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Abstract. Characteristics of solutions of softening plasticity are discussed in this article. The localized
and non-localized solutions are obtained for a three-bar truss and their stability is evaluated with the aid
of the second-order work. Beyond the bifurcation point, the single stable loading path splits into several
post-bifurcation paths and the second-order work exhibits several competing minima. Among the multiple
post-bifurcation equilibrium states, the localized solutions correspond to the minimum points of the
second-order work, while the non-localized solutions correspond to the saddles and local maximum points.
To determine the real post-bifurcation path, it is proposed that the structure should follow the path
corresponding to the absolute minimum point of the second-order work. The proposal is further proved
equivalent to Bazant’s path criterion derived on a thermodynamics basis.
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1. Introduction 

Strain localization occurs in a wide variety of solids in different forms such as tension necking
(Needleman 1972), shear bands (Rice 1976, Needleman and Tvergaard 1992), localized buckling
modes (Tvergaard and Needleman 1980, Hunt et al. 1989, Goto et al. 1995) and interacting cracks
(Bazant 1989, Horii 1993, Horii and Inoue 1997). From a mathematical viewpoint, strain
localization is a bifurcation problem. At the bifurcation point, the fundamental path splits into
several equilibrium paths (Maier 1971, Maier et al. 1973, Stavroulakis and Mistakidis 1995, Chen
and Baker 2003a, 2003b).

A bifurcation in inelastic solids may be caused by non-linearity of either a geometrical or material
nature. For the case of a geometrical non-linearity, at the bifurcation point the second-order work (or
the tangential stiffness matrix) becomes singular. Through eigenvalue analysis of the tangential
stiffness matrix, the critical condition is obtained and the post-bifurcation deformation mode is
determined. 

For the case of material non-linearity in which the bifurcation is induced by a discontinuous
reduction of the material stiffness, however, the tangential stiffness matrix becomes indefinite
without being singular (Petryk and Thermann 1992). Though the change of sign of the smallest
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eigenvalue detects a bifurcation, however, the corresponding eigenvector does not predict the post-
bifurcation path (i.e., the post-bifurcation deformation mode). In order to determine the post-
bifurcation path, many articles resort to an energy method.

Bazant (1988, 1989) for example, formulates in thermodynamic terms a maximum entropy
criterion that can be expressed as a second-order energy increment under isothermal conditions.
Runesson et al. (1989) similarly discover that the localized solutions in softening materials
correspond to minima of the incremental energy. 

In this paper, we adopt the concept of minimization of the second-order work as the criterion for
post-bifurcation path. Our motivation is to reveal the relationship between the characteristics of
solutions and the variation of the second-order work. First, the second-order work is formulated for
a solid with material non-linearity. Then, the characteristics of solutions involving softening
plasticity are discussed with reference to strain localization. The localized and non-localized
solutions are obtained for a three-bar truss and the surface of the second-order work is drawn to
evaluate the stability of the solutions. It is proposed that, among competing stable post-bifurcation
equilibrium states, the structure follows the path corresponding to the absolute minimum point of
the second-order work. Finally, the proposed criterion is further proved equivalent to Bazant’s path
criterion (Bazant 1988, Bazant and Cedolin 1991) derived on thermodynamics basis. 

2. The second-order increment of work

Consider a problem with only material non-linearity. Suppose that Ω(N) is an equilibrium state on
the load-displacement curve. All the state variables, such as stress σij , strain εij, and displacement ui,
together with the loading history, are known up to the Ω(N) state. At the Ω(N) state, the volume V,
occupied by the structure, and the volume force fi are known; the traction  is prescribed on free
boundary Sσ , and the displacement  is prescribed on constrained boundary Su. 

Now suppose there is a volume force increment ∆fi, a traction increment  on Sσ , and a
displacement increment  on Su. All the increments are infinitesimal. The problem is then to
determine the displacement increment ∆ui, the strain increment ∆εij , and the stress increment ∆σij.
Due to the infinitesimal increment ∆ui, the strain increment is

(1)

and the stress increment is 

(2)

and the second-order increment of the internal work is 

(3)

where Cijkl is the tangential stiffness tensor. The second-order increment of the work of the whole
system is expressed as 

Pi

ui

Pi∆
ui∆

ε i j∆ 1
2
--- ui j,∆ uj i,∆+( )=

σi j∆ Cijkl εkl∆=

∆2U
1
2
--- ε i j∆ Cijkl εkl∆ dV

V∫∫∫=
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(4)

If the body is stable up to the Ω(N) state, the solution of ∆ui is unique, and the actual displacement
increments ∆ui render the second-order work ∆2Π an absolute minimum with respect to all
kinematically admissible increments (Hill 1950).

3. Characteristics of the solutions of a three-bar truss

We are concerned with the situations after the fundamental solution loses its stability. Beyond the
bifurcation point, the single stable loading path is liable to split into several post-bifurcation paths.
In other words, for a set of loading increment, there may be several sets of possible displacement
increments satisfying the equilibrium equations and the boundary conditions. In order to discuss the
characteristics of solutions, the localized and non-localized solutions for a three-bar truss will be
obtained and their stability is evaluated with the aid of the surface of the second-order work.

Consider a three-bar truss in the form of an equilateral triangle (Hunt and Baker 1995). A
downward displacement ϖ is applied at the apex as shown in Fig. 1(a). For simplicity, all bars are
assumed to have the same cross section, A, and the length, L. A bilinear constitutive law, as shown
in Fig. 1(b), is adopted with equal stiffness but different peak strains for the bars in tension and
compression.

3.1 Incremental formulation

A bar element is defined by two points i and j, as shown in Fig. 1(c); (ai, bi) and (aj, bj) represent
the coordinates of points i and j, and (ui, vi) and (uj, vj) are the nodal displacements of points i and j.
For infinitesimal displacements, the total strain ε of the bar element is expressed as 

(5)

with cosθ = (aj − ai)/L, sinθ = (bj − bi)/L, and . 

∆2Π 1
2
--- εi j∆ Cijkl εkl∆ dV

V∫∫∫ fi∆ ui∆ dV
V∫∫∫– Pi ui∆ dS∆

Sσ∫∫–=

ε θcos
uj ui–

L
--------------⋅ θsin

vj vi–
L

-------------⋅+=

L aj ai–( )2
bj bi–( )2+=

Fig. 1 (a) A three-bar truss, (b) Constitutive law, (c) Bar element
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The total strain ε is composed of an elastic part εR and an inelastic part εΙ, as shown in Fig. 1(b),
which can be expressed as 

 
Branch 1    εR = ε        εI = 0    if  

Branch 2 if (6)

Suppose the solutions for the previous loading steps are known, for a set of loading increment, the
corresponding displacement increments can be decided. The strain increment is related to the
displacement increments by

(7)

The strain increment ∆ε is decomposed into an elastic part ∆εR and an inelastic part ∆εI , i.e.,

(8)

For unloading, no matter the material point is on which branch of the constitutive law, we have

(9)

For loading, the elastic part ∆εR and inelastic part ∆εI are:

Branch 1    ∆εR = ∆ε        ∆εI = 0      if  

Branch 2 (10)

It should be noted that, in this instance, loading means an increase of strain with a decrease of stress.
The stress increment is related to the elastic strain increment by

(11)

From Fig. 1(b), a simple relation between the elastic positive stiffness Ee and the post-peak negative
stiffness Es can be obtained

(12)

By making use of (10), (11), and (12), the stress increment is obtained 

(13)

The second-order work per unit volume is  

(14)

ε εe<

εR εe

εu ε–
εu εe–
---------------= εI εu

ε εe–
εu εe–
---------------= εe ε≤ εu<

ε∆ θcos
uj ui∆–∆

L
---------------------⋅ θsin

vj∆ vi∆–
L

---------------------⋅+=

ε∆ εR∆ εI∆+=

εR∆ ε∆= εI∆ 0=

ε εe<

εR∆
εe

εu εe–
---------------– ε∆= εI∆

εu
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--------------- ε if εe ε≤ εu<∆=

σ∆ Ee εR∆⋅=
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εe

εu εe–
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σ∆
Ee ε∆⋅ for unloading and elastic loading

Es ε∆⋅ for plastic softening
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and the total increment the second-order work of the truss model is 

(15)
 
3.2 The localized and non-localized solutions of a three-bar truss

First, we must determine the bifurcation point and the bifurcation conditions. Consider the
boundary conditions u1 = 0, v1 = −ϖ, v2 = 0, v3 = 0, then from (5), the strain-displacement relations
for the three bars are obtained

(16)

If all the three elements are in the elastic stage and have the same elastic Young’s modulus, the
equilibrium conditions for the corner points 2 and 3 are written as 

(17)

With the substitution of (16) into (17), the displacements are obtained

(18)

Then from (16), the strains are obtained

(19)

This is the elastic solution. If the three elements yield at the same time, from (19), it is obvious that
their elastic limit strains must satisfy . Assume the material parameters of each bar
are: , .
When , from (19) we know that all the three bars reach their elastic
limit strains, i.e., . Bifurcation happens at this point. If ϖ has an
increment ∆ϖ (suppose it is positive), each bar has the opportunity of loading and the opportunity
of elastic unloading. (In this instance, “loading” means that, as the strain increases, the material
enters the plastic stage, and the stress decreases rather than increases as in the hardening case.)
From (7), the relations between the strain increments and the displacement increments are obtained 

(20)

The equilibrium conditions of the corner points 2 and 3 are 

(21)

Since the previous step is a bifurcation point, for an infinitesimal loading increment, each element
may be elastically unloaded or plastically loaded. For each case, the tangent stiffness is different,
denoted by Et, which is equal to either Ee for unloading or Es for loading. Thus, the equilibrium
conditions (21) become

∆2
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(22)

With the substitution of (20) into (22), the displacement increments are obtained:

(23)

Then, the strain increments are

(24)

Introduce the displacement rates,  for example , the strain rate , and

. From (13), (14), and (15), we have 

(25)

From (20), the strain rate  and , are obtained:

(26)

For a given set of  from (26) the strain rates  are decided, and then  is
obtained from (25). 

By use of (23), the solutions are written in a rate form as:

(27)

In this instance, only the distributed solution and three localized solutions are discussed. Consider two
cases: (1) ;
(2)  . For
the distributed solution, all the three bars soften simultaneously beyond the bifurcation point, hence,
Et1 = Es1, Et2 = Es2, Et3= Es3. For each localized solution, only one bar softens. Moreover, there are
partially localized solutions, for which two bars soften and the other elastically unloads. The
distributed solution and three localized solutions are listed in Table 1.
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3.3 The surface of the second-order work

The stability of the solutions can be evaluated with the aid of the second-order work. Stability is
closely related to boundary conditions, and the distinction between stability under load and
displacement control was discussed by Chen and Baker (2003c). For displacement control, from (4)
we know . Hence, the surface of the second-order work is shown by plotting

 with  and  as variables. For the case (1), the surface of the second-order work near
the extremum points is shown in Fig. 2. The surface has a local maximum point that corresponds to
the distributed solution and three minimum points that correspond to the three localized solutions.
The saddles that correspond to the three partially localized solutions cannot be seen clearly. For the
case (2), Table 1 shows that the extremum points are far from each other and the difference between
the corresponding values of the second-order work is immense. Hence, an illustration of the surface
of the second-order work that contains all the solution points cannot clearly show the local topology
around the extremum points. Thus, in Fig. 3, the topologies around each solution point are drawn
separately. Obviously, the distributed solution is a local maximum point of the second-order work,
and the localized solution 1 and 2 are the minimum points. 

∆2Π ∆2
U=

U
··

u·2 u·3,( ) u·2 u·3

Table 1 The solutions for the three-bar truss

Case Stiffness Distributed Localized 1 Localized 2 Localized 3

(1)

Ee = 3.2 × 1010 −0.3616 2.291 −2.992 −2.179

Es1 = Es3 = −3.556 × 109 0.3616 2.179 2.992 −2.291

Es2 = −1.684 × 109 −2.11 E+08 −6.193 E+08 −1.745 E+09 −6.193 E+08

(2)

Ee = 3.2 × 1010 −0.1925 2.291 −15.59 −2.179

Es1 = Es3 = −3.556 × 109 0.1925 2.179 15.59 −2.291

Es2 = −3.556 × 109 −237000 −6.193 E+08 −1.920 E+10 −6.193 E+08

u·2

u·3

U··

u·2

u·3

U··

Fig. 2 The energy variation of the three-bar truss (for Case 1). (a) The energy profile close to the extremum
points; (b) The contour plot of the locality close to the extremum points
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Figs. 2 and 3 indicate that the localized solutions, which correspond to local minimum points, are
stable and the distributed solution, which corresponds to the local maximum point, is unstable. At
the bifurcation point, the stable fundamental solution (i.e., the distributed solution) starts to lose its
stability. Beyond the bifurcation point, the single stable loading path splits into several post-
bifurcation paths, and the surface of the second-order work exhibits three competing minima. 

To determine which post-bifurcation path that the structure actually follows, Bazant (1989, 1991)
proposes the concept of “stable path” and establishes a criterion for the “stable path” (i.e., the actual
post-bifurcation path that the structure follows) on thermodynamics basis. The criterion states that
the “stable path” maximizes the internally produced entropy among all the possible post-bifurcation
equilibrium paths. By ignoring the temperature changes, the internally produced entropy can be
expressed in terms of the second-order work. For displacement control, the second-order work must
be minimized; while for load control it must be maximized (Bazant and Cedolin 1991, p658). For
mixed control, a mixed free energy is introduced; the real path minimizes the second-order
increment of the mixed free energy.

Obviously, Bazant’s general principle cannot be applied directly to determine the real post-
bifurcation path. Following Petryk and Thermann (1992), in this article, it is supposed that the real
post-bifurcation path corresponds to the absolute minimum point of the second-order work. Hence,
only the localized solution 2 for the three-bar truss is the real post-bifurcation equilibrium state that
the structure follows. In the next section, the proposal will be proved equivalent to Bazant’s path
criterion derived on thermodynamics basis.

4. Path criterion

For brevity, in the following discussion we turn to the discrete model, though it is not difficult to
continue this discussion by a lengthy variational derivation. 

Let q be the nodal displacement vector, it consists of two parts, the constrained part qc (resulting from

), and the free part qf , i.e., . The nodal forces are represented by vector ; hereui q
qf

qc

= P
Pc

Pf

=

Fig. 3 The energy variation of the three-bar truss close to the extremum points (for Case 2)
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Pc, which corresponds to q f , results from the integral of the volume force fi , and the traction , on 

Sσ, and Pf represents the reactions of the constraints qc. Let  and be the

displacement increment and the force increment respectively, and  be the tangential

stiffness matrix. From the symmetry, we know . Then from (4) we have

(28)

The possible equilibrium states are decided by
 

(29)

Since ∆qc is fixed and ∆q f is unknown, thus only ∆qf in (28) can have a variation of δ(∆qf). Hence,
from (29) we have the equilibrium equation

 
(30)

from which we have 

(31)

Then we can obtain the reaction increment ∆Pf that associates with ∆qc:

(32)

By combining (30) and (32), we have 

(33)

With substitution of (33) into (28), we obtain

(34)

Let  denote the work done by the external agency through the loading history. It includes the
work done by the external force Pc on qf and the work done by the reaction Pf on the prescribed
displacements qc. Its second-order increment is

 
(35)

Pi
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==

K
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=
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∆2Π 1
2
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 T∆

K f f  K fc
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qf∆
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P∆ c
 T qf∆–=

δ ∆2Π( ) 0=

K ff qf∆ K fc qc∆+ pc∆=

qf∆ K ff
 1– Pc∆ K fc qc∆–[ ]=

Pf∆ K cf qf∆ K cc qc∆+=

K f f  K fc

K cf  K cc

qf∆
qc∆

Pc∆
Pf∆

=

∆2Π 1
2
--- P∆ f

 T qc∆ P∆ c
 T qf∆–( )=

Ŵ

∆2
Ŵ

1
2
--- P∆ c

 T qf∆ P∆ f
 T qc∆+( )=
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Assume that the considered state Ω(N) is a bifurcation point. At this point, the stiffness does not
change smoothly. For the sake of clarity, consider two possible post-bifurcation paths. For a set of
prescribed increments (∆Pc, ∆qc), we have two equilibrium solutions,  and .
For the different post-bifurcation path, the tangential stiffness matrix is different, so the bifurcation
conditions are expressed as

(36)

Unlike the bifurcation caused by geometrical non-linearity, the determinant of the stiffness matrix
does not vanish; the bifurcation happens due to the stiffness matrix being different for different post-
bifurcation path. For the two assumed solutions,  has the values

(37)

Assume that the first solution corresponds to the absolute minimum of  with respect to all
kinematically admissible displacement increments, i.e.

(38)

We need prove that this solution satisfies Bazant’s path criterion, i.e., it minimizes the second-
order work for displacement control, and maximizes it for load control.

  
• Displacement Control: In this case, , from (34) we have

(39)

On the other hand, from (35) we have the second-order increment of the external work
 

 (40)

In this case, the real solution minimizes the second-order increment of the external work.

• Force Control: In this case, , from (34) we have

(41)

From (35), the second-order increment of the external work is

(42)

Obviously, the real solution maximizes the second-order increment of the external work.
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• Mixed Control: In these circumstances, Bazant (see Bazant and Cedolin 1991, p654) introduced
the mixed Helmholtz and Gibbs free energy Z, the second-order increment of which is,

(43)

Obviously , hence, the first solution, which minimizes , will minimize the second-
order increment of Z. 

 As a result, the solution, which is assumed to absolutely minimize , will meet Bazant’s path
criterion. Hence, absolute minimization of  can be used to seek the real solution among all the
possible post-bifurcation solutions.

 

5. Conclusions

Softening plasticity involves multiple equilibrium paths. As the fundamental path loses its stability,
a bifurcation occurs. Beyond the bifurcation point, the single stable loading path splits into several
post-bifurcation paths and the second-order work exhibits several competing minima. By making
use of a three-bar truss, the surface of the second-order work close to the bifurcation point has been
drawn. The stability of the post-bifurcation equilibrium paths is discussed with the aid of the
second-order work. Based on the analyses above, the following conclusions are reached:

(1) Among the multiple post-bifurcation equilibrium states, the localized solutions, which
correspond to the local minimum points, are stable; the distributed solution and the partially-
localized solutions, which correspond to the local maximum point and saddles, are unstable; 

(2) There are multiple stable post-bifurcation equilibrium states. Among competing stable post-
bifurcation equilibrium states, it is proposed that the structure should follow the path
corresponding to the absolute minimum point of the second-order work;

(3) The proposal has been proved equivalent to Bazant’s path criterion derived on a
thermodynamics basis. 

References

Bazant, Z.P. (1988), “Stable states and paths of structures with plasticity or damage”, J. Engng. Mech., 114(12),
2013-2033.

Bazant, Z.P. (1989), “Stable states and stable paths of propagation of damage zones and interactive fractures”, In
Cracking and Damage: Strain Localization and Size Effect, Mazars, J. and Banzant, Z.P.(ed.) Elsevier Appl.
Sci. London, 183-207.

Bazant, Z.P. and Cedolin, L. (1991), Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories,
Oxford University press, Oxford, New York.

Chen, G. and Baker, G. (2003a), “An energy model for bifurcation analysis of a double-notched concrete panel:
Simplified model”, Advances in Structural Engineering, 6(1), 37-44. 

Chen, G. and Baker, G. (2003b), “An energy model for bifurcation analysis of a double-notched concrete panel:
Continuous model”, Advances in Structural Engineering, 6(1), 45-51.

Chen, G. and Baker, G. (2003c), “Material stability and structural stability”, Advances in Structural Engineering,
in press.

Goto, Y., Toba, Y. and Matsuoka, H. (1995), “Localization of plastic buckling patterns under cyclic loading”, J.
Engng. Mech., 121, 493-501.

∆2
Z

1
2
--- P∆ f

 T qc∆ P∆ c
 T qf∆–( )=

∆2
Z ∆2Π= ∆2Π

∆2Π
∆2Π



152  G. Chen and G. Baker

Hill, R. (1950), Mathematical Theory of Plasticity, Oxford University press, Oxford, New York.
Horii, H. (1993), “Micromechanics and localization in concrete and rock”, In Damage of Concrete and Rock (ed.

Rossmanith, H.P.) E&FN Spon, London, 54-65.
Horii, H. and Inoue, J. (1997), “New directions: Analysis of cracking localization and ultimate strength of

structures in civil engineering”, Proc. the Ninth Int. Conf. on Fracture, Sydney, Australia, 2127-2134.
Hunt, G.W. and Baker, G. (1995), “Principles of localization in the fracture of quasi-brittle structures”, J. Mechs.

Phys. Solids, 43, 1127-1150.
Hunt, G.W., Bolt, H.M. and Thompsom, J.M.T. (1989), “Structural localization phenomena and the dynamical

phase-space analogy”, Proc. R. Soc. Lond, A425, 245-267.
Maier, G. (1971), "On structural instability due to strain-softening”, IUTAM Symposium on Instability of

Continuous Systems, Springer Verlag, Berlin, Germany.
Maier, G., Zavelani, A. and Dotreppe, J.-C. (1973), “Equilibrium branching due to flexural softening”, J. Eng.

Mech., 99(EM4), 897-901.
Needleman, A. (1972), “A numerical study of necking in circular cylindrical bars”, J. Mech. Phys. Solids, 20,

111-127.
Needleman, A. and Tvergaard, V. (1992), “Analyses of plastic flow localization in metal”, Appl. Mech. Rev., 45,

Part 2, S3-S18.
Petryk, H. and Thermann, K. (1992), “On discretized plasticity problems with bifurcations”, Int. J. Solids

Struct., 29, 745-765.
Rice, J.R. (1976), “The localization of plastic deformation”, In Theoretical and Applied Mechanics, Koiter, W.T.

(ed.), North-Holland, Amsterdam, 207-220.
Runesson, K., Larsson, L. and Sture, S. (1989), “Characteristics and computational procedure in softening

plasticity”, J. Engng. Mech., 115, 1628-1645.
Stavroulakis, G.E. and Mistakidis, E.S. (1995), “Numerical treatment of hemivariational inequalities in

mechanics: Two methods based on the solution of convex subproblems”, Comput. Mech., 16(6), 406-416.
Tvergaard, V. and Needleman, A. (1980), “On the localization of buckle patterns, J. Appl. Mech., ASME, 21,

613-619.




