assume that the mass and stiffness of each element mentioned above is changed into
±10% to those of the determining system at the same time, the robustness of intelligent structures
with uncertain parameters is obtained, shown in Table 3.

It can be seen from Figs. 2, 3 and Tables 2, 3 that if αj is suitably given, robustness of intelligent
structures with uncertain parameters can be obtained. Then the dynamic stability tolerance of
intelligent structures with uncertain parameters can be keep when αj is suitably selected.

7. Conclusions

In this paper, the active control of the intelligent structures with the uncertainties is studied and a
new method for analyzing the robustness of systems with the uncertainties is presented when as
following main steps are done. Firstly, the system with uncertain parameters is considered as the
perturbation of the system with deterministic parameters. Secondly, the feedback control law is
designed on the basis of deterministic system. Thirdly, perturbation analysis and robustness analysis
of intelligent structures with uncertainties are discussed when the feedback control law is applied to
the original system and perturbed system. Combining the convex model of uncertainties with the
finite element method, the analysis theory of the robustness of intelligent structures with the
uncertainties can be developed. The description and computation of the robustness of intelligent
structures with uncertain parameters is obtained. The numerical results prove that the present
method is effective.
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