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solution for orthotropic hollow cylinder under 

sinusoidal impact load

X. Wang† and H. L. Dai‡

Department of Engineering Mechanics, The School of Civil Engineering and Mechanics,
Shanghai Jiaotong University, Shanghai 200240, P.R. China

(Received April 11, 2002, Accepted May 6, 2003)

Abstract. The histories and distributions of dynamic stresses in an orthotropic hollow cylinder under
sinusoidal impact load are obtained by making use of eigenfunction expansion method in this paper.
Dynamic equations for axially symmetric orthotropic problem are founded and results are carried out for a
practical example in which an orthotropic hollow cylinder is in initially at rest and subjected to a dynamic
interior pressure p(t) = −σ0(sinαt + 1). The features of the solution appear the propagation of the
cylindrical waves. The other hand, a dynamic finite element solution for the same problem is also got by
making use of structural software (ABAQUS) program. Comparing theoretical solution with finite element
solution, it can be found that two kinds of results obtained by two different solving methods are suitably
approached. Thus, it is further concluded that the method and computing process of the theoretical
solution are effective and accurate.
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1. Introduction

An orthotropic hollow cylinder under impact pressure can be used in applications involving
aerospace, offshore and submarine structures, pressure vessels, and some civil engineering
structures. Dynamic stresses in an orthotropic hollow cylinder subjected to interior time - dependent
pressures are typical orthotropic elastodynamic problems in which solutions of the orthotropic
Navier’s equation within a finite cylindrical region under specified initial and Cauchy type boundary
conditions should be sought. Practical interesting will be found in a wide range of structure analyses
with consideration of the dynamic effects.

The key of above problem lies in obtaining a basic solution for orthotropic dynamic equation with
given boundary and initial conditions. In recent years, analyses and calculations for an finite
structure under impact load have been studied by means of some methods such as integral
transforms (Baker 1961, 1966); Ray theory (Pao 1978, 1983); Finite Hankel transform and Laplace
transform (Cinelli 1965, 1966, Wang and Gong 1992, Wang 1993, 1995, Cho 1998) and
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Eigenfunction expansion method (Eringen and Suhubi 1975, Gong and Wang 1991, Yin 1997).
However, the above studies were most confined to isotropic shell problems or orthotropic shell
under thermal impact. If the structure is not isotropic or subjected a dynamic load, the cases so far
studied are much fewer because the solving process is more difficult.

This paper investigates the radial sinusoidal impact response of orthotropic hollow thick
cylindrical shell by making use of eigenfunction expansion method. The advantage of this method is
the ability to provide a closed-form solution that is applicable to a generally orthotropic cylinder of
arbitrary thickness under sinusoidal impact load. Formulation for a practical example is that an
orthotropic hollow cylinder is initially at rest and subjected to an uniformly distributed impact
pressure p(t) = −σ0(sinαt + 1). The histories and distributions of the dynamic stresses are given and
the features of the solution that relates to the propagation of the cylindrical wave are discussed.
Lastly, a dynamic finite element solution for the same example is also achieved by means of
structural software ABAQUS program. Comparing the theoretical solution and finite element
solution, we can conclude that the solving method in the paper is valid.

2. Orthotropic elastodynamic equation and solution

The geometry and coordinate of orthotropic hollow cylinder is shown in Fig. 1. z, r and θ
represent, respectively, the axial, radial and tangential variables. Consider that an orthotropic hollow
cylinder is subjected to an impact internal and external pressure p1(t) and p2(t) distributed uniformly
over the surface. According to the geometry of hollow cylinder and the property of impact load, the
orthotropic elastodynamic problem studied in the paper is considered as axisymmetric. In the case
of the elastic properties described, the distribution of stress and displacement depends only on the
radial variable r and the time variable t. The radial displacement is U = U(r, t). Introducing the
engineering constants, we can write the generalized Hooke’s law as:
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Fig. 1 The geometry and coordinate of orthotropic hollow cylinder
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It is clear that in the case of the elastic properties indicated, the elastodynamic equation in terms
of radial displacement U(r, t) of orthotropic hollow cylinder subjected to arbitrary impact load can
be described as

 (3a)

where  and ρ represent, respectively, wave speed and density, and R2= C22/C11.

The initial distributions of radial displacement and velocity are given by

 U(r, 0) = U0(r), (3b)

U, t(r, 0) = V0(r) (3c)

The Cauchy type boundary conditions are

(3d)

(3e)

where σr = σr(r, t) represents radial stress.
The eigenfunction expansion theorem states that the general solution for Eq. (3) (equation

(5.17.12) in Eringen and Suhubi 1975) can be expressed as

(4)

It should be noted that equation (5.17.12) is correct, but equation (5.17.19) is wrong in Erigen and
Suhubi (1975), which was discussed in Gong and Wang (1991).
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Substitution of (4) into Eq. (3) shows that if Us(r, t) satisfies the field equation

(5)

with the inhomogeneous boundary conditions

(6)

In which the time variable t is to be treated as a parameter and if Un(r) satisfies the following field
equation:

 (7)

with the homogeneous boundary conditions:

(8)

While the time-dependent function qn(t) satisfies the equation 

(9)

with the initial conditions (3b) and (3c). Where a dot denotes differentiation with respect to time,
and in Eqs. (7) and (9), kn and ωn are, respectively, known as the characteristic values and natural
frequencies which is described as

ωn = knCL  (10)

Then U(r, t) in Eq. (4) will satisfy basic Eq. (3a) with the initial conditions (3b,c) and boundary
conditions (3d) and (3e). Thus, the expression (4) will exactly be the solution of the present
problem, provided the functions Us(r, t), Un(r), and qn(t) have been determind. The process for
determination of these functions is as follow:

(a) The quasi-static solution Us(r, t) was obtained by Lekhnitskii (1981);

Us(r, t) = Φ1(r)p1(t) + Φ2(r)p2(t) (11a)

In the above formula, we have

Φ1(r) = g1r R + g2r
−R (11b)

Φ2(r) = g3r R + g4r
−R (11c)

g1 = −gR+1/[(C11R + C12)(1 − g2R)b(R−1)] (11d)
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g2 = −gR+1/[(C12 − C11R )(1 − g−2R)b−(R−1)] (11e)

g3 = −g1g
−(R+1) (11f)

g4 = −g2g
(R−1), g = a/b (11g)

(b) Determination of Un(r) is considered to be an eigenvalue problem. Un(r) are named
eigenfunctions. In general, there will be an infinite number of natural frequencies ωn, (n = 1, 2,
……..), which correspond to the free vibrations of the cylinder. A particular frequency ωm (n = m),
is associated with a particular mode of Um(r) for each ω the general solution of Eq. (7) is 

U(r) = A1JR(kr) + A2YR(kr) (12)

Where JR and YR are the Bessel functions of the first and second kind of order R, A1 and A2 are
arbitrary constants. Substitution of Eq. (12) into Eq. (8) yields a set of homogeneous equation and
the condition of nontrivial solutions being existent leads to a transcendental equation 

JRaYRb − JRbYRa = 0 (13)

where JRa = k J'R(ka) + h1JR(ka), JRb = k J'R(kb) + h2JR(kb)

YRa = kY'R(ka) + h1YR(ka), YRb = kY'R(kb) + h2YR(kb) (14)

h1 = C12/(aC11), h2 = C12/(bC11) (15)

Eq. (13) is called a characteristic equation and it’s positive roots determine the infinite number of
the characteristic values kn(n = 1, 2,……..∞) and in turn the natural frequencies ωn though Eq. (10).
For a particular mode of Um, solution (12) can be rewriting in the form 

Um(r) = AmCR(kmr) (16)

where CR(kmr) = YRa JR(kmr) − JRaYR(kmr) (17)

and Am is an indeterminate constant multiplier which can be determined by introducing a mode
normalization condition. The orthonormal relation of the eigenfunction can be selected as this
condition. In the present case it can be written as 

(18)

where δmn is Kronecker symbol. Substituting of Eq. (16) into Eq. (18) and performing the
integration, we arrived at 

 
(19)

(c) To determine the time-dependent function qm(t), both sides of Eq. (9) are multiplied by Um(r)
and integrated and the orthonormal relation (18) is used to get an ordinary differential equation with
variable t only 
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where (21)

The initial conditions for Eq. (20) will be obtained by substituting Eq. (4) into Eqs. (3b) and (3c)
and using Eq. (18) and Eq. (21), there upon

(22a,b)

The functions U0(r) and V0(r) in the above equations represent the initial distributions of radial
displacement and velocity which is defined in Eqs. (3b) and (3c). Thus, the solution of Eq. (20)
under conditions (22) is given by 

(23)

Note that expressions of Eq. (16) and Eq. (23) are valid for each term of series in Eq. (4). Thus,
substitution of Eqs. (11), (16) and (23) into Eq. (4) completes the formal solution. It should be
pointed out that after performing the integration in Eq. (23), from Gong and Wang (1991) the
solution (4) is shown as

(24a)

where (24b)

3. Practical formula for illustrative examples

Suppose that the orthotropic hollow cylinder is initially at rest and subjected to a sinusoidal
interior pressure 

p1(t) = −[sin(αt) + 1] (25a)

where σ0 = 1 indicates the unit amplitude of the interior pressure and α is a factor to show the
period of dynamic load. In this case the initial and boundary conditions will be

U(r, 0) = V(r, 0) = 0 (25b)

(25c)
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The quasi-static solution (11a) may be rewritten in the form:

Us(r, t) = −Φ1(r)[sin(αt) + 1] (26)

where Φ1(r) is shown in Eq. (11b).
Substitution of Eqs. (16) and (26) into Eq. (21) yields

Qm(t) = AmBm[sin(αt) + 1] (27)

where Am is given by Eq. (19) and 

(28)

with the initial conditions (24), qm(t) can be reduced from Eqs. (22) and (23) to

(29)

Substituting Eq. (27) into Eq. (29), we arrive at

qm(t) = AmBmIm(t) (30)

where (31)

Thus, the solution for the present problem is got by substituting Eqs. (26), (16) and (30) into Eq. (4),
we have 

U(r, t) = −Φ1(r)[sin(αt) + 1] + [A2
mBmIm(t)Um(r)] (32)

where Φ1(r), Am, Bm, Im(t) and Um(r) can be exactly given by Eqs. (11b), (19), (28), (31) and (16)
respectively. With the known U(r, t), the dynamic stress components will be 

,

(33)

4. Dynamic finite element calculation

In this chapter, in order to prove further the validity of the theoretical method and the solving
process, a dynamic finite element solution for the same example used in the theoretical solution is
also achieved by applying the ABAQUS finite element analysis system.

In this dynamic equation of elastic system, applying the Halmiton principle, the dynamic equation
of finite element is written as 
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(34)

where [K] is the stiff matrix, [M] is the mass matrix, {d} is the displacement of the knot point and
{F(t)} is the dynamic load. In the solving process of the dynamic finite element, applying a direct
integral method, the solution of the dynamic Eq. (34) can be obtained. Considering the practical
structure shown in Fig. 1 as axisymmetry and plane strain problem, the finite element model and net
can be simplified as shown in Fig. 2.

The geometry size and material property are the same as those in the theoretical solution. The
finite element net is taken as the axisymmetrically orthotropic rectangular element of 8-knot points.
The knot points at AC side and BD side are constrained in the z direction. In order to make the
dynamic finite element solution show a stress wave feature and a strong discontinuity effect at the
wavefront, we take 100 elements along radius r of orthotropic hollow cylinder.

5. Results and discussions

Results are carried out in case of Er = Ez = 200 GPa, Eθ = 450 GPa, νθr = νzr = 0.25, nzθ = 0.167,
ρ = 5067 kg/m3. The dynamic internal pressure p1(t) = −[sin(αt) + 1] is a sudden sinusoidal
function load and α = 1000. Two structures with b/a = 20 and b/a = 2, are computed and results
are shown in Figs. 3 and Figs. 4. In all results, the stresses are normalized by the amplitude of
applied pressure σ0 = 1, the time variable and geometric size are taken as T = t*CL/a, or T = t*CL/
(b − a), R0 = (r − a)/a, R1 = (r − a)/(b − a). í expresses corresponding static stress and ----
expresses the solution of the dynamic finite element.

In order to avoid the effects of reflected waves, b/a = 20 and t*CL/a 20 are taken. Then the
histories of radial, tangential and axial stresses are respectively shown in Figs. 3-1,2,3. The curves
in the Figures have clearly shown the features of the compression waves propagating in the
orthotropic hollow cylinder upon the application of the interior pressure. The time histories at R1 = 1
and R1 = 2 in Fig. 3-1,2,3 show that before the arrival of the wavefront, dynamic stress is essentially
zero, has strong discontinuities at the points where the wavefront arrives at and approaches to the
quasi-static solution. Figs. 3-4,5,6 show the distributions of the radial, tangential and axial stresses
along the radius r, in different time. It is clear that the distribution of the dynamic stresses

K[ ] d{ } M[ ] d··{ }+ F t( ){ }=

≤

Fig. 2 The element net of the computing model
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approaches to that of the static stresses when time is large.
Figs. 4 give the computing results of an orthotropic hollow cylinder with b/a= 2. Because of the

small thickness, the effects of wave reflected between the inner wall and outer wall on dynamic
stresses must be considered. Except the radial stress at inner boundary R1 = 0 where p1(t) =
−[sin(αt) + 1] as shown in Fig. 4-1, the stresses at other points oscillates dramatically around the
static stress. Fig. 4-1 shows that the history of the radial stress at inner boundary is strictly

Fig. 3-1 The histories of the radial stress in an
orthotropic hollow cylinder under sinusoidal
impact load. b/a = 20

Fig. 3-2 The histories of the tangential stress in an
orthotropic hollow cylinder under sinusoidal
impact load. b/a = 20

Fig. 3-3 The histories of the axial stress in an
orthotropic hollow cylinder under sinusoidal
impact load. b/a = 20

Fig. 3-4 The distributions of the radial stress in an
orthotropic hollow cylinder under sinusoidal
impact load. b/a = 20
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coincident with that of the interior pressure p1(t). Thus, the boundary conditions (6) are satisfied. At
the middle point R1 = 0.5, the radial stress oscillates dramatically as shown in Fig. 4-1. The
oscillations are accompanied with the stress waves propagating between the boundaries of r = a  and
r = b  where the reflected waves are produced successively upon the arrival of the incident wave.

The histories of tangential and axial stresses are shown in Fig. 4-2 to Fig. 4-5 respectively. It

Fig. 3-5 The distributions of the tangential stress in
an orthotropic hollow cylinder under sinusoi-
dal impact load. b/a = 20

Fig. 3-6 The distributions of the axial stress in an
orthotropic hollow cylinder under sinusoidal
impact load. b/a = 20

Fig. 4-1 The histories of the radial stress in an
orthotropic hollow cylinder under sinusoidal
impact load, b/a = 2. --- represents finite
element solution

Fig. 4-2 The histories of the tangential stress in an
orthotropic hollow cylinder under sinusoidal
impact load. b/a = 2. --- represents finite
element solution
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should be mentioned that the maximum amplitude of the tangential stress at r = a is much larger
than that of the radial stress. 

Lastly, a dynamic finite element solution for the orthotropic hollow cylinder where b/a= 2 is also
achieved by means of structural software ABAQUS. The finite element solution obtained is shown
in Figs. 4. Comparing the theoretical solution and finite element solution, we can find the results
from two kinds of different methods being very approach.

Fig. 4-3 The histories of the tangential stress in an
orthotropic hollow cylinder under sinusoidal
impact load. b/a = 2. --- represents finite
element solution

Fig. 4-4 The histories of the axial stress in an
orthotropic hollow cylinder under sinusoidal
impact load. b/a = 2. --- represents finite
element solution

Fig. 4-5 The histories of the axial stress in an orthotropic hollow cylinder under sinusoidal impact load. b/a = 2.
--- represents dynamic finite element solution
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It is concluded from above analyses and results, that eigenfunction expansion solution for
orthotropic hollow cylinder under impact load p1(t) = −[sin(αt) + 1] is effective to solve other
dynamic problem.
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