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Abstract. This paper, which is an extension of a previous work by Viola et al. (2002), deals with the
dynamic stability of beams under a triangularly distributed sub-tangential forces when the effect of an
elastically restrained end is taken into account. The sub-tangential forces can be realised by a combination
of axial and tangential follower forces, that are conservative and non-conservative forces, respectively. The
studied beams become unstable in the form of either flutter or divergence, depending on the degree of
non-conservativeness of the distributed sub-tangential forces and the stiffness of the elastically restrained
end. A non-conservative parameter α is introduced to provide all possible combinations of these forces.
Problems of this kind are usually, at least in the first approximation, reduced to the analysis of beams
according to the Bernoulli-Euler theory if shear deformability and rotational inertia are negligible. The
equation governing the system may be derived from the extended form of Hamilton’s principle. The
stability maps will be obtained from the eigenvalue analysis in order to define the divergence and flutter
domain. The passage from divergence to flutter is associated with a noticeable lowering of the critical
load. A number of particular cases can be immediately recovered.

Key words: dynamic instability; non-conservativeness; sub-tangential forces; flutter and divergence;
elastically restrained end.

1. Introduction

The analysis of the statics, the dynamics and particularly of the stability of columns under a non-
potential load occupies a lot of space in the literature. Recently, a considerable amount of works has
been published on the problem of elastic stability of a structural system under the action of non-
conservative sub-tangential forces which are of particular importance in modern engineering
practice. The sub-tangential forces are the combination of the axial forces and the tangential
follower forces. As is well known, the axial forces satisfy the principle of conservation of energy,
and their work over any admissible displacements of the body is path-independent. In fact, the axial
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forces always act in the same direction so they are conservative, i.e. derivable from a potential
function. The tangential follower forces, instead, are dependent on the deformation of the body on
which they act and are non-conservative, i.e. not derivable from a potential function. However, they
can still be defined by the work done over an arbitrary small displacement. In literature these types
of systems may be called “Hybrid-type system”, because their loss of stability occurs through
divergence or flutter depending on the degree of the non-conservativeness of the load (Argyris and
Symeonidis 1981). It is known that if the type of instability is divergence, the critical loads of the
system can be determined by a static approach, while for flutter the critical loads should be
determined using the dynamic criterion.

From a mathematical point of view some differences exist between conservative and non-
conservative stability problems. The mathematical treatment of conservative stability problems leads
to the analysis of self-adjoint boundary eigenvalues problem. The respective eigenvalues are real and
can be established by employing the static stability criterion; moreover, they are positive and simple,
forming, when ordered with respect to the magnitude, a denumerable infinite sequence associated
with corresponding eigenfunctions which constitute a complete orthogonal system. An essentially
different mathematical structure presents the problem of stability of non-conservative systems. In
fact, the differential equations governing the equilibrium of these systems are not self-adjoint. The
eigenvalues of the above non self-adjoint problems may be real or complex. In the first case the
static stability criterion is applicable and the instability of the system is in the form of the
divergence, whereas in the second case, that of flutter instability, it cannot be employed. Application
of the dynamic stability criterion entails increased computational work. 

In a finite element formulation, the analysis of a geometrically non-linear elastic system subject to
such non-conservative forces gives rise, in general, to a contributory non-symmetric stiffness matrix
known as the load correction matrix. As a result, the total tangent stiffness matrix becomes non-
symmetric, an indication of the non self-adjoint character of the problem, and the corresponding
eigenvalues problem can exhibit complex eigenvalues. It should be noted that, owing to the action of
the non-conservative forces applied to a beam, the system undergoes a deformation which may be
mathematically described by a deflection vector. This vector has one predominant component: the
lateral deflection of the beam. The instability of the system occurs for the critical values of the loads
under which the deflection vector may become unbounded. Since the transition of the beam from
the state of equilibrium to the state of instability is always related to a motion, it is appropriate to
use the dynamic analysis for the investigation of this transition and to discuss in which way the
stability is lost.

Early studies regarding the non-conservative system have been carried out starting in the second
half of the twentieth century. In the first place the inadequacy of the static criterion, also called
Euler method, was recognised. One of the simplest non-conservative problems is the cantilevered
beam subjected to an end tangential follower force, known as Beck’s column (Beck 1952). About
twenty five years later, Ziegler (1977) was the first to apply the dynamic criterion to the instability
problem of non-conservative systems and found the flutter load value for Beck’s column. Many
investigations have been devoted to the determination of the influence of parameters on the values
of the critical flutter load of non-conservatively loaded elastic system. In books by (Bolotin 1965),
(Leipholz 1980) and (Ziegler 1977), these problems and various types of non-conservative forces
often encountered in practical engineering design are well discussed and illustrated. In the study of
non-conservative systems, the non-conservative parameter was introduced to provide a smooth
transition from the fixed loading to the follower loading. 
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Some authors have investigated the stability of elastic column under a various combination of
axial and tangential forces. Leipholz and Bhalla (1977) presented an exact method for solving
stability problem of columns subjected to triangularly distributed tangential forces. It was found that
the systems lose their stability by divergence or flutter depending on the distribution pattern of the
loading, as well as the boundary conditions. Sugiyama and Kawagoe (1975) first, and Sugiyama and
Mladenov (1983) later, introduced a uniform and triangular distribution of sub-tangential follower
forces, respectively, thus filling the gap between the classical conservative and purely circulatory
cases. 

With the advances in computer hardware and software, numerical methods have become popular
for analysing the stability of non-conservatively systems. Of the numerical methods, the most
commonly employed is the finite element method. Mote (1971) presented the finite element
procedure and solution technique for various elastic system. Kounadis (1983) investigated the
existence of regions of divergence instability for an elastically restrained column under a
concentrated follower force. Lee (1995), by using the finite element method, analysed the stability
of the column subjected to sub-tangential follower forces, while Ryu et al. (2000) performed a
vibration and stability analysis of a column clamped at one end and elastically supported at an
arbitrary location, subjected to triangularly distributed sub-tangential forces. The influence of an
intermediate support on the stability behaviour of cantilever beams subjected to follower force was
also studied by De Rosa and Franciosi (1990). Glabisz (1999) presented an exact algorithm for the
determination of the free vibration frequency of beam systems under conservative and non-
conservative forces for various boundary conditions. However, as far as the authors know, there are
no papers dealing with beams having general elastic boundary conditions at their ends under a
distributed sub-tangential follower forces. 

In this paper, it will be shown that for certain intervals of the values of the parameters of the
elastic end constraints, these structures are of the divergence type, whereas outside these regions
they are of the flutter type. At the boundaries of the region, where the buckling mechanism changes
from divergence to flutter or from flutter to divergence, a sudden jump in the critical load has been
observed. Moreover, a thorough discussion of the influence of the aforementioned stiffness
parameter on the type of instability and the smallest eigenvalue of an elastically restrained column
under a triangularly distributed sub-tangential forces, is performed using the dynamic stability
criterion. In addition, the variation of the critical load and the frequencies of the column have been
explored for various boundary conditions at the ends of the beam, where an elastic constraint and
one non-elastic constraint can take place. Many other results are reported by Viola and Marzani
(2002).

The present paper is organised as follows. In section 2, the statement of the problem and the
calculation of the energetic terms to obtain the motion equation are detailed. In section 3, the finite
element formulation is derived. In section 4, the numerical results are discussed and graphically
illustrated, in order to show how the eigenfrequencies depend on the sub-tangential forces and on
the rigidity parameters of the constraints at the end of the beam, when various boundary conditions
are considered. In section 5, some conclusions are reported. 

2. Statement of the problem and calculation of the energetic terms

Consider an elastic column of length L bound through an elastically restrained end in the origin of
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the reference system, x = 0, subjected to distributed sub-tangential forces (Fig. 1). Let the axial
component per unit length be denoted by qv and the tangential force per unit length by qt. The
deflection of the column is assumed to be too small for the behaviour to be governed by Euler’s
beam theory. For a point at the abscissa x on the beam the deflection is denoted by v = v(x, t), t
being the time. For a small deflection, the angle φ = φ(x, t) between the x-axis and the tangent to
the elastic line can be approximated by φ = . Letting αφ be the angle between the x-axis and
the sub-tangential force qα, the resultant of qv and qt, one easily obtains the relations:

(1)

In literature α is known as the non-conservativeness parameter. The use of the parameter α allows
one to replace the system of two forces qv and qt by one sub-tangential follower force qα. Once that
it is known, by varying the parameter α one can investigate the stability for qualitatively different
load conditions. For example, if α = 0, the pure axial force applies on the system, while the pure
tangential force applies when α = 1.

In the present study, as can be noticed in Fig. 1(a), qα is assumed to be linearly distributed along
the x-axis, , where q0L represents the intensity of qα at x = 0.

The tangential follower forces, qt, are non-conservative as the resulting virtual work cannot be
represented by a potential function. The stability of the system, for various values of the non-
conservativeness parameter α and for different values of translational and rotational rigidity of
elastic springs kh and kr at one end of the beam, respectively, is studied. Various boundary
conditions at the other end of the beam will be considered later on. At present, it can be seen that
for  and  the elastically restrained end becomes a built-in end, which is also termed
clamped end. It should be remembered that a built-in end is equivalent to three supports constraints,

v∂ x∂⁄

qα qv qt, α
qt

qα
-----=+=

qα x( ) q0 L x–( )=

kh ∞→ kr ∞→

Fig. 1 (a) Column subjected to triangularly distributed subtangential forces in deformed configuration,
(b) System of the forces
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located in such a way that the end section of the beam is not capable of undergoing any translation
or rotation. When , that is the translational rigidity parameter becomes greater and greater
until approaching infinity, the elastically restrained end can be considered as an elastic hinge with
rotational rigidity . In the particular case of kr = 0 the restrained hinge is usually termed
hinged immovable or fixed end support. This type of support possesses only one degree of freedom.
For  and kh = 0, namely when the rotational rigidity approaches infinity and the translational
rigidity parameter is zero, the elastically constrained end being considered behaves as an ideal
hinge. This type of support is also termed hinge at infinity, sliding hinge, or translational hinge,
since the constrained end section can move along the normal to the beam axis. In other words, the
end section is fixed against rotation, but free to move in the y-direction. Moreover, for  and

 the end section of the beam is constrained to translate in the y-direction. In this case the
reactions of the support are a bending moment and a shear force.

The differential equation describing the flexural displacements of elastic columns can be derived
from the energy expression including sub-tangential forces as follows:

(2)

(3)

(4)

(5)

(6)

where T is the kinetic energy, Φ is the elastic potential energy, Wc represents the conservative work.
In expressions (3)-(5) the indexes on the left hand stand for column, translational spring and
rotational spring, respectively. In the Eqs. (2)-(5) E is the modulus of elasticity, I is the second area
moment of inertia, µ is the density, A is the cross-sectional area and kh, kr are, as said before, the
translational and rotational rigidity of the elastically restrained beam end.

The virtual work of the transverse components of the follower forces δWnc can be expressed as:

(7)

Substituting Eqs. (2)-(7) into the extended Hamilton’s principle:

(8)
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after separating variables and rearranging leads to: 

(9)

It should be noted that in Eq. (8) Φ depicts the sum of ΦC, ΦH and ΦR. 

3. Finite element formulation

The total system of length L can be subdivided into n finite elements, whose length is l.
Introducing for convenience’s sake the following local and adimensional coordinates: 

(10)

where i represents the i-th element, Eq. (9) can be written as:

 (11)

In Eq. (11) the subscript 1 represents the first finite element of the system. As can be seen from
Fig. 2, the first node of the first finite element is situated at the origin of the reference system. In
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Fig. 2 Discretization of the system into n finite elements
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the finite element method, the continuous non-dimensional displacement η = η(x, t) may be
approximated in terms of nodal displacements. The field of lateral displacements can be related to
the nodal displacements vector u = u(t) by means of the translational cubic non-dimensional shape
functions matrix N = N(ξ), as:

(12)

where  and, 

With the aid of Eq. (12) the discrete dimensionless equation of motion Eq. (11) can be rewritten in
terms of nodal displacements in the following synthetic form:

(13)

where m and ke are the well known mass and elastic rigidity matrices of the Euler beam element,
whereas kg is the geometric rigidity matrix. The translational kh and rotational kr rigidity matrices,
as well as the non-conservative rigidity matrix kd, of the single finite element, are reported in
appendix A. By applying the standard finite element method, the differential equation of motion
governing the entire structure can be derived:

(14)

where M is the mass matrix of total system, Ke is the elastic rigidity matrix of the system, Kg and Kd

are the geometric rigidity matrix and non-conservative rigidity matrix of total system, respectively.
In the Eq. (13) v is the global nodal displacement vector and L is the matrix (15) of dimension

 of positioning of the translational and rotational rigidity matrix, kh and kr, respectively.

(15)

Assuming the solution of Eq. (14) in the form  and indicating with KT the total
stiffness matrix, the study of the stability of the system is reduced to the following eigenvalue
problem:

(16)
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4. Numerical results and discussion

In order to compute the natural frequencies, natural modes and critical distributed sub-tangential
forces, the eigenvalues problem associated with the undamped free vibration problem must be
solved. The effect of an elastically restrained end on dynamic stability of the beam is taken into
account, for various boundary conditions at the other end of the beam. In the following discussion,
statically determinate systems will be examined as well as statically indeterminate ones. First, we
have considered the effect of the elastically restrained end when the other end is free. Then, the
cases in which the second end of the beam was simply supported or bound with a translational
support were examined. Finally, a beam fixed at one end and with an elastically restrained support,
or with an elastic hinge, at the other end has been analysed.

In order to generate the stability maps and the critical load curves, the dimensionless distributed
force parameter Q = q0L

4/EI, the dimensionless eigenfrequency parameter Ω = (µAL4ω2/EI)1/2 and
the dimensionless parameters of translational and rotational rigidity, Kh = (khL

3/EI) and Kr = (krL/EI),
respectively, are used. It should be kept in mind that when the values of translational and rotational
rigidity parameters are assumed Kh = 105 and Kr = 105 the end of the beam restrained by elastic
spring against rotation and translation can be considered as a totally fixed end.

Given Kh = 105, Fig. 3 shows the variation of the two lowest values of the eigenfrequency
parameter with the sub-tangential force, for various values of the rotational rigidity of the elastically
restrained end, when the non-conservativeness parameter is α = 1.0. In the case of α = 1.0, namely
when purely non-conservative forces are applied to the systems, flutter-type instability occurs for all
values of the rotational rigidity parameter Kr. As is well known, flutter type instability takes place
when the two lowest frequencies, ω1 and ω2, meet each other. The value of the parameter Q at
which the two lowest frequencies become complex conjugate is the critical flutter value of the
distributed sub-tangential force. Fig. 3 shows that also for a very small value of the rotational
rigidity of the elastically restrained end, when the system is subjected to a distribution of circulatory
load, the instability for flutter takes place with a non void value of the critical load. In other words,
the coalescence of the first two frequencies is always observed in Fig. 3.

Fig. 4 presents the eigenfrequencies curves for various values of the translational rigidity Kh when
the non-conservativeness parameter α = 1.0 and the rotational rigidity parameter is Kr = 105. In this
case, where an elastically translational ideal hinge at the left end of the beam is considered, all the
observations referring to the curves plotted in Fig. 3 could be repeated in Fig. 4 for various values
of the translational rigidity.   

Figs. 5 and 6 show the same analysis for the second boundary condition, that is when the right
end of the beam is simply supported. Fig. 5 also shows, through the eigenfrequencies curves, the
development of the phenomenon of passage of type-instability. It can be seen that, for growing
values of the translation rigidity parameter Kr, the system that was unstable for divergence, becomes
unstable for flutter with an increase of the critical load.

The type of instability depends on the values of the rigidity parameter: the divergence occurs only
for  and the flutter occurs only for . When  is considered (Fig. 6), the
divergence-type instability is shown for  and the flutter-type is depicted for . As is
well known, the divergence type instability takes place when the smallest frequency of the system
ω1 assumes void value. The value of the parameter Q at which the first frequency ω1 becomes void
is the critical divergence value of the distributed sub-tangential force.

Kr 100≤ Kr 101≥ Kr 105=
Kr 101≤ Kr 102≥
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For others boundary conditions, corresponding to α = 1.0, the eigenfrequencies curves are
illustrated in Fig. 7 and Fig. 8 when the second end is bound through an ideal hinge and in Fig. 9
and Fig. 10 when the second extreme is clamped. Through these curves the instability, which is
underlined for flutter and for divergence, comes to depend on the values of the rigidity parameters
of translation and rotation of the elastic constraints, located at the left end of the beam, as well as
on the typology of the boundary at the right end of the beam. It should be noted that the results
shown from Fig. 3 to Fig. 10, were worked out always assuming the non-conservativeness
parameter α = 1.0, that is only a purely circulatory load has been considered. 

In order to show the effect of the non-conservativeness parameter on the behaviour of the system,
now the curves of the critical load will be investigated for . For the beam connected to
a rotational elastic hinge (when the translational spring constant is Kh = 105) at the left end, the
critical load curves for different values of the parameter α are brought in Fig. 11 as a function of
the rigidity parameter Kr. The curves corresponding to the values of  are always
representative of a divergence instability type. The critical load grows when greater values of α and
of the rotational rigidity of the elastically restrained end Kr of the beam are considered. The curves
for , show that for low values of Kr the system loses stability in the form of the
divergence, but for increasing values of Kr the curves introduce a change of unstable form as well as
a jump in the value of the critical load. Therefore, for determined values of the rotational rigidity of
the elastically restrained end, the system becomes unstable for flutter once the value of the critical
load has been reached. It should be noted that for α = 1.0, the system also introduces an elevated
value of critical load for a null rotational rigidity, according to what has been seen in Fig. 3.

0.0 α 1.0≤ ≤

α 0.4≤

0.5 α 0.9≤ ≤

Fig. 3 Eigenfrequency curves for a cantilever beam and for various values of rotational rigidity parameter Kr,
when Kh = 105 and α = 1.0
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Fig. 5 Eigenfrequency curves for a simply supported beam and for various values of rotational rigidity
parameter Kr, when Kh = 105 and α = 1.0

Fig. 4 Eigenfrequency curves for a cantilever beam and for various values of translation rigidity parameter Kh,
when  Kr = 105 and α = 1.0
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Fig. 7 Eigenfrequency curves for a beam with the second end bound through a sliding hinge, for various
values of rotational rigidity parameter Kr, when Kh = 105 and α = 1.0

Fig. 6 Eigenfrequency curves for a simply supported beam and for various values of translation rigidity
parameter Kh, when Kr = 105 and α = 1.0
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Fig. 9 Eigenfrequency curves for a beam with the second end clamped, for various values of rotational rigidity
parameter Kr, when Kr = 105 and α = 1.0

Fig. 8 Eigenfrequency curves for a beam with the second end bound through a sliding hinge, for various
values of translational rigidity parameter Kh, when Kr = 105 and α = 1.0
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Fig. 11 Critical load curves for a cantilever beam and for different values of the non-conservativeness
parameter α, when Kh = 105 

Fig. 10 Eigenfrequency curves for a beam with the second end clamped, for various values of translation
rigidity parameter Kh, when Kr = 105 and α = 1.0
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Fig. 12 shows the critical load of the system as a function of Kh, when α = 1.0 and Kr = 105. In
this case, as well as for the two next systems, the ideal hinge located at the left-hand end is
elastically restrained against translation. A peak in the value of the critical load is shown, in
correspondence of a specific value of the parameter of rigidity Kh. It can be seen from Fig. 12 how
the peak value of the critical load turns out to be greater than the one corresponding to the system
bound through a fixed hinge. In condition of incipient instability by flutter, when a removal of the
system from the x-axis is considered, an increase of the value of the normal components of load
will be produced. In the case of an immovable hinge where any translation of the left end of the
beam is prevented, a vibration of increasing amplitude can occur under the constant value of the
critical load, so that the flutter instability can be produced. In the case of Fig. 12, instead, the
elastically restrained end allows the system to translate in the y direction and the dynamic
phenomenon of vibration turns out to be instability by divergence, for values of the applied load
greater than the value of the critical load.

The jump phenomenon is also represented in Fig. 13, where the eigenfrequencies curves are
shown for various values of the translational rigidity parameter Kh, when Kr = 105 and α = 1.

From Fig. 14 to Fig. 20 the sub-tangential forces are shown as a function of a rigidity parameter,
for various boundary conditions. From Fig. 14 it can be seen how the phenomenon of jump of the
critical load occurs only for the values of α = 0.75 and α = 1.0. For the lowest determinations of the
parameter, that is for α = 0.0 and α = 0.25, the system becomes unstable always for divergence.
Moreover, for α = 0.0 the value of the critical load is independent from the value of the rigidity
parameter of the elastically restrained end. It should be noted that, for elevated values of translation
rigidity, the system reduces to a cantilever beam and the value of the critical load depends on the
degree of non-conservativeness of the applied load.

Figs. 15-16 show the effect of the non-conservativeness parameter α on the critical load. The
beam is simply supported at the right-hand end whereas at the other end it is elastically restrained
against rotation and against translation, respectively. Fig. 15 shows that, for , the
instability of the system is always of a divergence type, and the critical load grows for increasing
values of the parameter α. It is worth noting that, in the case of , the system
introduces the passage of unstable form, from divergence to flutter with a jump in the critical load.
When instability is in the form of flutter, the critical load decreases with increasing values of α .
From Fig. 16, it can be seen that the only curve of critical load that does not show any passage of
unstable form corresponds to α = 0.0. For this value of the non-conservativeness parameter the
system becomes unstable for divergence for all the values of the translation rigidity.

For , instead, the system shows two passages of unstable form, from divergence to
flutter and return to the divergence, as a function of the translation rigidity parameter Kh. Finally, for

, only the passage from divergence to flutter is shown. The critical load curves
illustrated in Figs. 17-20 refer to beams which are elastically restrained at the right-hand end and
constrained by an ideal hinge or totally fixed at the other end. 

It is worth while noting that numerical simulations performed for different boundary conditions of
the beam, as well as for various values of the rigidity parameters to the rotation and to the
translation, reveal their influence on the type of instability and on the value of the critical load for
each value of the α parameter. The above numerical results and diagrams have been computed using
PC-Matlab.

0.0 α 0.7≤ ≤

0.8 α 1.0≤ ≤

0.1 α 0.7≤ ≤

0.8 α 1.0≤ ≤
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Fig. 13 Eigenfrequency curves for a cantilever beam for various values of translational rigidity parameter Kh,
when Kr = 105 and α = 1.0, showing the passage of unstable form from flutter to divergence

Fig. 12 Sub-tangential force versus translational rigidity parameter Kh, for Kr = 105 and α = 1.0 
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Fig. 15 Sub-tangential force versus the rotational rigidity parameter Kr, for various values of non-
conservativeness parameter α, when the first end of the beam is constrained by an elastic hinge and
the second one is simply supported

Fig. 14 Sub-tangential force versus translational rigidity parameter Kh, for Kr = 105, when five values of non-
conservativeness parameter α are considered  
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Fig. 17 Critical load curves for various values of the parameter α when the first end of the beam is
constrained by an elastic hinge and the second one is bound with an ideal hinge

Fig. 16 Sub-tangential force versus the rotational rigidity parameter Kr, for various values of α,  when the first
end of the beam is constrained by an elastic spring and the second one is simply supported
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Fig. 19 Critical load curves versus the rotational rigidity parameter Kr when the first end of the beam is
constrained by an elastic hinge and the second end is fixed

Fig. 18 Critical load curves for various values of the parameter α when the first end of the beam is
constrained by an elastic spring and the second one is bound through an ideal hinge
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5. Final observations and conclusions

In this paper, a finite element procedure for prismatic beams, under conservative and non-
conservative forces has been developed. The influence of the degree of non-conservativeness of the
load on the eigenfrequency curves is also shown for various boundary conditions. The main
innovation introduced by the present work regards the effect of an elastically restrained end on the
dynamic stability of elastic prismatic beams under triangularly distributed sub-tangential forces. At
the ends of the beams various fixed and movable supports have been considered. In particular, an
analysis has been undertaken of the influence of fixed elastic hinges and translational hinges
constrained by linear elastic springs located at the left-hand ends of the beams.  

It is worth nothing that a translational hinge may be represented by two parallel bars with hinges
at their extremities, or by two hinges and a rigid movable plate. In the case of parallel bars, each bar
with its hinges is usually termed pendulum support. At one end of the bars the hinges are fixed to
the ground. At the other end of the two parallel bars the hinges are fixed to a movable plate. So far
in this discussion, the axes of the pendulums have been considered to be parallel to the initial
configuration of the beams. It may be observed that the number of bars is equal to the number of
parameters determining completely the reactions at this constraint.

It should be noted that the choice of a structural model depends on the purpose of the
investigation. Actually, elastic beams are three dimensional continua but, for certain classes of their
possible motions, they can be modelled at a simpler level. In the present work the one-dimensional
theory for the flexural motion of Bernoulli-Euler beam has been employed. The F.E. model used to
study the dynamic stability of beams under conservative and non-conservative forces consists of
beam elements. 

Fig. 20 Critical load curves versus the translational rigidity parameter Kh when the first end of the beam is
constrained by an elastic spring and the second one is fixed
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As is well known, the equation of motion in matrix form for a beam subjected to a sub-tangential
follower load is different from the equation of motion of a beam subjected to a conservative axial
load. One can easily identify the nature of the non-conservative system by the presence of a non-
symmetric matrix in the equation of motion. In fact, when the loading is conservative for α = 0, the
matrix of non-conservative rigidity kd is a null matrix. This matrix kd, which accounts for non-
conservative forces of circulatory type, is denoted in the literature as load correction matrix or load
behaviour matrix. Since circulatory forces do not derive from a potential, the load correction
stiffness matrix is, in general, non-symmetrical.

The present approach can be extended to situations in which coupling between the various forms
of motion such as bending, shear and torsion takes place.
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Appendix A

The matrix of geometric rigidity is symmetric and depends on the index i which concerns the generic beam
finite element

where:

The matrix of non-conservative rigidity is non-symmetric and also depends on the index i: 

where: 
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The matrices of translation rigidity kh and rotational rigidity kr, are independent from the index i, so they
take on the following aspects: 

Notation

qv : unidirectional component per unit length of the sub-tangential force
qt : tangential force per unit length
qα : sub-tangential force
x : coordinate of reference
v : beam deflection
φ : angle between the x-axis and the tangent to the elastic line
α : non-conservativeness parameter
L : total length of the beam
T : kinetic energy
ΦC : elastic potential energy of the column
ΦH : elastic translational energy of the elastically restrained end
ΦR : elastic rotational energy of the elastically restrained end
Wc : conservative work
δWnc : non-conservative virtual work
t : time
µ : density
A : cross-sectional area
E : Young’s elasticity modulus
I : second area moment of inertia
i : index of position of the generic finite element
l : length of the finite element

: local coordinate for the generic finite element
η : normalized variable of configuration
ξ : adimensional local coordinate for the generic finite element
Ni : adimensional shape functions
u : vector of nodal displacements 
N : matrix of the adimensional shape functions Ni(ξ)
m : mass matrix of the single finite element
ke : matrix of elastic rigidity of the single finite element
kg : matrix of geometric rigidity of the single finite element
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kd : matrix of non-conservative rigidity of the single finite element
kh : matrix of translational rigidity of the elastic spring concerning the first finite element
kr : matrix of rotational rigidity of the elastic hinge concerning the first finite element
M : matrix of mass of total system
Ke : matrix of elastic rigidity of total system
Kg : matrix of geometric rigidity of total system
Kd : matrix of non-conservative rigidity of total system
v : global nodal displacements vector of the system
L : localisation matrix with dimension 4×2(n+1) containing only 1 and 0 
V : modal shape 
ω : eigenfrequency
Q = q0L4/EI : load parameter
Ω = (µAL4ω2/EI)1/2 : eigenfrequency parameter
Kh = (khL

3/EI) : translational rigidity parameter
Kr = (krL/EI) : rotational rigidity parameter




