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Comparison of error estimation methods and adaptivity 
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Abstract.  This paper deals with adaptive finite element analysis of linearly elastic structures using
different error estimators based on flux projection (or best guess stress values) and residual methods.
Presentations are given on a typical h-type adaptive analysis, a mesh refinement scheme and the coupling
of adaptive finite element analysis with automatic mesh generation. Details about different error estimators
are provided and their performance, reliability and convergence are studied using six node quadratic
triangular elements. Several examples are presented to demonstrate the reliability of different error
estimators.
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1. General perspective

The finite element (FE) method is now firmly established as a crucial tool for the engineering
analyst with applications to endless variety of problems. New methods and capabilities are
constantly involving and finding their way into commercial software packages. However, designers
who do not have comprehensive expertise in numerical analysis may not even be aware that all FE
results are approximate. The FE method is a powerful numerical tool, which is often misused;
especially with respect to discretization errors arising from poor mesh design.

We may pose the question now: ‘How does an analyst know what constitutes an acceptable mesh
in practical analysis?’ Recent developments indicate that the discretisation error and its distribution
in a FE analysis may be improved using adaptivity. For example, Zienkiewicz and Zhu (1992) have
introduced a simple error estimator based on superconvergent FE stresses. Babuska and Rheinboldt
(1978) have developed error estimators based on stress jumps around element boundaries and the
residual terms in the governing equilibrium equation. Babuska and Yu (1986) and Baehmann et al.
(1990) introduced the hierarchical shape function concept for error estimation based on previous
work by Babuska and Rheinboldt (1978). Babuska and coworkers (1994) discussed computational
methodologies for checking the quality of a posteriori error estimators. The methodology accounted
precisely for the factors, which affect the quality of error estimators for finite element solutions of
linear elliptic problems, namely, the local geometry of the grid and the structure of the solution.
Now, it becomes possible to use error estimation to introduce acceptable new meshes leading to
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solutions with prescribed accuracy. 
The use of adaptive mesh refinement (AMR) analysis concept in shape optimisation (Hinton et al.

1991), in plate and shell analysis (Cho and Oden 1996, Hinton et al. 1991), and in metal forming
(Zienkiewicz et al. 1988) has been shown to increase the accuracy of the analysis. Research on
adaptive analysis of dynamic and non-linear problems is also progressing (Dutta and Ramakrishnan
1997, Stephen and Steven 1997, Mathisen and Okstad 1999).

In the next section, general aspects of adaptive mesh refinement procedure are presented.
Governing equations of elasticity and FE approximation are then outlined. Next, the error estimator
based on best guess solutions and the error energy norm is presented. This paper closes with a few
examples where the adaptivity process is tested with respect to its efficiency and convergence
characteristics in a global error energy form and in a point wise way to recover displacement or
stress values on the boundary.

 

2. General aspects of adaptive mesh refinement procedure

To improve the reliability of the FE method and to ensure that the results produced are of
appropriate accuracy, it is essential to estimate the global error as well as the local error distribution
in the completed analysis (Zienkiewicz and Zhu 1992). The global error can only serve as a control
parameter, the local error distribution indicates the amount of refinement and coarsening necessary
to reduce the discretization error.

Optimal meshes are designed by directly predicting the mesh sizes based on a local error estimate.
The predicted optimal mesh can be generated by using an automatic mesh generator, by successive
mesh enrichment or by mesh movement (Sienz 1994).

In this work, the optimal mesh is generated using an automatic mesh generator. The automatic
AMR procedure performs the initial analysis and subsequent re-analyses without any user
intervention until the error in the solution reaches a desired accuracy. The basic AMR procedure is
as follows.

1. Produce a starting mesh and carry out an initial FE analysis.
2. Based on the results of the FE analysis, evaluate the error estimate.
3. If the error estimate is acceptable then the adaptive analysis is complete; otherwise continue
4. Re-mesh the whole domain based on a new mesh density evaluated using error distribution.
5. Perform the FE analysis again based on the new mesh and go to step 2.
As can be seen, an adaptive scheme is composed of two main ingredients (Strouboulis and Haque

1992): Thus an AMR scheme is composed of three main ingredients:
• Error estimation: this includes the methods and algorithms used for the estimation of the error in

approximate solutions. The results of an a posterior error analysis may be employed to check if
the quality of an approximate solution meets tolerances specified by an analyst and may also be
used to derive the adaptive scheme which optimises the structure of the approximation.

• Mesh re-design: This refers to the methods, which are used to predict the optimal distribution of
the parameters of the approximation based on the error-estimated error and the procedures
which are employed in the adaptation of the approximation. The mesh is modified using an
adaptive scheme, which is a set of procedures employed to control the parameters of the
approximation.



Comparison of error estimation methods and adaptivity for plane stress/strain problems581

This combination forms a practical, reliable and versatile algorithm, which can be used for both
research and industrial purposes and can be attached to the FE analysis code with minor
modifications.

 

3. Governing equations of elasticity

In order to describe the error estimators adopted in the current work we briefly review the sources
of discretization error. The governing equilibrium equations of elasticity may be expressed as

(1)

in a domain Ω, subject to the conditions

 on the boundary Γu, and

 on the boundary Γt

where σ is the ‘vector’ of stresses, u is the vector of displacement fields, L is a matrix of
differential operators, b is the vector of body forces,  is the vector of prescribed displacements on
boundary Γu and  is the vector of prescribed tractions on boundary Γt. The strains ε may than be
calculated from the expression

(2)

and the stresses σ can be evaluated as

σ = Dε (3)

where D is the elastic modulus matrix.
 

4. Finite element approximation

Detailed treatment of the standard FE formulation can be found in many text books (Zienkiewicz
and Taylor 2000, Cook et al. 1989). In this section, however, only the fundamental principles
required by subsequent parts of the present work are outlined.

The basic concept of the FE method is that a continuum can be modelled numerically by
subdividing it into discrete regions or finite elements interconnected at nodal points. It is assumed
that the general behaviour of the continuum can be expressed in terms of a finite number of
parameters or nodal values. To this end, isoparametric elements use a single set of functions to
interpolate both the geometry and field variables inside each element from a respective set of nodal
values. These interpolation functions, the shape functions, are defined for a parent element in a
natural coordinate system (ξ, η) the axes of which have values ranging from −1 to 1.

In the FE displacement approach, which is adopted exclusively in this work, nodal displacements
are the primary unknown to be computed (stress is a secondary variable computed from the
displacements). Let the displacements u at any point within the element e be approximated as a
column vector :

Lσ b– 0=

u u=

t t=

u
t

ε LTu=

û
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(4)

where  is the FE approximation to u, de is the vector of nodal displacements for a particular
element, n is the number of nodes per element, N is the matrix of shape functions and is a diagonal
matrix of n submatrices Ni = NiI  with I  being a 2 × 2 identity matrix. Ni is the shape function
associated with node i. In the case of plane stress,

(5)

represents the horizontal and vertical displacements of a typical point within the element and

(6)

the corresponding displacement of a node i. To calculate the displacements u(ξ, η) and v(ξ, η) at
any point within the element, we make use of the expressions

(7a)

(7b)

The strain vector may than be calculated from the expression

(8)

where B is termed the strain-displacement matrix. In its simplest linear form, the B matrix consists
of the Cartesian derivatives of the shape functions.

The isoparametric concept allows the geometry of the element to be expressed in terms of its
nodal coordinates by means of the same set of shape functions Ni used in the interpolation of
displacements. For instance at any point (ξ, η) within an isoparametric element. The x and y
coordinates may be obtained from the expressions

(9a)

. (9b)

The shape functions Ni are given in terms of natural coordinates (ξ, η), but the B matrix requires
derivatives of Ni with respect to the global coordinates x and y. The transformation between the two

u û≈ Nde N idi
i 1=

n

∑= =

û

u
u x y,( ) 

v x y,( ) 
=

di

ui

vi

=

u ξ η,( ) Ni ξ η,( )ui
i 1=

n

∑=

v ξ η,( ) Ni ξ η,( )vi
i 1=

n

∑=

ε̂ LTNde= Bde

i 1=

n

∑ B idi
e=≡

x ξ η,( ) Ni ξ η,( )xi
i 1=

n

∑=

y ξ η,( ) Ni ξ η,( )yi
i 1=

n

∑=
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coordinate systems is accomplished by means of the Jacobian matrix, J, which is given by

. (10)

Finally, the stresses may be related to the strains by use of an elasticity matrix D as follows

(11)     

To check for satisfaction of the governing equilibrium equations we substitute  given by Eq. (11)
into Eq. (1) and obtain

(12)

where r is a vector of residual body forces. Evaluation of the residual forces for a plane stress
problem and explicit equations of the residual forces for plane strain and axisymmetric problems are
given in Appendix A.

 

5. Error estimation 

We now focus our attention on the local and global error estimation. The global error estimate
allows us to determine, for the mesh currently being used, whether we have satisfied our main
objective of reducing the global error to a certain specified value. On the other hand, if the global
error is not low enough, then the local contribution of the error to the global error estimate provides
us with information on how the current mesh can be refined to efficiently reduce the global error.
There are two main groups of methods:

• residual-based methods and
• flux projection (or best guess stress) methods.
In order to normalise these error measures they are usually divided by the strain energy . We

now describe a selection of algorithms from both sets of methods
 
5.1 Residual based methods 

In this section we consider two residual-based methods:
• the element residual method and
• the sub-domain method.

5.1.1 Element residual method 
The FE solution gives an approximate displacement field, which is continuous over the domain.

However, the derivatives of this field are discontinuous across element boundaries. These
discontinuities in the displacement derivatives imply strain and hence stress jumps across element
boundaries (Babuska and Rheinboldt 1978, Kelly et al. 1983). Various error estimators use the inter-
element traction jump around the element boundary and the residual terms in the governing
equation over the interior of the element to obtain an error estimate. Techniques using energy norms

J ∂x ∂ξ  ⁄ ∂y ∂ξ⁄
∂x ∂η  ⁄ ∂y ∂η⁄

=

σ̂ DBde
=

σ̂

LTσ̂ b– r 0≠=

w
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derived by several authors (Babuska and Rheinboldt 1978, Kelly et al. 1983) have the general form

(13)

where Ω is the total domain, C1 and C2 are constants, I is the total interface between elements, j are
the inter-element tractions and r are the residual forces and can be obtained from Eq. (12). A
particular expression derived in Kelly et al. (1983) for two-dimensional problems defines an element
contribution to  as

 (14)

where h is the element size and K is dependent on the problem being solved: for plane stress

(15)

and for plane strain and axisymmetric problems

(16)

where E is Young’s modulus and v is Poisson’s ratio.
The interior residual term in Eq. (13) is the dominant error term when the shape functions consist

of piecewise biquadratic functions. However, the dominant error term in Eq. (13) is the boundary
term when the shape functions consist of piecewise bilinear functions. Thus the boundary term can
be neglected when estimating errors of biquadratic FE approximations (Babuska and Rheinboldt
1978). Furthermore, Babuska and Yu (1986) have recently shown more generally that for odd-
degree elements (elements with odd-degree polynomial shape functions), the inter-element traction
jumps dominate the error, but for even degree elements, the interior residuals will be dominant.
Recently, Robinson and Armstrong (1992) made use of the interior residual term and the boundary
term using 8-noded isoparametric elements. They have carried out the analysis for different linearly
and quadratically loaded plane stress/strain problems where the exact analytical solution is known.
They have also found that the interior residual term is the dominant term and the boundary term is
negligible.

The error estimation scheme in this section uses these results to estimate the error energy  of
piecewise quadratic approximations in meshes of 6-noded triangular elements. The approach taken
is to calculate only the interior residual portion of the error in the elements by neglecting the
boundary term in Eq. (13).

(17)

5.1.2 Sub-domain method 
Another residual error estimator which makes use of residual r using a solution based on

hierarchical bubble functions has been described by Babuska and Yu (1986). Baehmann et al.
(1990) have applied to two and three dimensional elasticity problems. This method is now
presented.
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In this scheme we first evaluate the interior residual body forces r obtained when the FE stresses
are substituted into the governing differential Eq. (12). For the 6-noded triangular element we
assume that there exists a better solution based on quartic variations of the displacements over the
element. Thus we represent the error e in the displacements using hierarchical (quartic) bubble
functions so that 

(18)

where  and the shape functions  are written as

(19)    

gi are unknown nodeless coefficients associated with the distribution of the displacement error e
within the element.

To obtain these coefficients we solve the stiffness equations for the element, which have the form

 (20)

where the stiffness matrix  has the form

(21)

and . The consistent nodal forces fr associated with the residual error body
forces r may be expressed as

(22)

and the vector of the unknown coefficients . We now make the following remarks
concerning the sub-domain method:

1. Since the shape functions are quartic, a 13-point integration rule is needed to .
2. For the quadratic 6-noded element the residual body forces are uniformly distributed over each

element.
3. The strain energy error for element i associated with the quartic displacements is obtained for

the expression

(23)

4. The total error energy which is used to evaluate the global percentage error is obtained from

(24)

e Ñi gi
i 1=

3

∑=
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K̃
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5.2 Flux projection (or best guess stress) methods

In this section we consider a set of algorithms known as flux projection methods (Zienkiewicz and
Zhu 1992). These methods make use of an error energy norm of the form

(25)

where σ are the exact stresses and  are the ‘row’ FE stresses. As we do not have access to the
exact stresses σ, we substitute our best guess stresses . By best guess, we mean that the stresses

 are as close as possible to the exact stresses σ, so that

(26) 

The ‘row’ FE stresses  are usually discontinuous across element interfaces. There are various
methods for producing more accurate and continuous stress fields . The object of this section is
to describe these methods, which can then be used in conjunction with Eq. (25) to produce
contributions to  from each element. Before choosing one of these stress recovery techniques, it
is necessary to give answers to a number of important questions which arise in connection with the
use of different elements:

• Stresses may be evaluated at any point within the element domain. Which points are the most
convenient to the engineer who must use the results of the computer analysis to interpret the
behaviour and integrity of the structure?

• At which points within the element are the stresses most accurately determined? And as a
corollary of this, which points are the least accurate?

• Can the oscillatory nature of the stresses be damped out to obtain a smoothly varying continuous
stress field?

• Are smoothed stresses always desirable?
It is usually accepted that the nodal values are the most convenient location for sampling of

stresses and these also facilitate error estimation and sensitivity analysis procedures. However, it is
also fairly well known that interpolation functions are usually less accurate towards the extremities
of the interpolation region. (For the finite element case the nodes are at the extremities of the
region.) Bearing this in mind, the stresses may be smoothed to reduce or eliminate oscillations.

Several simple methods have been proposed in the past and are widely used in practice. These
are:

• nodal averaging,
• least squares smoothing,
• superconvergent patch recovery method and,
• Loubignac iteration.
All of which have been considered in the present study and will now be described.

5.2.1 Nodal averaging 
The simplest known form of smoothing is averaging of the nodal stresses1  at each node.

e σ σ̂–[ ]TD 1– σ σ̂–[ ] Ωd
Ω

 

∫ 
 

1 2⁄

=

σ̂
σ*

σ*

σ σ*≈

σ̂
σ*

e

σ̂ i
e( )

1We deal with each stress component (e.g., ) in turn.σx σy τxy, ,
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Smoothed stresses for each node are obtained by averaging the stress contributions of all elements
connected to that node.

(27)

in which  is the stresses at node i of element e and n is the number of elements meeting at node i.
This averaging process may be applied to the unsmoothed nodal stresses or to the locally

smoothed nodal stresses. For simple elements with linear variation of displacements, the simple
nodal averaging is adequate, for more complex elements, such as quadratic or cubic isoparametric
elements; other methods which lead to improved best guesses approximation are worthy of
consideration.

 
5.2.2 Least squares smoothing 
Least square smoothing is now considered. The component of the continuous stress field σ*,

which is approximated as

(28)

where Nσi is a C0 continuous shape function and  is the smoothed nodal stress associated with
node i. The continuous stress σ* is determined by forcing the Galerkin-like condition

(29)

As numerical integration techniques are typically employed, therefore, the finite element stress
values  used in the smoothing process are evaluated at the integration points which, in the case of
Gauss-Legendre quadrature are typically the most accurate locations in the element for their
evaluation. Eq. (29) is equivalent to the least squares smoothing procedure of Hinton and Campbell
(1974).

One method, which can be employed to obtain a continuous stress field using Eqs. (28) and (29)
is to assume that the stress σ* is interpolated by the same shape function Ni as the individual
displacement components. Note that other shape functions (e.g., functions, which are one order less
than Ni may also be used. This yields

(30)

where typical components may be written as

and (31)

and

(32)

σ
i
*

σ̂i
e( )

e∑
n

-----------------=

σi
e( )

σ* Nσ iσ i
*

i
∑=

σ i
*

Nσi
σ* σ̂–( ) Ωd

Ω∫ 0=

σ̂

Sσ* q– 0=

Sij NiNj Ωd
Ω∫= qi Ni σ̂ Ωd

Ω∫=

σ* σ1
* σ2

* …, ,[ ]T
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are the smoothed nodal values of the nodes. For local least squares smoothing, Eq. (30) is solved by
considering individual element domains separately.

To reduce the solution cost in global least squares smoothing, the stress smoothing matrix S can
be diagonalised. This reduces the effort required to solve Eq. (30) to one division operation for each
stress component at each node. Implementation of this method is very easy --- for example the
terms of a row may be simply summed to the diagonal. However, if the S matrix for the 6 noded
triangular elements is lumped in this manner, the terms representing the corner nodes will be
negative. Thus, the smoothing matrix loses its positive definite character. Hinton et al. (1976) have
proposed a lumping scheme, which yields a positive definite smoothing matrix. The total area of the
element is divided among the nodes in proportion to the diagonal terms of the consistent S matrix
and the shape functions are assumed to have unit value within this region and zero elsewhere. 

 
5.2.3 Superconvergent patch recovery technique 
As mentioned above, the stresses  calculated from Eq. (11) do not posses interelement

continuity and have a low accuracy at the nodal points and boundaries of finite elements.
The nodal value of a typical stress component in the superconvergent patch recovery process can

be sampled from a polynomial expansion σ* of the same order as that present in the element
interpolation functions (Zienkiewicz and Zhu 1992) and which extends over an element patch, i.e., a
set of element meeting at a common corner nodal point as shown in Fig. 1. The polynomial
function σ* is written as

σ* = Pa (33)

where P contains the polynomial terms and a are the unknowns. The order of the smoothing
function or the polynomial terms P is usually of the same order as the element shape functions so
that for the 6-noded triangular elements adopted here, for example, quadratic smoothing functions
are used and

(34)

The unknowns a are obtained using a local least squares fit to the stresses sampled at the integrating
(or superconvergent points) of an element patch. This is done by minimising the sum of the squares
of errors in the stress

σ̂

P 1 x y x
2

xy y
2, , , , ,[ ]=

Fig. 1 Computation of superconvergent nodal values for 6-noded quadratic triangular elements
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       (35)

where (xi, yi) are the coordinates of the sampling points and n is the total number of sampling points
in a patch. The minimisation of Eq. (35) leads an explicit expression for a of the form

(36)

where

(37)

Once the unknowns a have been calculated, nodal values are obtained by the insertion of the
associated nodal coordinates into the expression for σ*. This recovery technique is performed for
each nodal vertex.

It can be expected that all values of σ* in the domain of the patch are superconvergent. The
convergence and reliability of the superconvergent patch recovery technique is illustrated later for
several adaptivity examples. Also some results obtained using conventional smoothing and the
superconvergent patch recovery technique are compared.

The stress sampling points is shown in Fig. 1 for quadratic triangular elements. However, for
triangular elements the existence and the locations of superconvergent points are still matters which
do not appear to have been fully explored mathematically despite the early work of Moan (1974)
suggesting the existence of optimal integration points. It is suggested that some of the derivatives
are superconvergent at midside nodes of triangular element (Zienkiewicz and Zhu 1992, Moan 1974,

F a( ) σ̂ xi yi,( ) σ* xi yi,( )–[ ]
2

i 1=

n

∑=

σ̂ xi yi,( ) P xi yi,( )a–[ ]2

i 1=

n

∑=

a A 1– b=

A PT xi yi,( )P xi yi,( )
i 1=

n

∑=

b PT xi yi,( )σ̂ xi yi,( )
i 1=

n

∑=

Fig. 2 Computation of superconvergent nodal values for boundary nodes
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Barlow 1976). In the present work, stresses are sampled at the three midside nodes.
It will be observed that element patches will overlap for midside nodes. This means that such

recovered nodal values are evaluated from two patches except at the boundaries of the mesh. As all
such values are superconvergent, nodal averaging is used at these points. The recovered vertex nodal
values are, however, only determined from a single patch.

A more difficult situation arise at the boundary of the domain where a local patch, such as the one
illustrated in Fig. 2, may involve only one or two elements. For the one element situation (corner
point) the size of patch is insufficient for determination of the parameter a and the corner node
values are determined from an interior patch. For two element patches the situation is simpler and
such patches are assembled and solved in the standard manner.

5.2.4 Loubignac algorithm 
Although the use of continuous stress fields eliminates the traction jumps between elements, it

does not guarantee a better satisfaction of the overall equilibrium. In fact, the continuous stress
fields obtained using least squares smoothing or simple nodal averaging do not satisfy the overall
equilibrium conditions.

The governing equations of static equilibrium for a domain Ω with a system of body forces and
applied surface tractions can be simply established using the Principle of Virtual Work in which

(38)

where virtual displacements δu and associated virtual strains δε may be represented by the
expressions

and (39)

The governing FE equations are obtained by substituting Eq. (39) into Eq. (38)

(40)

and as Eq. (40) is true for any δd, we obtain

(41)

However, when the continuous stress field σ* is substituted into Eq. (41), residual nodal forces q are
obtained

(42)

These residual forces can be minimised by the application of Loubignac’s iteration scheme
(Cantin et al. 1978). Now, an algorithm is described to obtain a continuous stress field as well as
the usual continuous displacement field. It provides an equilibrated stress field in the weak sense
(i.e. in the finite element sense). The steps to be followed to implement the proposed algorithm
are:

δεTσ Ωd
Ω∫ δuTb Ωd

Ω∫– δuTt ΓdΓt
∫– 0=

δu Nδd∑= δε Bδd∑=

δd BTσ Ωd
Ω∫ NTb Ωd

Ω∫– NTt ΓdΓt
∫–( ) 0=

BTσ Ωd
Ω∫ f– 0=

BTσ* Ωd
Ω∫ f– q=
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1. Solve the problem by the classical method to obtain the displacements d0 and stresses  from
Eqs. (4) and (11) respectively and set counter i = 0.

2. Increase the count number by 1 (i = i + 1) and calculate smoothed nodal stresses  starting
from  by global or local smoothing or by nodal averaging, e.g. compute the mean nodal
values of stresses .

(43)

3. Interpolate the stresses using the nodal values to give a continuous field σ*

(44)

4. Evaluate the residual qi from Eq. (42) corresponding to the current stress field  defined in 3.
5. Solve

(45)

6. Update d and 

(46)

(47)

7. Evaluate  and check convergence

(48)

   and go to step 2 if convergence is not obtained.
The convergence is generally fast and 2-6 iterations are normally used.

5.3 Estimation of global error 

The error energy norms presented in the previous sections are a measure of the absolute value of
the predicted error over the domain. The predicted value of the percentage global error η is given by
the expression

(49)

is the where  strain energy of the exact solution. In Zienkiewicz and Zhu (1992) the exact
strain energy norm of the solution is approximated by

(50)

σ̂0

σ i

σ i 1–

σ̂

σ i
1

nse

------ σ̂ i 1–
e( )

e 1=

nse

∑=

σ i
* N σ i=

σ i
*

di∆ K
1– qi–=

σ̂

di di 1– di∆+=

σ̂ i DBdi=

qi

qi

f
---------- δ<

η e
w

---------=

w
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where

(51)

in which  is the FE approximation to the strain energy norm and is defined as

(52)

Alternatively, Özakça (1993) approximate  using the ‘smoothed’ continuous stress field

(53)

since the strain energy of the FE solution  can be upper or lower bounded by the exact strain
energy. The estimation given by Eq. (51) is not valid if  is lower bounded.

Eq. (49) allows an effective adaptive process to be developed with the principle objective of
achieving a specified overall percentage accuracy  --- say 5% in many engineering applications
(Zienkiewicz and Taylor 2000). Thus, if for a given mesh we find that

 (54)

then we must refine the mesh in order to reduce η. In the next section we consider a strategy
developed by Zienkiewicz and Zhu (1992) to achieve this.

 

6. Refinement procedure 

6.1 Refinement indicators

The essential question to be considered in this section is the identification of the adaptive
principles on which the decision for the refinement will be based. The main principle in h-refinement
is to refine the mesh so as to equally distribute the global error within each element and to reduce
the total error to an acceptable user-specified level. 

As the aim is to obtain a uniform error distribution for all elements, the permissible error for each
element is determined by

(55)

where nel is the total number of elements in the domain under investigation. As the error is
evaluated at the element level, we define the parameter ξi for each element as

(56)
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where ξi is called ‘refinement indicator’. Depending on the values of ξi we can identify three
possible element states:

• if ξi = 1 optimal element size
• if ξi > 1 refinement is necessary, and
• if ξi < 1 de-refinement is possible.

More recently, Onate et al. (1992) proposed a new method for mesh density evaluation2. However,
this method leads to many elements at the final solution and solution may not converge if
singularity points exist. In the present work the first approach is used which is mesh optimality
based on equal distribution of global error within each element.

6.2 Evaluation of the mesh density 

The characteristic feature of the AMR procedure is the use of the current solution to predict the
new mesh size . For instance, if the current element size is hi and the rate of convergence of the
adopted element is O(hl) then we can design the new element size to be  which is given by the
expression

(57)

The values of l depends on the smoothness of the solution and on the norm used to evaluate the
error. Generally l is taken to be equal to the polynomial degree of the FE approximation. However,
near a singularity it has been shown that  where the value of l represents the strength
of the singularity (Zienkiewicz and Zhu 1992). Singularities occur in high stress area and the
singular point is characterized by high stress and stress gradient values. The relative stress variation
is strong in singular areas, and low where the solution is smooth. The location and level of the
singularity can be identified by experienced user or based on technique explained by Cugnon and
Beckers (1998). Eq. (57) can be used to evaluate the design mesh density for an automatic mesh
generator.
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2They introduced a mesh optimality criterion based on the equal distribution of the specific error. In their
definition, mesh is optimal if the error per unit area (or volume) is the same over the whole mesh. It is
specified that 

where γ is the required specific error tolerance defined as 

and Ωi and Ω denote the element and total area respectively. The new element refinement parameter is then
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6.3 Effectivity index
 
The reliability of the error estimators and various smoothing methods is measured in terms of the

effectivity index in the energy norm which is defined as

(58)

The error estimator is called asymptotically correct if θ converges to continuity when the errors
converge to zero (Zienkiewicz and Zhu 1992). In practice, we require that  must be close to the
actual error  when the accuracy of the FE solution is in the range of the prescribed values, i.e.,
when  is close to η. For the asymptotically exact error estimators, the bounds of the effectivity
index are defined as

(59)

For the superconvergent patch recovery method presented above, numerical examples shows that
 for bi-quadratic elements (Zienkiewicz and Zhu 1992).

7. Mesh re-design 

Another main ingredient of the AMR procedure is automatic mesh generation and remeshing.
Remeshing may involve either refining or coarsening the previous mesh.

The following methods can be used to generate new meshes:
• Adaptive mesh refinement (AMR): In this technique the mesh on which the error was computed

is completely discarded and a new mesh of the required density is generated.
• Mesh enrichment (MER): In this method, groups of elements are refined by splitting them and

other groups are de-refined by uniting the elements in these groups.
• Uniform mesh refinement (UMR): In this method only uniform meshes are used throughout the

domain. The level of refinement is purely based on the global target error.
• Mesh movement or node relocation (NER): In this technique the original topology of the mesh is

retained in all analyses. Only the location of the nodal points is changed. UMR method cannot
be considered a suitable tool in an adaptive scheme, but it is listed for completeness. A thorough
investigation of these methods for one dimensional problems has been carried out by Sienz
(1994). The AMR scheme proved to be the most successful for for a linear, second order
boundary value problem, as the final mesh possessed the smallest number of degree of freedom
for a specified accuracy.

 
7.1 Automatic mesh generation in AMR procedures 

As we have seen, AMR procedures involve the design of nearly optimal meshes with varying
element sizes to achieve a prescribed accuracy. The importance of AMR procedures in industrial
applications has led to increased research on fully automatic mesh generators, which require only
the specification of the boundary and mesh size distribution over the domain. The success of AMR
procedures depends to a large extent on the efficient coupling between the adaptive FE analysis and
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automatic mesh generation.
The AMR procedure requires a convenient means of prescribing the mesh density over the

domain, to generate the so-called optimal mesh; however, this type of feature is not commonly
available in most mesh generators.

Based on a recent study (Sienz 1994, Peraire et al. 1987) the advancing front method appears to
be one of the best approaches for mesh generation for problems involving adaptive analysis since it
incorporates a remeshing facility to allow the possibility of refinement (or derefinement) coupled
with directional refinement and allows a significant variation of mesh spacing throughout the region
of interest.

In the present work, the remeshing of the whole domain is performed using a mesh generator
described in Sienz (1994) which is ideal for AMR procedures.

7.2 Evaluation of new mesh densities 

When carrying out an initial FE analysis, the background mesh and the mesh parameters must be
specified to generate FE meshes. Generally these mesh parameters are defined intuitively by
experience. A judicious choice of mesh parameters in the initial background mesh is necessary for
fast convergence of the solution during the AMR procedure. For example, the value of the size
parameter δ could be taken to be approximately L/5 (depending on the element used) where L is the
largest dimension (e.g. side length) in the domain. After the initial FE analysis new values of δ are
calculated by the use of an error estimator (and prescribed accuracy) at the nodes of the current
mesh using the expression

(60)

where  is the new element size determined from the adaptive analysis using Eq. (57) and nse is
the total number of elements surrounding the node k.

Once information concerning the new element sizes -- the mesh density -- has been estimated, it
is linked to the mesh generator to perform the desired discretisation by transferring the new element
sizes to the nodes of the current mesh or to the boundary of the domain to be discretised. In other
words, at a given stage of the analysis, the mesh used in the previous analysis becomes the new
background mesh. Thus, in this process, the background mesh changes continually during the
adaptive analysis.

 

8. Examples 

In the previous sections we described the methodology, which may be used to estimate the error
energy norm  and evaluate the mesh density for the mesh generator. We now present some
applications, where these error estimators have been used. In the figures and tables we use the
following notation:

ZZ(NA) --- Zienkiewicz-Zhu error estimator with nodal averaging,
ZZ(L) --- flux projection error estimator with local stress smoothing,
ZZ(G) --- flux projection error estimator with global stress smoothing,
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ZZ(LN) --- flux projection error estimator with nodal averaging and Loubignac equilibrium
iteration,

ZZ(LL) --- flux projection error estimator with local stress smoothing and Loubignac equilibrium
iteration,

ZZ(S) --- flux projection error estimator with superconvergent patch recovery technique,
R(E) --- residual error estimator based on element residual method (the boundary term is

neglected),
R(S) --- residual error estimator based on sub-domain method, 
Three examples are now considered:

• L-shaped plate,
• square plate with symmetrically located central cracks, and
• prism with a square cross-section and a cylindrical hole.
In these examples, self-consistent units are used throughout.
 
8.1 L-shaped plate under edge pressure load 

To check that the AMR procedure is working correctly for plane stress problems we consider an
L-shaped plate under edge pressure load (Zienkiewicz and Zhu 1992) as shown in Fig. 3. The
following properties and dimensions are used: elastic modulus E = 100,000.0, Poisson’s ratio
ν = 0.3, thickness t = 1.0, side length L = 100.0 and edge pressure intensity p = 1.0. The prescribed
global percentage error is taken as  = 1%. The values of the strain energy obtained are compared
with the exact solution of 0.311329399 (Zienkiewicz and Zhu 1992).

We now consider the results:
• The meshes and corresponding error distributions and principal stress plots obtained using ZZ(S)

are shown in Fig. 4 for the initial, third, fifth and final iterations.
• The initial mesh of the L-shaped domain shown in Fig. 4 has 20 elements, 103 degrees of

freedom, a strain energy  equal to 0.305445 and a global percentage error η = 13.36%.
• After seven iterations, the global percentage error reduces to 0.8831% and the final mesh has

427 elements, 1797 degrees of freedom and strain energy = 0.311297.

η

ŵ i
2

ŵ i
2

Fig. 3 Geometry of L-shaped plate



Comparison of error estimation methods and adaptivity for plane stress/strain problems597

Fig. 4 L-shaped plate --- initial and final meshes and associated error distribution and maximum principal
stress obtained using the ZZ(S) method: 
(a) first iteration: dof = 106, θ = 0.94, η = 13.36, (b) third iteration: dof = 877, θ = 0.84, η = 2.65, 
(c) fifth iteration: dof = 1383, θ = 0.88, η = 1.25,    (d) final iteration: dof = 1797, θ = 0.95, η = 0.88
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Fig. 6 L-shaped plate: effectivity indices Fig. 7 L-shaped plate: convergence curves for different
error estimators

Fig. 5 L-shaped plate --- final meshes obtained using the flux projection error estimator with different stress
smoothing methods and residual error estimators: 
(a) ZZ(NA): dof = 1755, θ = 0.83, η = 0.87, (b) ZZ(LN): dof = 2389, θ = 1.14, η = 0.88, 
(c) ZZ(L): dof = 1469, θ = 0.81, η = 0.95,         (d) ZZ(LL): dof = 2993, θ = 0.97, η = 0.97, 
(e) ZZ(G): dof = 1357, θ = 0.76, η = 0.98,        (f) ZZ(S): dof = 1797, θ = 0.95, η = 0.88, 
(g) R(E): dof = 1123, θ = 0.86, η = 0.94,          (h) R(S): dof = 1145, θ = 0.91, η = 0.98
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• The final meshes obtained using the flux projection and residual based error estimators are
shown in Fig. 5. Fig. 6 shows the affectivity indices and Fig. 7 illustrates the corresponding rates
of convergence. Note that, the affectivity indices and rate of convergence curves are coincident
for the residual methods. Also the rate of convergence curves of the local and global least
squares smoothing procedures are identical.

• We achieve the prescribed percentage error of  = 1% for all error estimators and smoothing
procedures.

8.2 Square plate with symmetrically located central cracks 

To demonstrate the efficient use of the AF mesh generator for adaptive FE analysis of plane strain
problems and to compare the performance of the different error estimators, we consider a square
plate with symmetrically located central cracks under uniform tensile load (Shephard et al. 1989) as
shown in Fig. 8. The following properties and dimensions are used: elastic modulus E = 1.0,
Poisson’s ratio ν = 0.3, side length L = 2.0, length of the crack l = 0.5 and edge pressure intensity
p = 1.0. Prescribed global error percentages of  = 1% and  = 0.5% are assumed for the flux
projection and residual error estimators respectively. The exact strain energy for this problem is
known to be 1.468762 (Shephard et al. 1989).

The results are now presented:
• The initial mesh on the cracked plate domain is shown in Fig. 9 and has 22 elements, 108

degrees of freedom and the strain energy  is equal to 1.400226.
• The initial, third, fifth and final meshes and corresponding error distribution and maximum

principal stress are shown in Fig. 9 obtained using the flux projection error estimator with
superconvergent patch recovery technique.

• Fig. 10 shows the final meshes obtained with the flux projection error estimator using different
smoothing procedures and residual based error estimators.

η

η η

ŵ i
2

Fig. 8 Geometry of cracked plate problem
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Fig. 9 Cracked plate problem --- Initial and final meshes and associated error distribution and maximum
principal stress obtained by the ZZ(S) method: 
(a) first iteration: dof = 108, θ = 0.87, η = 19.96,   (b) third iteration: dof = 1086, θ = 0.86, η = 4.18, 
(c) fifth iteration: dof = 1798, θ = 0.90, η = 1.47,   (d) final iteration: dof = 2436, θ = 1.12, η = 0.87
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Fig. 11 Cracked plate problem: effectivity indices Fig. 12 Cracked plate problem: convergence curves
for different error estimators

Fig. 10 Cracked plate problem --- final meshes obtained using the flux projection error estimator with
different stress smoothing methods and residual error estimators: 
(a) ZZ(NA): dof = 2052, θ = 0.94, η = 0.98, (b) ZZ(LN): dof = 1876, θ = 0.97, η = 1.11,
(c) ZZ(L): dof = 2032, θ = 0.81, η = 0.95,   (d) ZZ(LL): dof = 1884, θ = 1.15, η = 1.23,
(e) ZZ(G): dof = 1908, θ = 0.82, η = 1.00,        (f) ZZ(S): dof = 2436, θ = 1,12, η = 0.87,
(g) R(E): dof = 2684, θ = 0.93, η = 0.45,          (h) R(S): dof = 2928, θ = 0.98, η = 0.49
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• The comparison of the different methods are given in Figs. 11 and 12. Fig. 11 shows the
effectivity index versus the number of degrees of freedom and Fig. 12 illustrates the
corresponding rates of convergence obtained.

8.3 Prism with a square cross-section and a cylindrical hole 

In this third example we deal with a prism with a square cross-section and a cylindrical hole
subjected to uniform tensile load. By taking advantage of the double symmetry, which exists in the
problem, only a quadrant of the prism is considered. Assuming plane strain condition, Poisson’s
ratio ν = 0.3 and elastic modulus E = 1.0. Other dimensions are indicated in Fig. 13. The pre-
specified global percentage error  is taken as 0.5%. The values of the strain energy obtained are
compared with the exact solution of 1.40333914 (Shephard et al. 1989).

The results are now examined:
• The initial mesh contains 30 elements, 179 degrees of freedom giving a strain energy =

1.32732.
• Fig. 14 shows the progression of meshes obtained and the associated error distributions and

maximum principal stresses using the superconvergent patch recovery technique with pre-
specified global percentage =0.5%.

• Fig. 15 shows the final meshes obtained using flux projection error estimator with different
smoothing procedures and residual type error estimators. The effectivity indices of different error
estimators are plotted in Fig. 16. The rates of convergence of the different error estimators are
compared in Fig. 17.

η

ŵ

η

Fig. 13 Prism with a square cross-section and a cylindrical hole
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Fig. 14 Prism with a square cross-section and a cylindrical hole --- Initial and final meshes and associated
error distribution and maximum principal stress obtained with the ZZ(S) method:
(a) first iteration: dof = 139, θ = 0.60, η = 6.73,  (b) second iteration: dof = 433, θ = 0.62, η = 1.57,
(c) third iteration: dof = 705, θ = 0.88, η = 0.53, (d) final iteration: dof = 815, θ = 1.04, η = 0.46.
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Fig. 16 Prism with a square cross-section and a
cylindrical hole: effectivity indices

Fig. 17 Prism with a square cross-section and a
cylindrical hole: convergence curves for
different error estimators

Fig. 15 Prism with a square cross-section and a cylindrical hole --- final meshes obtained using flux
projection error estimator with different stress smoothing methods and residual error estimators:
(a) ZZ(NA): dof = 779, θ = 0.84, η =0.49, (b) ZZ(LN): dof = 899, θ = 1.17, η = 0.45, 
(c) ZZ(L): dof = 731, θ = 0.71, η = 0.45,    (d) ZZ(LL): dof = 1321, θ = 1.15, η = 0.45, 
(e) ZZ(G): dof = 779, θ = 0.80, η = 0.36,    (f) ZZ(S): dof = 815, θ = 1.04, η = 0.46, 
(g) R(E): dof = 547, θ = 0.65, η = 0.46,      (h) R(S): dof = 663, θ = 0.93, η = 0.48
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9. Conclusions 

Based on the above examples the following points are noted.
• The flux projection error estimator with simple nodal averaging, ZZ(NA) has a very high

effectivity index value in the first iteratio but has a slow convergence to the desired accuracy. It
is the easiest method to implement.

• The flux projection error estimator with local smoothing, ZZ(L), gives similar results and a
much smaller computational cost when it is compared with global smoothing.

• The use of the flux projection error estimator with global least squares smoothing, ZZ(G),
appears to be sufficiently accurate for shape optimisation. Global stress smoothing has slightly
better convergence characteristics but a higher computational cost compared to the nodal
averaging and local smoothing techniques.

• Simple nodal averaging with Loubignac iteration, ZZ(LN), provides a method for reducing all of
the equilibrium errors. The addition of Loubignac iterations improves the values of the
effectivity index. However, this method is a relatively expensive procedure. For example to
achieve the prescribed accuracy in the L-shaped plate example, the number of degrees of
freedom is 2265 as compared to only 1149 degrees of freedom required with the R(S) method.
Its use increases the consumed CPU time by a factor of 2 to 3.

• Local smoothing with Loubignac iteration, ZZ(LL), gives the similar results obtained using
nodal averaging with Loubignac iteration.

• The superconvergent patch recovery technique, ZZ(S), gives the best convergence and effectivity
indices compared with other smoothing procedures. It converges slowly, but it gives better error
and mesh distributions.

• The residual method with the higher order bubble shape function, R(S), gives very impressive
results giving the best error distribution and the optimal mesh with the smallest number of
elements. The rate of convergence of this method is higher than those of other methods. We
obtain the desired accuracy using a minimum number of degrees of freedom. However, it is the
most complex method from the implementation point of view.

• When we use the residual method, R(E), the results are almost identical to the other residual
method, R(S). The effectivity index grows very fast with increasing degrees of freedom and is
only slightly greater than 1 at the final iteration. This method is the cheapest error estimation
method.

Another aspect of the adaptive process is the selection of  (the prescribed accuracy). We only
need to obtain a near optimal mesh and hence it is not necessary to give extremely stringent values
of . When a very stringent accuracy is prescribed, the number of elements in the final mesh
becomes large and also requires more adaptivity iterations to reach that accuracy. An accuracy
between 3-8% is reasonable depending on the type of the problem and application.

It has been shown that the number of the elements in the initial mesh greatly influences the rate
of convergence and number of the elements in the final optimum mesh. The following strategies can
be adopted regarding the selection of the initial mesh:

• Always use a reasonable mesh to start.
• Use judgement and experience to grade the starting mesh.
• Identify points of singularity in the domain.

η

η
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Appendix A. --- Evaluation of residual body forces 

The element differential equations of equilibrium for two dimensions can be written as

(A.1)

where bx and by are the body forces in the x and y direction respectively. For two dimensional
problems, the three strain components are

(A.2)

First, let us consider the residual forces in the element for plane stress problems. In the case of plane stress
problem, the constitutive relations for an isotropic material can be written as

(A.3)

Upon substitution of (A.3) into (A.2) and σx, σy and τxy may be evaluated as
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If we take the derivatives of the stress components with respect to x and y and substitute them in (A.1) we
obtain the element residual forces for x and y directions

(A.5)

The element residulal body force r can be expressed as

(A.6)

The residual forces for plane strain problems are

(A.7)

and for axisymmetric problems

(A.8)
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