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The mixed finite element for quasi-static and dynamic 
analysis of viscoelastic circular beams
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Abstract. The quasi-static and dynamic responses of a linear viscoelastic circular beam on Winkler
foundation are studied numerically by using the mixed finite element method in transformed Laplace-
Carson space. This element VCR12 has 12 independent variables. The solution is obtained in transformed
space and Schapery, Dubner, Durbin and Maximum Degree of Precision (MDOP) transform techniques
are employed for numerical inversion. The performance of the method is presented by several quasi-static
and dynamic example problems.
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1. Introduction

The circular structures received considerable interest due to their wide application in engineering
usage. The beam on elastic foundation for elastic case has been treated by various authors. In these
investigations, closed form solution of differential equations are given and numerical results have
been tabulated for special cases (Hetenyi 1946, Miranda and Nair 1966, Ting and Mockry 1983).
Aköz et al. (1991) developed a mixed finite element for elastic three-dimensional bars using
Gâteaux differential. Using similar approach, Aköz and  (1996) has studied circular beams
on elastic foundation.

Viscoelastic constitutive relation is more realistic than the elastic constitutive relation to reflect the
material behaviour. Some more information about viscoelasticity can be found in literature (Flügge
1975, Christensen 1982). Although the calculation by viscoelastic theory is more complex than the
elastic theory, viscoelastic theory gives more realistic result. Various methods have been developed
to analyse of viscoelastic problems.

Satisfying some requirements, the problem of viscoelastic structures can be solved as elastic
structure, employing correspondence principle (Findley et al. 1976). The Laplace and Fourier
transform methods have been widely used in solution of viscoelastic problems (Rabbatnow 1980).
The problems have complex geometry and constitutive relations, closed form solution are often not
possible and numerical techniques should be employed. The applications of the numerical methods
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to viscoelastic problems have been presented by numerous authors: White (1986) applied the time
interval form finite difference method to perform a finite element analysis in a quasi-static problem.
Addey and Brebbia (1973) used an approximate inversion procedure to obtain the inversion solution
of associated elastic problem. Johnson et al. (1997) derived the elastodynamic equations of motion
for thick viscoelastic beams. Chen (1995) and Wang et al. (1997) studied the linear viscoelastic
Timoshenko beam for quasi-static and dynamic response. Chen (1995) assumed that Poisson ratio ν
is constant and only elasticity modulus is viscoelastic. The relaxation modulus is expressed by the
same Prony Series for both normal stress-strain and shear stress-strain relations. He selected the
nodal variables as v, ω the displacement and rotation of cross-section respectively. The hybrid
method was used to remove the time parameter using the Laplace transform and associated equation
is solved using finite element method. Chen (1995) used Hamilton’s variational principle to obtain
finite element. To obtain the actual displacement in the time domain, the numerical inversion of
Laplace transform method of Hanig and Hirdes was used by Chen (1995).  (1999), Aköz
and  (1999) also studied Timoshenko and Euler-Bernouili beam that has the general forms
of relaxation modulus for both Poisson ratio and Young modulus for quasi-static and dynamic
response. The Gâteaux differential approaches is employed to construct the functional. In order to
remove the time derivatives from the governing equations, the method of the Laplace-Carson
transform was utilized. Two mixed finite element formulations TB12 and TB4 were derived in the
transformed space. For the inverse transform Schapery and Fourier method were used.

In this study, the viscoelastic circular beam on elastic foundation is analysed for quasi-static and
dynamic responses. In order to remove the time derivatives from the governing equations and
boundary conditions, the method of the Laplace-Carson transform is utilized. The special attention
is given to the numerical inverse of Laplace transform. The available numerical inverse transform
methods; such as Shapery, Fourier, Durbin, Dubner, Maximum Degree of Presicion (MDOP) are
used to solve the same problems and results are compared and disscussed in the applications. For
more information reader may be consulted to the literature (  1999).

2. The field equations

For a circular beam loaded by the external loads perpendicular to the plane of the structure,
effective internal force components are depicted in Fig. 1.
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Fig. 1 Internal forces
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The equilibrium equations and kinematic equations can be obtained from literature as follows
(Aköz and  1996)

equilibrium equations

(1)

 kinematic equations

(2)

The stress-strain relations for viscoelastic materials can be written in hereditary form as (Rabbatnow
1980)

(3)

where Y(t) and Y1(t) are relaxation moduli for normal and shear stresses respectively. The inverse
relations can be written as follows:

(4)

where J(t) and J1(t) are creep moduli. Taking into account well-known equations for the kinematics of
the beam, for bending, torsion and shear and using constitutive Eq. (3) and equilibrium equations
we obtain bending, torsion and shear rigidity as follows:
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(5)

The above relations can be written in simple forms using three operators:

(6)

where Dn
* , Dt

*  and H* are defined as 

(7)

where relaxation kernels Y(t) and Y1(t) can be arbitrarily chosen depending on materials.
The boundary conditions:

(8)

where the quantities with hat are given at the boundary points. Of course these boundary conditions
do not belong to a specific problem. These boundary conditions serve to include boundary terms to
the functional.

In order to remove the time derivatives from governing equations and boundary conditions, the
method of Laplace-Carson transform will be employed. The Laplace-Carson transform of a real
function is

(9)
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where the Laplace transform of a real function is

(10)

The integration is carried out in the plane of the complex variable s along an infinite straight line
parallel to the imaginary axis and situated so that all singular points of function f(s) are located to the
left of this straight line.

Taking Laplace-Carson transform of Eq. (1), Eq. (2), Eq. (6) and Eq. (8), we will obtain the field
equations in Laplace-Carson space;

(11a)

(11b)

(11c)

(11d)

where  represents applied loads as well as dynamic effects and

(12)
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These equations can be written in operator form similar to elastic circular beam (Aköz and
 1996)

(13)

The explicit form of the operator is given in the Appendix. If the operator Q is potential

(14)

must be satisfied.
After satisfying the requirement the functional is obtained (Oden and Reddy 1976) as

(15)

Inserting Eq. (13) into Eq. (15) the functional for viscoelastic circular beam is obtained

 

(16)

where [ , ] is the inner product which is defined as

(17)

Using functional in Eq. (16) VCR12 can be obtained with six nodal variables ,
.

3. The finite element formulation of viscoelastic circular beams on elastic foundation

The functional variables in Eq. (16) are in Laplace space. Therefore the finite element formulation
belongs to the same space. To derive the finite element formulation first the interpolation function
must be chosen. The regularity of the shape function depends on the maximum degree of derivatives
in the functional since the first derivative of the variables exist in the functional in Eq. (16)
conforming element formulation for the shape function Ψ must satisfy the following properties.

 and  where  is the Sobolev space (Reddy 1986).
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ûb Tb,[ ]ε Ωˆ n Mn,[ ]ε Ωˆ t Mt,[ ]ε+ + +

f g,[ ] fgRdθ∫=

ub Ωn Ωt Mn, , ,
Mt Tb,

Ψ C
0 Ω( )∈ Ψ H′ Γ( )∈ H′



The mixed finite element for quasi-static and dynamic analysis of viscoelastic circular beams741

The shape functions for VCR12 are

(18)

where variable is illustrated in Fig. 2.

All known and unknown variables have been expressed by the interpolation function as follows:

(19)

Also, to take into account variable rigidities, they will be expressed in terms of interpolation
functions as

(20)

All expressions of unknown and known quantities in terms of interpolation functions are inserted
into Eq. (16) and after extremization of this functional with respect to twelve nodal variables the
following element matrix is derived:

Ψi

R θi θ–( )
L

----------------------=  Ψj

R θ θj–( )
L

----------------------=

ub ubiΨi ubjΨj+=
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1
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*

------ XiΨ i XjΨ j+=

1

Dt
*
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1

Hn
*

------ AiΨ i AjΨ j+=

Fig. 2 Linear circular element for circular beam



742 Fethi  and A. Yalçin AközKadiogluo

(21)

where

(22)

Throughout the mathematical manipulations the following properties of interpolation function are
used:
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(23)

The element equations are valid for circular beam on elastic foundation with variable cross-
sections. The properties of the element equations are:

• The coefficient element matrix is symmetrical
• They reduce to straight beam matrix for 
• For a beam with constant cross-section Ai = Aj , Xi = Xj , Yi = Yj

• For a special case the size of matrix reduces. For straight beams the order of the matrix will be
6 × 6.

• The variables with hats are valid only when a corresponding boundary condition is defined.

4. Numerical inversion of FEM solutions

FEM formulation of viscoelastic circular beam is derived in Laplace-Carson space and the
numerical solution is obtained for different numerical values of transform parameters. At this stage,
the inverse transformation is neccessary in order to present the solution in the original domain.
There exist various methods for the inverse Laplace transformation. Among these, we will restrict
ourselves to the methods called numerical Laplace inversion such as Schapery, Dubner and Abate,
Durbin, MDOP. The classification of Laplace inversion techniques are given by Aral and Gülçat
(1977). For more information of Laplace inversion process the interested reader is referred to
literature (Schapery 1962, Dubner and Abate 1968, Krylov and Skoblya 1969, Durbin 1974,
Narayanan and Beskos 1982).

Schapery method is particularly suitable for the quasi-static problems for which inertia effects are
neglected. In this method time dependent variable is divided into parts

(24)

First part is expressed as Dirichlet series

(25)

The square of error approximation is

(26)

If the error is minimized with respect to Constant Aj we have
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dt
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Then, N linear equations are obtained for Ai.

(28)

and inserting  into Eq. (27), we have

(29)

Where  is the Laplace-Carson transform of v(z, t) and is directly obtained from finite element
solutions.

In the maximum degree of precisions a methods Y(t) can be approximated by quadrature.

(30)

where Sk is the abcissa and Wk is the weighting function. Weighting numbers are taken from Kyrlov
and Skoblya (1969). In this study calculations are carried out for m = 1 and n = 10.

In Dubner & Abate method f(t) is assumed to be expanded in a series of orthogonal polynomials
Φ(t) , as

(31)

The coefficients Ck are then expressed in terms of the values of the f(s) at certain real points and we
end up with 

(32)

If we substitude aT = A and T = 2t in Eq. (32) we obtain

(33)

In the computer programming Eq. (32) is employed. Durbin method is actually an efficient
improvement of Dubner & Abate. Durbin combined both finite Fourier Sine and Cosine transforms
to obtain the inversion formula

(34)
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where

(35)

Computer program was written for the above inversion methods. Results of these method are
discussed in applications.

5. Applications

The performance of the method is tested through various problem presented below. In all
applications Kelvin or three parameter Kelvin model is employed. These models represented by a
spring-dashpot model are illustrated in Fig. 3. In the Kelvin and three parameter Kelvin models
displacement approaches finite value for . A three parameter Kelvin model has elastic
response for t = 0 but Kelvin model doesn’t have elastic response. The material coefficients are
chosen as in reference (Chen 1995, Aköz and  1999).

The three parameter solids:E1 = 98 MPa
E2 = 24.5 MPa
η = 274.4 MPa.s
ν = 0.3

The Kelvin model: E = 98 MPa
η = 27.44 MPa.s
ν = 0.3

A k( ) Re F a i k pN+( )2π
N
------+ 

 
p 0=

L

∑=

B k( ) Im F a i k pN+( )2π
N
------+ 

 
p 0=

L

∑=

W
2π
N
------ 

 cos i
2π
N
------ 

 sin+=

Lk

kπ
N
------ 

 sin

kπ
N
------ 

 
-------------------=

t ∞→

Kadioglu
o

Fig. 3 The model of Three Parameter Viscoelastic Material (TPM)
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Relaxation moduli of Kelvin and Three parameter Kelvin material are as follows:

(36)

In all applications meter (m.), seconds (s.) are used to measure the displacement and time
respectively. Although a different relaxation modulus can be chosen for Shear modulus G, in these
examples Poisson ratio ν is assumed as a constant. Therefore the same relaxation modulus in Eq. (36)
are used to represent the shear modulus G.

Fixed ended semi-circular beam in Fig. 4 and circular beam supported on three points in Fig. 5
are solved for different loads. The time history of load in applications are illustrated in Fig. 6. In all
example dimension of cross-section are taken as b = 1 m., h = 1 m. Except example 6.

Example 1: Fixed ended semi-circular beam with type I load.
Uniform vertical load q0 = 10 N/m is acting vertically on the semi-circular fixed-ended beam Fig. 4.

The time history of load is sketched in Fig. 6(a). This problem is solved for TPK (Three-parameter
Kelvin Solid) employing MDOP, Dubner and Durbin inverse transform techniques. The displacement

J t( )
1
E
--- 1 e

E 

η
---- t–

–
 
 
 

, J t( )
1
E1

----- 1
E2

----- 1 e

E2

η
------ t–

–
 
 
 

+==

Fig. 4 Fixed-fixed semi-circular beam Fig. 5 Circular beam with concentraeted external loads

Fig. 6 Time histories of external loads
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variation of center point with respect to time is depicted in Fig. 7 for t < t1 = 2 s. and for t > t1= 2 s.
in Fig. 8. In this problem MDOP and Durbin give perfect results. Fluctuation is observed as the
time increases in Dubner inverse transform technique (for aT = 10, N = 100). Since fluctuation exist
in Dubner method the results are not shown in the figure. It is experienced that if these parameters
increase fluctution move to the right side on time scale.

Example 2: Fixed ended semi-circular beam with type II load.
In this example, the problem given in the previous example is solved for the load given Fig. 6(b).

The time duration is assumed as t1= 2 s. The full time history of the displacement of center point is
depicted in Fig. 9. In this problem MDOP, Dubner and Durbin inverse Laplace transform techniques
are employed.

Example 3: Fixed-ended semi-circular beam with type III load.
In this example, the problem given in the previous example is solved for the load given in Fig. 6(c).

The full the time history of the displacement of the center point is depicted in Fig. 10. In this
example, Durbin gives the perfect results. The error in the solution depends on the parameter N in
Durbin method. For the bigger number N error is decreases. For example if  N = 1000 is used  the
correct results can be obtained up to 30 s.

Example 4: Fixed-ended semi-circular beam with type VI load.
In this example, the problem given in the previous example is solved for the load given in Fig. 6(d)

(step load). The time variation of the displacement of the center point is depicted in Fig. 11. In this
example Dubner, Durbin, MDOP and Shapery methods are employed. The numerical results almost
are the same for all methods. Therefore it is diffucult to find difference between the curves for
different methods and only one of them is given.

Example 5: Dynamic response of fixed-ended semi-circular beam.
The same beam as in the previous examples is considered. The problem is solved for the step

function load q = 10H (t) N/m using Dubner inverse Laplace transform technique. The material
density ρ is assumed as 500 kg/m3. The time dependent displacement at the centre of the beam for
TPK solid is presented in Fig. 12. The dynamic behaviour of the viscoelastic beam disappears after
t > 25 s. for selected materials.

Example 6: Circular beam with concentrated loads.
The circular beam on three point support is studied. The concentrated forces are suddenly applied

at the three symmetrically located points as indicated in Fig. 5. The geometry and material
properties are R = 5 m., E1= 98 MPa, E2 = 24.5 MPa, η = 274.4 MPa.s, b = 1 m., h = 0.5 m.,
P = 1H(t) kN.

The time dependent displacement under the load for quasi-static and dynamic cases are presented
in Fig. 13. The dynamic behaviour of viscoelastic beam disappears after t > 25 s. for TPK material.

The effect of thickness of beam on the amplitude and frequency is shown in Fig. 14. Frequency
increases with increasing thickness as expected. Also the effect of viscosity coefficient on the
vibration is presented in Fig. 15. As it is observed from Fig. 15, the displacement decreases as the
viscosity coefficient increases. In dynamical solution Dubner inverse Laplace transform technique
gives the best result.
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Example 7: Circular beam on elastic foundation.
The circular beam of the previous example on elastic foundation is considered. The material

density ρ is 500 kg/m3. The Winkler coefficient k is 20 kN/m. The quasi-static and dynamic
deflection under load-point is depicted in Fig. 16. As is seen from that figure, the deflection is
approximately one tenth of the previous example. Also, the interaction of the beam with the
foundation affects the vibration shape. The quasi-static and transient response is depicted in Fig. 16.

Fig. 9 The time dependent displacement at the centre
of beam for the time load its history given in
Fig. 6(b)

Fig. 10 The time dependent displacement at the
centre of beam for the time load its history
given in Fig. 6(c)

Fig. 7 Displacement variation at the centre of beam
for the time load its history given in Fig. 6(a)
by using MDOP, Dubner, Durbin (t < t1 = 2 s.)

Fig. 8 The time dependent displacement at the centre
of beam for the time load its history given in
Fig. 6(a) (t > t1 = 2 s.)
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Fig. 13 The quasi-static and dynamic variation of
displacement under loadpoint

Fig. 14 The effect of thickness on the frequency and
displacement

Fig. 11 Displacement variation at the centre of beam
for the time load its history given in Fig. 6(d)
by using MDOP, Dubner, Durbin, Schappery

Fig. 12 The quasi-static and dynamic behaviour of
the displacement at the centre of beam for
TPM
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6. Conclusions

In this study, a finite element VCR12 developed for viscoelastic beam for circular beams on
elastic foundation. To represent viscoelastic behaviour, the two constitutive relations (one for the
bending and one for the shear force) in hereditary integral form are assumed. In order to remove the
time derivative from governing equations and boundary conditions, the Laplace-Carson
transformation is employed. A new functional is obtained for viscoelastic circular beams through
systematic procedure based on Gâteaux differential which have 12 independent variables. The mixed
finite element formulation VCR12 is obtained in transformed space. The Shapery, Dubner, Durbin
and MDOP methods are employed for numerical inversion. The performance of the method is tested
through various quasi-static and dynamic problems. The properties of this formulation briefly are:

• MDOP and Durbin method are very suitable for quasi-static problems under the constant loads.
In Durbin method for much better numerical results are obtained for increasing parameters
such as aT = 10, N = 100-2000.

• MDOP doesn’t give the results for t = 0.
• Dubner inverse Laplace transform technique gives the best result for transient response.
• In Dubner inverse Laplace transform technique better results are obtained for increasing

parameters such as aT = 10, N = 100-2000.
• It is observed that the frequency of the vibration increases with the increasing rigidity of the

beam as expected.
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Notation

T, M : Shear force and bending moment.
q : External force.
R : Radius of circular beam.
k : Winkler coefficient.
γ : Shear.
Ω, ω : Bending rotation and bending unit rotation.
A, k' : Area of cross-section, shear coefficient.

Kadiogluo

Kadiogluo

Dogruogluo o

Kadiogluo
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ui : Displacements.
Dn

*, Dt
*, H* : Bending, torsional and shear rigidity operators of viscoelastic beam.

E, G : Young modulus and shear modulus.
ν : Poisson ratio.
Y(τ), Y1(τ) : Relaxation kernels for normal and shear stress respectively.
J(t), J1(t) : Creep kernels for normal and shear strain.
s : Laplace transform parameters.
t : Time.
ρ : Density.

: Laplace-Carson transform of any F(t) function.
Q : Operator.

: Functional.
[f, g] : Inner product in Laplace-Carson space.
[  ,  ]σ : Valid at the point where dynamic conditions are given.
[  ,  ]ε : Valid at the point where geometric conditions are given.

: Inner product

Appendix

The operator form at field equation in Laplace-Carson space is:

kR 0 0 0 0 0 0 0 0 0 0 0 0 0

.

qR

0 0 0 0 R 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 −R 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 −R 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 −R 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0 0 0 = 0

0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

F s( )

I u( )

,〈 〉

d
dθ------– ub

d
dθ------– Ωn

d
dθ------– Ωt

d
dθ------ Mt

d
dθ------ Mn

d
dθ------ Tb

Dt
* ωt

Dn
* ωn

H* γb

ub0 T̂b0

Ωn0 M̂n0

Ωt0 M̂t0

Mt0 Ω̂t0–

Mn0 Ω̂n0–

Tb0 ûb0–




