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Abstract. Current design specifications prescribe that the upper and lower reinforcement mat is
required in the same amount to resist negative and positive moment in bridge decks. This design concept
is primarily based on the unrealistic assumption that the girder plays a role of rigid support against deck
deflection. In reality, however, girders are flexible and the deflection of girders affect the behavior of deck
slabs. In the present study, an analytical method was developed to take the effect of the girder flexibility
on the deck behavior into account. The method was formulated based on the slope-deflection equations of
plates and harmonic analysis. Unlike the conventional finite element analysis, the input and output
schemes are simple and convenient. The validity of the presented study was verified by a series of
comparative studies with finite element analyses and experimental tests. It was shown from the analyses
that the negative transverse moments of decks were significantly reduced in many cases when the girder
flexibility were appropriately taken into consideration whereas the positive moments tend to increase. This
poses a strong need to improve the conventional design concept of decks on rigid girders to those on
flexible girders. 
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1. Introduction

In a slab-on-girder bridge system, most of bridge decks have been designed according to the
American Association of State Highway and Transportation Officials (AASHTO) specifications of
live load bending moment formula based on the study by Westergaard (1930), which is associated
with positive bending moment in simply supported plates. The transverse bending moment formula
for bridge decks are based on the assumptions that the girders are rigid. Based on this bending
moment, the lower and upper reinforcement mats in a deck shall be provided in the same
reinforcement proportions to resist positive and negative bending moments respectively. Also, the
provisions prescribe that in slabs continuous over three or more supports a continuity factor of 0.8
and in a slab over simple support a factor of 1.0, shall be applied to both positive and negative
bending moment. However, the aforementioned design moment provided in the specifications does
not accurately represent the actual behavior of the deck slab due to the limitations in defining
merely them as a function of girder spacing and magnitude of loads. In other words, in an actual
bridge system, the transverse bending moments should be expressed by the sum of one due to
elastic support as well as one due to rigid support. It has been observed that shrinkage cracks often
occur over the upper transverse bars, inducing increased exposure to deleterious substances such as
deicing chemicals (Cao et al. 1996). Once the deleterious substances attack the upper reinforcement,
the reinforcement is susceptible to corrosion, which results in the premature deck failure. As a
consequence, it can be said that the unnecessary excessive upper reinforcement may rather
accelerate the deck deterioration.

There have been many research activities to clarify the behavior of bridge decks and to propose an
adequate design moment criteria. The effect of girder deflections was discussed by Newmark
(1949), Cusens and Pama (1975), Bakht and Jeager (1985), Allen (1991), and Cao et al. (1996).
During revision of the Ontario Highway Bridge Design Code (OHBDC), many experimental
investigations on the behavior of bridge decks were performed. The OHBDC specifications were
originally based on the compression membrane force in deck slabs, which increases the flexural
capacity (Arching Effect). Slabs usually fail by punching shear due to static or fatigue loads. In fact,
the deck slabs subjected to service load have been known to show no serious cracks in the elastic
range. 

The actual behavior of bridge decks subjected to service loads can be divided into two parts (Cao
et al. 1996). One part is the primary bending due to local deflection that is developed in the
continuous slabs under the assumption that the supporting girders are rigid. The other is the
secondary bending moment that is caused by deflection of the supporting girder. The derivation of
these bending moments presented by Cao et al. is known as a simplified method based on the force
method using the isotropic and orthotropic plate theory and the applications of this derivation are
quite limited to the various cases such as multiple girder and continuous spans bridges. It should be
noted that there are numerous parameters affecting the secondary bending moment such as the
width to span ratio, relative stiffness of girder to deck, number of girders, and number of cross
beams, etc. 

In the present study, a new analytical method was developed based on the slope-deflection
equations of plates and harmonic analysis and can be applied in handling the various slabs-on-
elastic-girders with different aforementioned parameters. This method was encoded into a computer
program (ASGB, Analysis of Slab on Girder Bridge). Meanwhile, the developed method is verified
through an intensive comparative study by conventional finite element analyses (LUSAS) and a



Analytical and experimental study on the behavior of elastically supported reinforced concrete decks 631

series of experimental results. It is shown that in many cases the performance of the slab decks can
be considerably enhanced by taking into account the effect of girder flexibility. 

2. Bridge deck analysis

Analytical methods of plate theory were introduced by Kirchhoff-Love and Reissner-Mindlin
(Timoshenko et al. 1984 and Szilard 1974). Kirchhoff-Love’s plate theory assumes that deformation
of the plate is mainly caused by bending effects without shearing effects. While, Reissner-Mindlin’s
plate theory considers both the bending and shearing effects. In this study, an analytical solution of
thin plate bridge-deck behavior derived from the former theory has been adopted. Bending moments
in the direction perpendicular to the flow of traffic are referred to as transverse moments. To
determine the transverse moments in slab-on-girder bridges, it is common to divide the response
into two parts, i.e., global moments and local moments. Local moments are obtained from the local
deflections, as shown in Fig. 1(b), of deck slabs between adjacent girders under the assumption of
rigid-girder supports and non-yielding girders whereas global moments are obtained through the
overall deflections of the deck slab, as shown in Fig. 1(c). Henceforth, the actual bending moments
of slab-on-girder bridges consist of local and global moments as illustrated in Fig. 1(d). 

Fig. 1 Cross-section deformations due to transverse moments (Bakht and Jaeger 1985): (a) Cross-section
before deformations; (b) Deformations due to local deflection; (c) Deformations due to global
deflection; (d) Deformations due to actual transverse deflection
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2.1 Harmonic analysis of bridge deck

Harmonic analysis is a mathematical method to express the behavior of plates. Navier’s solution
and Levy’s method, which are the basic methods of plate analysis, use harmonic functions
(Timoshenko et al. 1984). Fig. 2 prescribes bridge deck with simply supported of both-end and
girder supported of both-end, which is applied the sinusoidal harmonic loading. When harmonic
loading is applied parallel to the x-axis of a rectangular plate that is supported by girders, and is
applied perpendicular to a y-axis that is simply supported, the deflection of the plate can be
interpreted with harmonic terms. That is, the deflection is 

 (1)

where the symbols a and Yn denote span length of the slab and amplitude factor of deflection
relating a function of y, respectively. Solving the differential equation of the plate by Eq. (1), the
amplitude factor Yn, slope-deflection , transverse bending moment My, shear force Vy, and
reaction Ry can be obtained by 

 
  (2)

 (3,4)
 

 (5) 

  (6)

where s = a/n, n = harmonic number, c1 - c4 = coefficient of amplitude factor, D = flexural rigidity
of plate, ξ = πx/s, η = πy/s, and υ = Poisson’s ratio. As shown from Eq. (1) to Eq. (6), because the
deflection shape of the plate is assumed to be a sinusoidal function, the slope-deflection and the
bending moment as well as the shearing force are expressed with the same function. 
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Fig. 2 Bridge deck continuously supported by girders
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2.2 Responses in bridge deck by slope-deflection method

The slope-deflection method is a displacement-based method that relates internal moments at the
ends of a member to slope and deflection of the members. This method is generally used in the
analysis of indeterminate beam and frame structures, and in the analysis of bridge decks. 

As shown in Fig. 2, when girder line A and B are rigidly supported, a rigid moment induced by
harmonic loading can be obtained. The moments at the slab on each girder line caused by deflection
and slope can be expressed with multiple stiffness factor and deflection term. Therefore, the bending
moment and reaction derived from the slope, deflection, and fixed support are divided into three
parts, which are derived from one rectangular plate between girder line A and B. 

The bending moment and reaction for the first part are calculated under following conditions;
girder line A (y = 0) is rigidly supported, and slope occurs at girder line B (y = b), Φ = Φ0 sinξ. In
this case, boundary conditions are Φ =  = 0, ∆ = w = 0 at y = 0 and Φ = Φ0 sinξ, ∆ = w =
0 at y = b. The solutions of plate or slab for bending moment and reaction as well as deflection
under the boundary are

 
at y = 0; M = My = −kKΦ0sinξ at y = b; M = My = KΦ0sinξ

                  

                    

                  (7,8)

(9)

where the coefficient β = πb/s, K, Q = stiffness factor due to the shape of the deck and the flexural
rigidity of the plate, and k, q = carry-over factor due to the shape of the deck. When one edge of
the deck is rigidly supported and the other edge has a defined slope, the bending moment and
reaction are graphically presented in Fig. 3(a).

The bending moment and reaction for the second part are also derived from the following
conditions; girder line A is rigidly supported and girder line B occurs deflection, ∆ = ∆0sinξ. In this
case, boundary conditions are Φ = = 0, ∆ = w = 0 at y = 0 and Φ = 0, ∆ = w = ∆0sinξ at
y = b. The solutions of plate or slab for bending moment and reaction as well as deflection under
the boundary conditions are

   at y = 0; M = My = −qQ∆0sinξ at y = b;  M = My = Q∆0sinξ
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 (12)

where T = stiffness factor due to the shape of the deck and the flexural rigidity of the plate, and t =
carry-over factor due to the shape of the deck. The bending moment and reaction is shown
graphically in Fig. 3(b). Similarly, using the Maxwell’s law of reciprocal deflection at girder line A,
the moment and reaction due to slope and deflection are also obtained. 

For the third part, the fixed end moment and reaction are derived from the followings; a lane load
applied in the longitudinal direction on a two-edge-simply supported and two-edge-fixed plate as
shown in Fig. 4. In this case, edge A and B are fixed supports and the other two edges are simple
supports. When lane load F = Fon sinξ is applied to any lane (y = y1), the shape of deflection can be
assessed from the Maxwell’s law of reciprocal deflection. For example, when lane load is applied at

w
∆0

sinh2β β2–
--------------------------- β βcosh βsinh+( ) ηsinh βη β ηsinhsinh+{=

β βcosh βsinh+( )η ηcosh } ξsin–

Fig. 4 Bridge deck applied lane load

Fig. 3 Bending moments and reactions of bridge deck: (a) Bending moments and reactions due to slope;
(b) Bending moments and reactions due to deflection



Analytical and experimental study on the behavior of elastically supported reinforced concrete decks 635

y = y1, the influence line of the fixed end moment of edge B is equal to the deflection under a unit
slope, Φ = Φ0sinξ, at edge B. The fixed end reaction can be obtained by the same procedure as
described for the fixed end moment. Thereby, the fixed end moment and reactions at y = 0 and y = b
are

at y = 0;

 
              

        (13)

   at y = b;
 

               

          (14)

where α = β − η1 = (nπ /a)(b − y1), y1 = location of lane load, and F0 = magnitude of lane load. 

2.3 Bending moments and reactions in continuously supported slab on rigid girders 

In sequel to the previous solutions, moment and reaction at each girder support of a continuously
supported slab are also derived in this study. With further consideration of the effect of local
deflection on a slab, the fixed end moment and reaction in each slab subjected to a harmonic lane
load are obtained according to the slope-deflection method. The bending moment and reaction due
to the slope are calculated in terms of the corresponding stiffness factor. The moment equilibrium
equation is always valid in each girder line that is restrained against vertical deflections in a
continuously supported slab, and is used in Eqs. (7), (8), (13), and (14). 

The definition of notations for bending moment, reaction, and slope of continuously supported
slabs by rigid girders are as follows. 

 = Bending moment applied to the slab on the i th girder in the j th slab. 

 = Reaction applied to the slab on the i th girder in the j th slab.

 = Reaction applied to the i th girder.

 = Slope applied to the slab on the i th girder in the j th slab

The graphical representation of a continuously supported bridge deck is depicted in Fig. 5. Using
these notations, the bending moment, , applied to the slab on the first girder of the first slab is
obtained by the sum of the fixed end moment of the first support, , the moment due to the
slope of the first support, K1Φ(1), and the moment due to the slope of the second support, k1K1Φ(2).
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The reactions at this support are obtained by the same procedure. Equations for the i − 1th and i th

slab on the i th rigid girder for the bending moment and reaction involving a stiffness factor and
carry-over factor are as follows.

  (15)

As shown in Fig. 6, the bending moment and reaction at any support in a continuously supported
slab on rigid girders are determined by using the moment and reaction equilibrium equation.
Whereby the moment equilibrium equation, , where MT(i) is the torsional
moment resisting slope (Φ) of a support. The relationship between the fixed end moment and slope
is obtained in terms of the matrix, [K]{ Φ(i)}= . Thus, substituting the slope matrix, {Φ(i)},
into the second equation of (15), the bending moment due to rigid girders is determined. Similarly,
in the reaction equilibrium equation, , the reactions due to rigid girders are
determined by the following equations.
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Fig. 5 Notations used for bridge deck

Fig. 6 Equilibrium condition of moments and reactions at a support due to rigid girders: (a) Equilibrium
condition of moments (b) Equilibrium condition of reactions 
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 (16)

2.4 Bending moments and reactions in continuously supported slab on flexible girders 

The effect of girder deflection is considered by the slope-deflection method. The end moment and
reaction due to girder deflection in each slab are expressed in terms of a stiffness factor, a carry-
over factor, and deformation. The equilibrium equations of moment and vertical reaction are applied
to each girder line in continuously supported bridge decks. Notations of bending moment, reaction,
and slope in continuously supported slabs due to girder deflection are as follows. The superscript ∆
denotes the effect of the differential deflection of girders.

= Bending moment applied to the slab on the i th girder in the jth slab due to
girder deflection.

 = Reaction applied to the slab on the i th girder in the jth slab due to girder
deflection.

 = Slope applied to the slab on the i th girder due to girder deflection.

When deflection ∆(i) = ∆(i)0 sinξ occurs at each girder due to harmonic loading F = F0nsinξ, the
bending moment and vertical reaction equations for a continuously supported slab are expressed by
Eqs. (7), (8), (10), and (11). Hence, the bending moment and vertical reaction at both ends of the i th

support are expressed by 

  (17)

As shown in Fig. 7, using the moment and reaction equilibrium equations at each support in a
continuously supported slab, the bending moment and reaction due to the girder deflection at the
support are determined. Applying Eq. (17) to the moment equilibrium equation, 
= 0, where  is the torsional moment that is the resisting moment due to the effect of
differential deflection of girders, the bending moment is represented in the first equation of (18).
Likewise, considering the reaction equilibrium equation, , the reaction
matrix with the effect of deflection of girders is derived by substituting the slope and deflection
calculated from the second equation of (18) into the fourth equation of (17). 
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2.5 Total negative bending moment in bridge decks

The total bending moment occurring at each support of a deck slab is obtained by adding the
bending moments due to rigid girders and flexible girders. Whereby, the first equation of (16)
denotes the bending moment due to a rigid girder at a support and the second equation of (17)
represents the bending moment due to girder deflection at each support. These bending moments
indicate an application in the transverse direction perpendicular to the traffic axis, i.e., the y
direction shown in Fig. 2. Finally, the total negative bending moment in deck slabs is calculated by

 

(19)

2.6 Positive bending moment in bridge decks

In general, a point load which induces a positive bending moment is considered as a distributed
load with a constant width, and as such, the bending moment presented by Westergarrd (1930) and
AASHTO (1996) were assumed to be an equivalent load with constant width. In this study, it is
assumed that the distributed width of a traffic load is the tire contact area as indicated in AASHTO
specifications (1996). The dimensions pertaining to this specification are a rectangular area of 0.01 P
in square inches and length in the direction of traffic/width with a ratio of 1/2.5. The positive
bending moment in a deck slab is obtained by the sum of moments both due to distributed load as
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Fig. 7 Equilibrium condition of moments and reactions at each support due to flexible girders: (a) Equilibrium
condition of moments (b) Equilibrium condition of reactions
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shown in Fig. 8(a) and due to the effect of girder deflection as shown in Fig. 8(b). The deflection
and positive bending moment according to this procedure are expressed as

 

 (20)
 

The detailed derivation for Eq. (1) to Eq. (20) was presented by Kang et al. (1999). The positive
bending moment may increase within a deck due to the effect of differential deflection of girders.
However, it is recommended that the continuity factor be eliminated for the positive bending
moment. This leads to a small increase in the reinforcement of the lower slab (Cao 1999). 

2.7 Effect of cross beam and continuous span bridge

To consider the transverse negative bending moment in a deck slab with a non-composite cross
beam, the cross beam is modeled as a one-dimensional-beam element, which has two degrees of
freedom at each node, i.e., a vertical reaction and rotation at the nodal point, as shown in Fig. 9.
The stiffness matrix for the beam element is expressed in the first equation of Eq. (21), {f } =
[K]{ δ }, and the relation between the deflection and vertical reaction for n cross beams is
represented in the second equation of (21), [K ]i{ δ } i = {R} i. The reaction vector is obtained from
Eq. (21) using flexibility matrix, [W], and displacement vectors, [W]{ Rc} = { D} and
{ δ } = { dp} + { D}. Whereby, {D} denotes the displacement vector due to the reaction of a non-
composite cross beam, {dp} is the displacement vector at each node due to external forces in deck
slabs without non-composite cross beams, and {δ } is the displacement vector at each node due to
external forces in deck slabs with non-composite cross beams.
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Fig. 8 Deck slabs applied distributed load and edge moment: (a) Deck slab applied distributed load (b) Deck
slab applied edge moment due to girder deflection
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 (21)

The transverse negative bending moment in a deck slab with a non-composite cross beam is
obtained by the sum of the bending moment in a deck without a cross beam expressed in Eq. (19)
and the bending moment due to the reaction of a cross beam expressed in Eq. (22). 

  (22)

where [I ] and [W] indicate identity and flexibility matrix, respectively.
In the continuous span bridge shown in Fig. 10, intermediate supports are restrained to vertical

deflection, while rotation is allowed. For the purpose of simplicity, the intermediate supports of a
continuous span bridge are modeled as a cross beam with infinitely large stiffness providing
restraint for the vertical deflection. Thus, the procedure of analysis of transverse negative bending
moment in a continuous span bridge may be the same as that of a non-composite cross beam
considered to be the vertical restraint of the intermediate supports. The detailed derivations for (21)
and (22) were also presented by Kang et al. (1999). 

3. Analysis program for bridge deck (ASGB)
 
In this study, an analytical program for moment and deflection in a bridge deck is referred to as
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Fig. 9 Modeling of a cross beam section Fig. 10 Typical section of a continuous span bridge
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ASGB, and coded by FORTRAN language. The ASGB program is considered the effect of
deflection of girders, based on the displacement method not force method, which can be applied in
complex and various cases such as the multiple girder system, placement of cross beam, and
continuous span bridge. Results of the program show positive and negative bending moments in
slabs, bending moment and deflection in girders, and shear force in girders. A flowchart of this
program using harmonic function and the slope-deflection method based on plate theory is
illustrated in Fig. 11.

Verification of analytical method 
In this study, a comparison of the negative bending moment of a finite-element model is

performed. The finite-element model consists of plates and beams. A plate-element contains eight
nodes and a beam-element has three nodes. A rigid beam is used to connect the plate and beam
elements. The maximum negative bending moments calculated from both the finite-element model

Fig. 11 Flowchart of the analytical program for a bridge deck (ASGB)
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and the ASGB analysis are presented with respect to span length for a simply supported bridge with
a three-girder deck, as depicted in Fig. 13. The dimensions of a simply supported bridge, as shown
in Fig. 12(a), are 10 m (32.8 ft) long, 6 m (19.68 ft) wide, and 2 m (6.56 ft) girder spacing. Values
of 2.083 × 10−2 m4 (2.4136 ft4) and 1.0417 × 10−2 m4 (1.2068 ft4) are calculated for the inertia
moment corresponding to the major axis of each girder and cross beam, and the torsional constant
of each girder is 4.4314 × 10−3 m4 (0.5134 ft4). The section properties of each girder and cross beam
are almost comparable to those of W36 × 650 and W36 × 359 steel. Two concentrated loads of
196.14 kN (44.08 kips) are applied at mid-span. As illustrated in Fig. 13, the maximum negative
bending moments in the transverse direction attained from the finite-element model and ASGB
analysis have more or less identical results.

Fig. 14 illustrates a comparison of the maximum negative bending moment attained from the
finite-element model and the ASGB analysis with respect to span length of a continuous span
bridge with five girders. The dimensions selected for this two-span continuous bridge, as shown in
Fig. 12(b), are 3 m (9.84 ft) for girder spacing, 30 m (98.4 ft) for length and 15 m (49.2 ft) for
width. Values of 3.0 × 10−3 m4 (0.3475 ft4) and 1.5 × 10−3 m4 (0.1738 ft4) are calculated for the

Fig. 12 Loading and geometric details: (a) simply supported bridge (b) continuous span bridge



Analytical and experimental study on the behavior of elastically supported reinforced concrete decks 643

inertia moment corresponding to the major axis of each girder and cross beam, and the torsional
constant for each girder is 1.5 × 10−4 m4 (0.0174 ft4). The section properties of each girder and cross
beam are almost comparable to those of W33 × 141 and W30 × 90 steel. Based on the live load
specifications of the Korean Ministry of Construction and Transportation (1996), the load of a truck
is prescribed as 423.66 kN (95.21 kips), which is 32% over that of the AASHTO standard HS20-44
truck. Herein, two trucks as shown in Fig. 12(b) are applied to the slab. The maximum negative
bending moments in the transverse direction according to the finite-element model and the
analytical method have the same results. The finite-element method program used for verification of
the ASGB analysis is LUSAS (FEA Ltd. United Kingdom 1970).

Fig. 13 Maximum negative bending moment with respect to span length in a simply supported bridge [Three-
girder deck, S = 2 m (6.56 ft), 1 kN-m/m = 0.225 kips-ft/ft, 1 m = 3.28 ft]

Fig. 14 Maximum negative bending moment with respect to span length in a continuous span bridge [Five-
girder deck, S = 3 m (9.84 ft), 1 kN-m/m = 0.225 kips-ft/ft, 1 m = 3.28 ft]
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4. Experimental behavior of bridge deck

4.1 Configurations of experimental decks 

Two experimental plate-girder-bridge decks with three girders are constructed and static loading
tests are performed to verify the effect of the deflection of girders. Owing to laboratory
configuration, experimental decks are fabricated as bridge decks of quarter-scale based on the rule
of similitude ratio. The experimental decks consist of two types according to girder spacing. One
type has girder spacing of 0.5 m (1.64 ft) and the other has 0.6 m (1.97 ft). As shown in Fig. 15,
that is girder spacing of 0.5 m (1.64 ft), geometric properties of the experimental decks are
calculated to length of 3.75 m (12.3 ft), depth of 0.065 m (0.213 ft), cantilever arms of 0.25 m (0.82 ft),
transverse and longitudinal wire-mesh mats of 0.004 m and 0.003 m (0.16 in and 0.12 in) diameter.
And inertia moment of 2.1 × 10−5 m4 (2.4 × 10−3 ft4) corresponding to the major axis of the steel
girder is almost the same as that of W8 × 15 steel.

Fig. 15 Configurations of experimental bridge deck [Girder spacing, S = 0.5 m (1.64 ft), 1 m =3.28 ft]
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The tire contact area is assumed to be 0.008 m2 (12.43 sq. in) according to the AASHTO standard
HS20 truck (0.01P in2). The wheel load (2P), calculated to 25.3 kN (5.68 kips), is applied on the
bridge deck parallel to the transverse direction of the deck at the same distance as the girder
spacing.

Material properties of the experimental decks are based on the specifications of the Korean
Ministry of Construction and Transportation (1996). The material properties are 26.5 MPa (867.8
psi) compressive strength of deck concrete, 3.24 MPa (106.1 psi) flexural strength of deck concrete,
22,606 MPa (740.3 ksi) elastic modulus of deck concrete, 200,062 MPa (6,551 ksi) elastic modulus
of girder steel-plate, 314.2 MPa (10.3 ksi) yield stress of girder steel-plate and 393 MPa (12.9 ksi)
yield stress of wire-mesh mat. It is assumed that Poisson’s ratio of concrete deck and steel-plate
girder are 0.17 and 0.3.

Fig. 15(d) shows two patterns of reinforcements in a slab with respect to the rigid support and
flexural support system. One patterns follows the arrangement of conventional reinforcing mats
throughout the deck (Case A), and the other removes the upper transverse reinforcing mat according
to the analytical method in the region between 1.25 m (4.1 ft) and 2.5 m (8.2 ft) of the longitudinal
direction (Case B). In this experimental work, the Case B pattern is fabricated and is performed the
static load test. The analysis zone of Case B is based on results of the analytical method, which the
transverse tensile stress in slab-on-girder due to the effect of deflection of girders is smaller than the
modulus of rupture of concrete in a deck. According to the analytical method, it is possible to
remove the transverse reinforcing bars in the upper slab from a distance like girder spacing.
However, in this experimental study, a starting line for the analysis zone of 1.25 m (4.1 ft) is
adopted due to the nonlinear material properties of concrete, the ignorance of the impact effects of
the truck load and the disregard for sidewalks. The reinforcement arrangements for the conventional
zone and the analysis zone are shown in Fig. 15(e) and (f ). It is seen that the latter method leads to
a simpler reinforcement arrangement.

Loading is applied in three separate cases. One loading case is applied at one girder length from
the abutment, another is applied at L/3 (where L equals the span length), and the last is applied at
L/2. For a girder spacing of 0.5 m (1.64 ft), gauge lines are located at 0.5 m (1.64 ft), 1.25 m (4.1
ft), and 1.875 m (6.15 ft) from the abutment, as shown in Fig. 16(a). Each gauge line corresponds to
each loading case and has eleven gauge points as shown in Fig. 16(b). They are comprised of eight
gauge points for measurement of the strain in the longitudinal and transverse directions of the
concrete-deck surface (Gauge Points A to D), and three gauge points for measurement of the
deflection of the girders (Gauge Point E). 

In the case of the experimental deck with girder spacing of 0.6 m (1.97 ft), all geometric and
material properties are identical to decks with girder spacing of 0.5 m (1.64 ft), except for the width
of the deck (1.7 m, 5.58 ft) and the location of load case 1 (0.6 m, 1.97 ft). 

 
4.2 Comparison of analytical and experimental results 

To evaluate the bending moment due to the deflection of girders, static loading tests are performed
in the laboratory. Static forces are applied through the loading actuator at intervals of 4.9 kN (1.10
kips) to a maximum of 25.3 kN (5.68 kips), and longitudinal and transverse strains at each force-
step are measured. As shown in Fig 16(b) and Table 1, because the maximum negative tensile stress
for each load case developed at gauge point B, strains with respect to each force-step are
summarized for gauge point B. Converting strains from the stress-strain relationship, the maximum
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negative tensile stresses in the transverse direction are obtained. 
As illustrated in Fig. 17, the maximum negative tensile stresses measured in the experimental

three-girder bridge deck with a girder spacing of 0.5 m (1.64 ft) for load case 1 to 3 are 37%, 18%,
and 17% smaller than that of the analytical results. The much difference of both stresses for load
case 1 is regarded to the effect of the boundary condition. And, for each force-step, these stresses of
analysis and experiment represent that the farther from the abutment, the smaller the negative tensile
stresses. It is noted that the farther from the abutment, the larger the effect of the deflection of
girders. Also, all maximum negative tensile stresses developed in both the experimental
measurements and analytical results are smaller than the modulus of rupture of concrete. 

The experimental and analytical results for girder spacing of 0.6 m (1.97 ft) are compared in
Fig. 18. Comparing the tensile stresses for elastically supported system shown in Fig. 18, the
maximum transverse tensile stresses with respect to the span length are larger when closer to the
abutment, which is regarded as the effect of the boundary condition. And, the experimental tensile
stress of 1.28 MPa (0.186 ksi) at mid-span is 21% smaller than the analytical tensile stress of 1.62
MPa (0.235 ksi) for elastically supported system. Also, comparing the tensile stresses for elastically
supported and rigidly supported system, the analytical tensile stress for rigidly supported system is

Fig. 16 Gauge locations of experimental bridge deck [Girder spacing, S = 0.5 m (1.64 ft), 1 m = 3.28 ft]:
(a) Gauge lines (side view); (b) Gauge points (front view)

Table 1 Maximum strain with respect to force-steps at gauge point B [S = 0.5 m (1.64 ft)]

Load
(kN)

Load Case 1 Load Case 2 Load Case 3

Strain (×10−6) Strain (×10−6) Strain (×10−6)

4.9 −7 / +8 −15 / +6 −17 / +6
9.8 −21 / +16 −30 / +15 −32 / +15
14.7 −30 / +27 −46 / +23 −50 / +23
19.6 −40 / +37 −61 / +33 −65 / +32
24.5 −51 / +48 −77 / +43 −84 / +39
25.3 −53 / +50 −80 / +45 −87 / +41

           Note : 1 kN = 0.225 kips, longitudinal strain/transverse strain
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much larger than the experimental and analytical tensile stresses for elastically supported system. It
is noted that considering the effect of the deflection of girders in a slab design, the tensile stresses
can be considerable reduced. 

Maximum tensile stresses at gauge line 3, i.e., the mid-span of the bridge deck, for a girder
spacing of 0.5 m (1.64 ft), are compared in Table 2 and Fig. 19. Comparing the analytical tensile

Fig. 17 Maximum negative tensile stress along force-steps [S = 0.5 m (1.64 ft), 1 MPa = 0.145 ksi, 1 kN =
0.225 kips]

Fig. 18 Maximum negative tensile stress along span length [S = 0.6 m (1.97 ft), 1 MPa = 0.145 ksi, 1 m =
3.28 ft]
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stress of the elastically supported and rigidly supported system at gauge point B, the former of 1.68
MPa (0.24 ksi) is 49% smaller than the latter of 3.31 MPa (0.48 ksi). And, comparing the analytical
and experimental tensile stress for elastically supported system at the same point, the former of 1.68
MPa (0.24 ksi) is 25% larger than the latter of 1.34 MPa (0.19 ksi). Although the analytical and
experimental results for elastically supported system differ a little, the both are smaller than the
modulus of rupture of concrete as well as the analytical tensile stress of the rigidly supported
system. It is indicated that the tensile stress in the top fibers of the bridge decks can be reduced to a
considerable extent. This casts a strong feasibility of improving the deck slab reinforcement if the
girder flexibility appropriately taken into account.

While, comparing the analytical tensile stress of the elastically supported and rigidly supported
system at gauge point A or C, the former of 3.19 MPa (0.46 ksi) is about 50% larger than the latter
of 2.07 MPa (0.30 ksi). The increment of this analytical tensile stress is related to the additional

Table 2 Maximum tensile stress along transverse distance at gauge line 3 [S = 0.5 m (1.64 ft)]

Transverse
Distance 

(m)

Analytical stress for 
elastically supported

(MPa)

Analytical stress for 
rigidly supported

(MPa)

Experimental stress
for elastically supported 

(MPa)

Modulus of rupture 
of concrete

(MPa)

0.25 1.63 2.02 0.98 3.20
0.50 3.19 2.07 2.49 3.20
0.75 1.68 3.31 1.34 3.20
1.00 3.19 2.07 2.43 3.20
1.25 1.63 2.02 0.98 3.20

          Note : 1 MPa = 0.145 ksi, 1 m = 3.28 ft 

Fig. 19 Maximum tensile stress along transverse distance at gauge line 3 [S = 0.5 m (1.64 ft), 1 MPa = 0.145
ksi, 1 m = 3.28 ft]
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tensile stress due to the effect of girder deflection. Although the increment of the tensile stress
occurs owing to the effect of girder deflection, the analytical tensile stress is close to the modulus of
rupture of concrete. 

From these comparisons of the tensile stress, the analytical and experimental behaviors of slab-on-
girder bridge involving the effect of girder deflection are investigated. Summarizing the behaviors of
elastically supported system corresponding to the rigidly supported system in a slab, there are two
major trends. The first trend is that the farther from the abutment, the smaller the negative tensile
stresses for elastically supported system, as shown in Fig. 17 to 18. The second trend is that
comparing the negative tensile stresses of elastically supported and rigidly supported system, the
former is quite a little smaller than the latter due to the effect of girder deflection, as illustrated in
Fig. 18 to 19. From the second trend, the upper reinforcements to resist the negative bending
moment will be considerably reduced. 

The modulus of rupture of concrete chosen in this study has been calculated according to formula
318 of the American Concrete Institute (ACI 1996).

5. Comparison with Cao’s method

In bridge decks, the reduction of negative bending moment due to differential deflection of girders
has been reported by Cao (1996). He has termed the closed-form solution based on the force
method as the “simplified method”. This simplified method, which was derived to superimpose two
bending moments that is the bending moments due to rigid girder and flexural girder, applies to
slab-on-girder bridges with three girders only. Which use the isotropic plate theory in transverse
direction of deck and the orthotropic plate theory in longitudinal direction of deck. 

To compare the simplified method and the analytical method presented in this study, an example
bridge deck with three girders has been adopted as shown in Fig. 20. The properties of this slab-on-
girder bridge are 14.94 m (49 ft) long, 2.13 m (7 ft) girder spacing, 89 kN (20 kips) wheel load of a
HS20-44 truck (AASHTO) including the effect of impact, and a W36 × 150 steel girder. The wheel
load of a HS20-44 truck is assumed to apply at mid-span causing maximum girder deflection. At
mid-span according to the simplified method, the bending moment due to the rigid girder M1 is
−19.082 kN-m/m (−4.2880 kips-ft/ft), and the reduction factor Kd is equal to 0.3509. The additional
bending moment due to flexible girders M0 is 24.33 kN-m/m (5.4665 kips-ft/ft), and the total
negative bending moment, Mt = M1 + Kd × M0, in the transverse direction is −10.55 kN-m/m (−2.3698
kips-ft/ft). According to the analytical method presented (ASGB), the negative bending moment in
the transverse direction equals −10.69 kN-m/m (−2.4031 kips-ft/ft), which is 1.3% larger than in the
simplified method. The results are practically identical.

The simplified method by Cao can express the transverse bending moment in a closed-form
solution for simple cases such as a bridge deck with three girders, but for relatively complex cases
such as multiple girder systems, placement of cross beams, or continuous span bridges, the
derivation of a closed-form solution may become extremely difficult. However, the analytical
method presented can be applied to complex cases such as multiple girder system and continuous
span bridges. 
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6. Conclusions

In the design of bridge decks, AASHTO specifications prescribe that the evaluation of bending
moment only considers rigidly supported decks. However, the effects of deflection of girders, i.e.,
the effect of elastically supported decks, must be included for accurate representation of the actual
behavior of bridge decks. Considering the stress distribution of a continuously supported bridge
deck in the transverse direction, the positive bending moment arises in deck between girders and the
negative bending moment arises in slab-on-girder. 

In this study, the analytical method, which was derived using the harmonic analysis and the slope-
deflection method, was developed to describe the actual behavior of slab-on-girder bridge involving
the effect of girder deflection and was verified as plate-beam model of commercial finite element
program. Because the major effect of girder deflection or flexural girder was related to the
transverse bending moment in slab-on-girder, in this work this bending moment was illustrated in
detail. Meanwhile, the other resultants such as shear force, displacement, and slope also were
calculated in this work. 

In addition, to measure the effect of girder deflection, experimental decks in this study were
fabricated based on design according to the analytical method, and static loads were applied in
compliance with the tire contact area of an AASHTO standard HS20-44 truck (0.01 P in2).
Comparing the negative tensile stress of both the elastically supported system and the rigidly
supported system in a slab at mid-span, the former was about 50% smaller than the latter due to the
effect of girder deflection. It is noted that if the effect of girder deflection is considered in a bridge-

Fig. 20 Loading and geometric details (Cao 1996): (a) Elevation; (b) Cross section A-A
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deck design, the upper reinforcements to resist negative bending moment in transverse direction can
be quite a little reduced. 

Comparing this analytical method with the force method, the analytical method has a wider range
of application in various and complex cases such as the multiple girder system, placement of cross
beams, and continuous span bridges. Also, in the bridge-deck design, this method and program will
be applied to ease because requires small input and output tasks. 
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